1) Let $u=2 x-5$. Then $\frac{d u}{d x}=2$ and $d x=\frac{d u}{2}$.

$$
\int \frac{1}{(2 x-5)^{3}} d x=\int \frac{1}{u^{3}} \cdot \frac{d u}{2}=\frac{1}{2} \int u^{-3} d u=\frac{1}{2} \cdot \frac{1}{-2} u^{-2}+C=-\frac{1}{4(2 x-5)^{2}}+C
$$

3) Let $u=3 x-2$. Then $\frac{d u}{d x}=3$ and $d x=\frac{d u}{3}$.

$$
\int \sqrt{3 x-2} d x=\int \sqrt{u} \cdot \frac{d u}{3}=\frac{1}{3} \int u^{\frac{1}{2}} d u=\frac{1}{3} \cdot \frac{1}{3 / 2} u^{\frac{3}{2}}+C=\frac{2}{9}(3 x-2)^{\frac{3}{2}}+C
$$

5) Let $u=1+x^{5}$. Then $\frac{d u}{d x}=5 x^{4}$ and $d x=\frac{d u}{5 x^{4}}$.

$$
\int \frac{x^{4}}{\left(1+x^{5}\right)^{2}} d x=\int \frac{x^{4}}{u^{2}} \cdot \frac{d u}{5 x^{4}}=\frac{1}{5} \int u^{-2} d u=\frac{1}{5} \cdot \frac{1}{-1} u^{-1}+C=-\frac{1}{5\left(1+x^{5}\right)}+C
$$

9) Let $u=1+e^{x}$. Then $\frac{d u}{d x}=e^{x}$ and $d x=\frac{d u}{e^{x}}$.

$$
\int \frac{e^{x}}{1+e^{x}} d x=\int \frac{e^{x}}{u} \cdot \frac{d u}{e^{x}}=\int u^{-1} d u=\ln |u|+C=\ln \left|1+e^{x}\right|+C
$$

13) Let $u=\ln x$. Then $\frac{d u}{d x}=\frac{1}{x}$ and $d x=x \cdot d u$.

$$
\int \frac{\ln x}{x} d x=\int \frac{u}{x} \cdot x \cdot d u=\int u \cdot d u=\frac{1}{2} u^{2}+C=\frac{1}{2}(\ln x)^{2}+C
$$

21) Let $u=3+x^{2}$. Then $\frac{d u}{d x}=2 x$ and $d x=\frac{d u}{2 x}$.

$$
\begin{aligned}
& \int_{0}^{1} \frac{x}{\left(3+x^{2}\right)^{3}} d x=\int \frac{x}{u^{3}} \cdot \frac{d u}{2 x}=\frac{1}{2} \int u^{-3} d u=\frac{1}{2} \cdot \frac{1}{-2} u^{-2}=\left.\left(-\frac{1}{4\left(3+x^{2}\right)^{2}}\right)\right|_{0} ^{1} \\
& =\left(-\frac{1}{4\left(3+1^{2}\right)^{2}}\right)-\left(-\frac{1}{4\left(3+0^{2}\right)^{2}}\right)=\left(-\frac{1}{64}\right)-\left(-\frac{1}{36}\right)=\frac{7}{576}=0.012152 \overline{7}
\end{aligned}
$$

25) Let $u=1+\sqrt{x}$. Then $\frac{d u}{d x}=\frac{1}{2} \cdot x^{-\frac{1}{2}}=\frac{1}{2} \cdot \frac{1}{x^{\frac{1}{2}}}=\frac{1}{2 \sqrt{x}}$ and $d x=2 \sqrt{x} \cdot d u$.

$$
\begin{aligned}
& \int_{1}^{4} \frac{(1+\sqrt{x})}{\sqrt{x}} d x=\int \frac{u}{\sqrt{x}} \cdot 2 \sqrt{x} \cdot d u=2 \int u \cdot d u=2 \cdot \frac{1}{2} u^{2}=\left.(1+\sqrt{x})^{2}\right|_{1} ^{4} \\
& =(1+\sqrt{4})^{2}-(1+\sqrt{1})^{2}=3^{2}-2^{2}=5
\end{aligned}
$$

27) Let $u=x-2$. Then $\frac{d u}{d x}=1$ and $d x=d u$ and $x=u+2$.

$$
\begin{aligned}
& \int \frac{x-1}{\sqrt{x-2}} d x=\int \frac{(u+2)-1}{\sqrt{u}} d u=\int \frac{u+1}{u^{\frac{1}{2}}} d u=\int\left(\frac{u^{1}}{u^{\frac{1}{2}}}+\frac{1}{u^{\frac{1}{2}}}\right) d u=\int u^{\frac{1}{2}} d u+\int u^{-\frac{1}{2}} d u \\
& =\frac{1}{3 / 2} u^{\frac{3}{2}}+\frac{1}{1 / 2} u^{\frac{1}{2}}+C=\frac{2}{3}(x-2)^{\frac{3}{2}}+2 \sqrt{x-2}+C
\end{aligned}
$$

31) Let $u=\ln x$. Then $\frac{d u}{d x}=\frac{1}{x}$ and $d x=x \cdot d u$.

$$
\int \frac{1}{x \ln x} d x=\int \frac{1}{x \cdot u} \cdot x \cdot d u=\int u^{-1} d u=\ln |u|+C=\ln |\ln x|+C
$$

