Name_____ Section_____

NOTE: You may NOT use a calculator for this quiz.

Match each of the following functions with its derivative (1 point each):

	f(x)	f'(x)		
1)	sin <i>x</i>	b	a.	1/x
2)	$\cos x$	d	b.	$\cos x$
3)	e^{x}	c	c.	e^{x}
4)	ln x	a	d.	$-\sin x$

Evaluate the following derivative and simplify as much as possible (6 points):

5)
$$D_{x}\left[2x^{2}\ln x - x^{2} + \frac{x}{x+3}\right]$$
$$= 2 \cdot D_{x}\left[x^{2}\ln x\right] - D_{x}\left[x^{2}\right] + D_{x}\left[\frac{x}{x+3}\right]$$
$$= 2 \cdot \left(x^{2} \cdot D_{x}\left[\ln x\right] + D_{x}\left[x^{2}\right] \cdot \ln x\right) - 2x + \frac{(x+3) \cdot D_{x}\left[x\right] - x \cdot D_{x}\left[x+3\right]}{(x+3)^{2}}$$
$$= 2 \cdot \left(x^{2} \cdot \frac{1}{x} + 2x \cdot \ln x\right) - 2x + \frac{(x+3) \cdot 1 - x \cdot 1}{(x+3)^{2}}$$
$$= 2 \cdot (x + 2x \ln x) - 2x + \frac{x + 3 - x}{(x+3)^{2}}$$
$$= 2x + 4x \ln x - 2x + \frac{3}{(x+3)^{2}}$$
$$= \left[4x \ln x + \frac{3}{(x+3)^{2}}\right]$$

Name_____

Section_____

NOTE: You may NOT use a calculator for this quiz.

Match each of the following functions with its derivative (1 point each):

	f(x)	f'(x)		
1)	$\ln x$	d	a.	$-\sin x$
2)	e^{x}	b	b.	e^{x}
3)	$\cos x$	a	c.	$\cos x$
4)	sin x	C	d.	1/x

Evaluate the following derivative and simplify as much as possible (6 points):

5)
$$D_{x}\left[3x^{3}\ln x - x^{3} + \frac{x}{x+2}\right]$$
$$= 3 \cdot D_{x}\left[x^{3}\ln x\right] - D_{x}\left[x^{3}\right] + D_{x}\left[\frac{x}{x+2}\right]$$
$$= 3 \cdot \left(x^{3} \cdot D_{x}\left[\ln x\right] + D_{x}\left[x^{3}\right] \cdot \ln x\right) - 3x^{2} + \frac{(x+2) \cdot D_{x}\left[x\right] - x \cdot D_{x}\left[x+2\right]}{(x+2)^{2}}$$
$$= 3 \cdot \left(x^{3} \cdot \frac{1}{x} + 3x^{2} \cdot \ln x\right) - 3x^{2} + \frac{(x+2) \cdot 1 - x \cdot 1}{(x+2)^{2}}$$
$$= 3 \cdot \left(x^{2} + 3x^{2}\ln x\right) - 3x^{2} + \frac{x+2-x}{(x+2)^{2}}$$
$$= 3x^{2} + 9x^{2}\ln x - 3x^{2} + \frac{2}{(x+2)^{2}}$$
$$= 9x^{2}\ln x + \frac{2}{(x+2)^{2}}$$