Name \qquad Section \qquad

For each of the following two functions (questions \#1 and \#2) (1 point for each part):
a) On the provided graph paper, sketch a graph of the function making sure to indicate any discontinuities using open circles and/or vertical asymptotes.
b) State the value of x for any discontinuities in the function.
c) For each discontinuity, identify whether it is a removable discontinuity, a jump discontinuity, or a vertical asymptote.
d) Determine the value of the limit of the function at each discontinuity. (i.e. Find $\lim _{x \rightarrow d} f(x)$ where the discontinuity occurs at $x=d$.)

If the limit is not defined at the discontinuity, write undefined.

1) $f(x)=\frac{x^{3}-8}{x-2}$
b) discontinuous at $x=2$ since $f(2)=\frac{2^{3}-8}{2-2}=\frac{0}{0}=$ undefined
c) removable
d) $\quad \lim _{x \rightarrow 2} \frac{x^{3}-8}{x-2}=\lim _{x \rightarrow 2} \frac{(x-2)\left(x^{2}+2 x+4\right)}{x-2}=\lim _{x \rightarrow 2}\left(x^{2}+2 x+4\right)=2^{2}+2 \cdot 2+4=12$
2) $\quad f(x)=\frac{|x+1|}{x+1}$
b) discontinuous at $x=-1$ since $f(-1)=\frac{|-1+1|}{-1+1}=\frac{0}{0}=$ undefined
c) jump
d) undefined since $\lim _{x \rightarrow-1^{-}} \frac{|x+1|}{x+1}=-1 \neq 1=\lim _{x \rightarrow-1^{+}} \frac{|x+1|}{x+1}$
3) Given the function: $f(x)=x^{3}$
a) Find $f^{\prime}(x)_{(1 \text { point }): ~}^{\text {a }}$

$$
f^{\prime}(x)=3 \cdot x^{3-1}=3 x^{2}
$$

b) Find $f^{\prime}(2)(1$ point):

$$
f^{\prime}(2)=3 \cdot 2^{2}=12
$$

1)

a) NOTE: There should be an open circle at $(2,12)$.

2)
a) NOTE: There should be open circles at $(-1,1)$ and $(-1,-1)$ and there should not be a vertical line connecting those two points.

