section 6:

- finding limits
- algebraic method
- limits as $x \rightarrow \pm \infty$
section 7:
- continuity: definition: $\lim _{x \rightarrow a} f(x)=f(a)$
- types of discontinuities: removable, jump, vertical asymptote
- Sign Chart Method
section 8:
- derivatives: both definitions:

$$
f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \text { and } f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

- power rule: $D_{x} x^{k}=k x^{k-1}, D_{x}(f(x))^{k}=k(f(x))^{k-1}$
section 9:
- derivative formulas
- sum rule: $D_{x}(a \cdot f(x)+b \cdot g(x))=a \cdot f^{\prime}(x)+b \cdot g^{\prime}(x)$
- product rule: $D_{x}(f(x) g(x))=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)$
- quotient rule: $D_{x} \frac{f(x)}{g(x)}=\frac{g(x) f^{\prime}(x)-f(x) g^{\prime}(x)}{(g(x))^{2}}$
- reciprocal rule: $D_{x} \frac{1}{g(x)}=-\frac{g^{\prime}(x)}{(g(x))^{2}}$
section 10:
- chain rule: $D_{x} g(f(x))=g^{\prime}(f(x)) f(x)$
section 11:
- time derivatives
- velocity: $v(t)=y^{\prime}(t)$ and acceleration: $a(t)=v^{\prime}(t)=y^{\prime \prime}(t)$
- growth rates
section 12:
- graphing
- critical points: $y^{\prime}=0$
- relative maxima and minima
- First Derivative Test
- asymptotes
section 13:
- second derivative
- concavity
- inflection points: $y^{\prime \prime}=0$
- Second Derivative Tes \dagger
section 14:
- finding the absolute maximum and minimum over an interval
- Sole Critical Point Test
- optimal design: objective functions and constraints
section 16:
- derivatives of exponential functions: $D_{t} e^{t}=e^{t}, D_{t} e^{f(t)}=f^{\prime}(t) e^{f(t)}$
- derivatives of logarithmic functions: $D_{x} \ln x=\frac{1}{x}, D_{x} \ln f(x)=\frac{f^{\prime}(x)}{f(x)}$
section 17:
- exponential growth/decay:
- $\quad N^{\prime}=r N, N(0)=N_{0} \Rightarrow N(t)=N_{0} e^{r t}$
o $N^{\prime}=-r N, N(0)=N_{0} \Rightarrow N(t)=N_{0} e^{-r t}$
- $y^{\prime}=k y, y(0)=y_{0} \Rightarrow y(t)=y_{0} e^{k t}$
- doubling-time: $t_{d}=\frac{\ln 2}{r} /$ half-life: $t_{h}=\frac{\ln 2}{r}$
- per capita growth rate: $P C G R=\frac{1}{N} \frac{d N}{d t}$
- Newton's Law of Cooling:

$$
T^{\prime}(t)=-k\left(T-T_{\text {room }}\right), T(0)=T_{\text {init }} \Rightarrow T(t)=T_{\text {room }}+\left(T_{\text {init }}-T_{\text {room }}\right) e^{-k t}
$$

section 18:

- antiderivatives: formulas
- solving differential equations (DEs) with and without boundary conditions (BCs)
section 19:
- finding area by summation: $A=\lim _{\Delta x \rightarrow 0} \sum f(x) \Delta x$
section 20:
- the Fundamental Theorem of Calculus: $\int_{a}^{b} f(x) d x=\left.F(x)\right|_{a} ^{b}=F(b)-F(a)$
- finding the area under a curve using integrals
- converting a rate of change (ex. velocity) into an amount of change (ex. distance traveled)
section 21:
- average value of a function: $\bar{f}=\frac{1}{b-a} \int_{a}^{b} f(x) d x$
- area between two curves: $A=\int_{a}^{b}(f(x)-g(x)) d x$
- volume of a solid of revolution: $V=\pi \int_{a}^{b}(f(x))^{2} d x$
section 22:
- u-substitution
- method of partial fractions
section 24:
- integration by parts: $\int w v^{\prime} d x=w v-\int w^{\prime} v d x$
section 29:
- trigonometric functions
- fitting data to the generalized sine function: $y=B+A \sin \left(\omega\left(t-t_{0}\right)\right)$
- solving $\sin \theta=k$ and $\cos \theta=k$
section 30:
- derivative and integrals of the trigonometric and inverse trigonometric functions
- finding minima and maxima: $N^{\prime}=0$
- finding maximum and minimum growth rates: $N^{\prime \prime}=0$
section 31:
- triangle trigonometry
- optimization problems
section 32:
- implicit differentiation
- related rates
- allometric relationships:

$$
\frac{1}{y} \frac{d y}{d t}=k \frac{1}{x} \frac{d x}{d t}, y(0)=y_{0}, x(0)=x_{0} \Rightarrow y=\frac{y_{0}}{\left(x_{0}\right)^{k}} x^{k}=y_{0}\left(\frac{x}{x_{0}}\right)^{k}
$$

section 33:

- separation of variables: $\frac{d y}{d t}=f(y) g(t) \Rightarrow \int \frac{1}{f(y)} d y=\int g(t) d t$
- finding minima and maxima: $N^{\prime}=0$
- finding maximum and minimum growth rates: $N^{\prime \prime}=0$

