Name \qquad

HOW MUCH WATER DOES IT TAKE TO FILL A BOTTOMLESS PIT?

1) Find the area under the curve $y=\frac{1}{x+1}$ for $0 \leq x<\infty$. Draw a sketch of the curve first and shade in the area that you are solving for. (5 points)

$$
\begin{aligned}
\int_{0}^{\infty} \frac{1}{x+1} d x & =\lim _{b \rightarrow \infty} \int_{0}^{b} \frac{1}{x+1} d x=\lim _{b \rightarrow \infty}[\ln (x+1)]_{0}^{b}=\lim _{b \rightarrow \infty} \ln (b+1)-\ln (0+1) \\
& =\lim _{b \rightarrow \infty} \ln (b+1)-\ln 1=\lim _{b \rightarrow \infty} \ln (b+1)-0 \\
& =\lim _{b \rightarrow \infty} \ln (b+1)=\infty
\end{aligned}
$$

So, the area under the curve is infinite. (Also, the curve is infinitely long).
2) Find the volume of the solid of revolution generated by revolving the curve $y=\frac{1}{x+1}$ about the x-axis for $0 \leq x<\infty$. Draw a sketch of the solid first. (5 points)

So, the volume of the solid is finite even though it is infinitely long (or deep)!

