Name \qquad
Find the derivative of each of the following functions and SIMPLIFY as much as possible.

1) $y=\ln (\cos x)_{(2 \text { points) }}$

$$
\begin{gathered}
y^{\prime}=\frac{1}{\cos x} \cdot-\sin x \\
=-\tan x
\end{gathered}
$$

2) $y=\ln (\sec x+\tan x)(4$ points)

$$
\begin{aligned}
y^{\prime} & =\frac{1}{\sec x+\tan x} \cdot\left(\sec x \tan x+\sec ^{2} x\right) \\
& =\frac{1}{\sec x+\tan x} \cdot \sec x \cdot(\tan x+\sec x) \\
& =\frac{1}{\sec x+\tan x} \cdot(\sec x+\tan x) \cdot \sec x \\
& =\sec x
\end{aligned}
$$

3) Choose one of the two following functions, find its derivative, and SIMPLIFY as much as possible. You may choose to find the derivative of both functions; in which case, I will give you credit for which ever one is most correct. (4 points)
a) $y=2 \sqrt{x} \tan ^{-1}(\sqrt{x})$
b) $y=2 \sqrt{x} \sin ^{-1}(\sqrt{x})$

$$
\begin{array}{rlr}
y^{\prime} & =2 \sqrt{x} \cdot \frac{1}{1+(\sqrt{x})^{2}} \cdot \frac{1}{2} \cdot(x)^{-1 / 2} & +2 \cdot \frac{1}{2} \cdot(x)^{-1 / 2} \cdot \tan ^{-1}(\sqrt{x}) \\
& =\sqrt{x} \cdot \frac{1}{1+x} \cdot \frac{1}{\sqrt{x}} & +\frac{1}{\sqrt{x}} \cdot \tan ^{-1}(\sqrt{x}) \\
& =\frac{1}{1+x}+\frac{\tan ^{-1}(\sqrt{x})}{\sqrt{x}} &
\end{array}
$$

or

$$
\begin{aligned}
y^{\prime} & =2 \sqrt{x} \cdot \frac{1}{\sqrt{1-(\sqrt{x})^{2}}} \cdot \frac{1}{2} \cdot(x)^{-1 / 2}+2 \cdot \frac{1}{2} \cdot(x)^{-1 / 2} \cdot \sin ^{-1}(\sqrt{x}) \\
& =\sqrt{x} \cdot \frac{1}{\sqrt{1-x}} \cdot \frac{1}{\sqrt{x}} \\
& =\frac{1}{\sqrt{1-x}}+\frac{\sin ^{-1}(\sqrt{x})}{\sqrt{x}}
\end{aligned}
$$

BONUS: Earlier in the semester, I wore a very "inspiring" math-related t-shirt to class. What was the message on that t-shirt? (1 point)

CALCULUS RULES!

(You know, like Product Rule, Quotient Rule, Chain Rule, etc.)

