Name \qquad Section \qquad

NOTE: You may NOT use a calculator for this quiz.

Find the derivative (y^{\prime}) for each of the following three functions and simplify as much as possible:

1) $y=10 \cdot e^{0.7 x} \quad(2$ points $)$

$$
\begin{aligned}
& y^{\prime}=D_{x}\left[10 \cdot e^{0.7 x}\right]=10 \cdot D_{x}\left[e^{0.7 x}\right] \\
& y^{\prime}=10 \cdot e^{0.7 x} \cdot D_{x}[0.7 x] \\
& y^{\prime}=10 \cdot e^{0.7 x} \cdot 0.7 \\
& y^{\prime}=7 \cdot e^{0.7 x}
\end{aligned}
$$

2) $y=x \ln \left(x^{2}\right)(3$ points)

$$
\begin{aligned}
& y^{\prime}=D_{x}\left[x \ln \left(x^{2}\right)\right]=x \cdot D_{x}\left[\ln \left(x^{2}\right)\right]+\ln \left(x^{2}\right) \cdot D_{x}[x] \\
& y^{\prime}=x \cdot \frac{1}{x^{2}} \cdot D_{x}\left[x^{2}\right]+\ln \left(x^{2}\right) \cdot 1 \\
& y^{\prime}=x \cdot \frac{1}{x^{2}} \cdot 2 x+\ln \left(x^{2}\right) \\
& y^{\prime}=2+\ln \left(x^{2}\right)
\end{aligned}
$$

3) $y=\frac{\ln \left(x^{2}\right)}{x^{2}}(3$ points

$$
y^{\prime}=D_{x}\left[\frac{\ln \left(x^{2}\right)}{x^{2}}\right]=\frac{x^{2} \cdot D_{x}\left[\ln \left(x^{2}\right)\right]-\ln \left(x^{2}\right) \cdot D_{x}\left[x^{2}\right]}{\left(x^{2}\right)^{2}}
$$

$$
y^{\prime}=\frac{x^{2} \cdot \frac{1}{x^{2}} \cdot D_{x}\left[x^{2}\right]-\ln \left(x^{2}\right) \cdot 2 x}{x^{4}}
$$

$$
y^{\prime}=\frac{2 x-\ln \left(x^{2}\right) \cdot 2 x}{x^{4}}
$$

$$
y^{\prime}=\frac{2-2 \cdot \ln \left(x^{2}\right)}{x^{3}}
$$

4) Find the equation of the line which is tangent to the graph of $y=x \ln \left(x^{2}\right)$ at $x=1$ (2 points).

At $x=1, y=0$ and $y^{\prime}=2+\ln \left(1^{2}\right)=2+0=2$.
The equation of the tangent line has the form: $y=m \cdot x+b$

$$
\begin{aligned}
& m=y^{\prime}(1)=2 \\
& y=m \cdot x+b \Rightarrow 0=2 \cdot 1+b \Rightarrow b=-2
\end{aligned}
$$

So the equation of the tangent line is: $y=2 \cdot x-2$

