Name \qquad
Early one morning, the police discovered the bodies of a man and a woman in the patio of a house. The temperature in the patio had been a constant $40^{\circ} \mathrm{F}$ since the night before. When the bodies were discovered, the temperature of the man's body was $65^{\circ} \mathrm{F}$, and the temperature of the woman's body was $70^{\circ} \mathrm{F}$. An hour later, the temperature of the man's body was $60^{\circ} \mathrm{F}$, and the temperature of the woman's body was $65^{\circ} \mathrm{F}$.

1) Assuming the man's body temperature was $98.6^{\circ} \mathrm{F}$ when he died, how long had he been dead when the police found the bodies (to the nearest tenth of an hour)? (5 points)
$T(t)=T_{0}+\left(T_{1}-T_{0}\right) e^{-k t}$
$T(t)=65=40+(98.6-40) e^{-k t} \quad T(t+1)=60=40+(98.6-40) e^{-k(t+1)}$
$\Rightarrow 25=58.6 e^{-k t}$
$\Rightarrow 20=58.6\left(e^{-k t}\right) e^{-k}$
$\Rightarrow e^{-k t}=\frac{25}{58.6} \approx 0.4266$
$\Rightarrow 20=58.6\left(\frac{25}{58.6}\right) e^{-k}$
$\Rightarrow\left(e^{-k}\right)^{t}=\frac{25}{58.6}$
$\Rightarrow e^{-k}=\frac{20}{25}=\frac{4}{5}=0.8 \Rightarrow k=\ln \frac{5}{4} \approx 0.223$
$\Rightarrow\left(\frac{4}{5}\right)^{t}=\frac{25}{58.6} \Rightarrow \ln \left(\frac{4}{5}\right)^{t}=\ln \left(\frac{25}{58.6}\right) \Rightarrow t \ln \left(\frac{4}{5}\right)=\ln \left(\frac{25}{58.6}\right)$
$\Rightarrow t=\frac{\ln (25 / 58.6)}{\ln (4 / 5)} \Rightarrow t \approx 3.8$ hours
2) Assuming the woman died at the same time as the man, what was her body temperature when she died (to the nearest tenth of a ${ }^{\circ} \mathrm{F}$)? (5 points)

$$
\begin{array}{ll}
T(t)=70=40+\left(T_{1}-40\right) e^{-k t} & T(t+1)=65=40+\left(T_{1}-40\right) e^{-k(t+1)} \\
\Rightarrow 30=\left(T_{1}-40\right) e^{-k t} & \Rightarrow 25=\left(T_{1}-40\right)\left(e^{-k t}\right) e^{-k} \\
\Rightarrow e^{-k t}=\frac{30}{\left(T_{1}-40\right)} & \Rightarrow 25=\left(T_{1}-40\right)\left(\frac{30}{\left(T_{1}-40\right)}\right) e^{-k} \\
\Rightarrow\left(T_{1}-40\right)=\frac{30}{e^{-k t}} & \Rightarrow e^{-k}=\frac{25}{30}=\frac{5}{6} \Rightarrow k=\ln \frac{6}{5} \approx 0.182 \\
\Rightarrow T_{1}=\frac{30}{\left(e^{-k}\right)^{t}}+40 \Rightarrow T_{1}=\frac{30}{(5 / 6)^{3.8}}+40 \Rightarrow T_{1} \approx 100.0^{\circ}
\end{array}
$$

