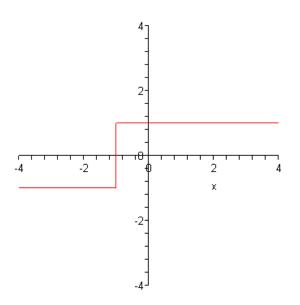

M	ATH	152


 For each of the following two functions (questions #1 and #2) (1 point for each part a) On the provided graph paper, sketch a graph of the function makin indicate any discontinuities using open circles and/or vertical asyn b) State the value of x for any discontinuities in the function. c) For each discontinuity, identify whether it is a removable discont jump discontinuity, or a vertical asymptote. d) Determine the value of the limit of the function at each discontinuit (i.e. Find lim f(x) where the discontinuity occurs at x = d .) If the limit is not defined at the discontinuity, write <i>undefined</i>. 1) f(x) = x³ - 8/(x - 2) 	ng sure to mptotes. inuity, a
 a) On the provided graph paper, sketch a graph of the function making indicate any discontinuities using open circles and/or vertical asynthesis (asynthesis) b) State the value of x for any discontinuities in the function. c) For each discontinuity, identify whether it is a removable discontinuity, or a vertical asymptote. d) Determine the value of the limit of the function at each discontinuity (i.e. Find lim f(x) where the discontinuity occurs at x = d.) If the limit is not defined at the discontinuity, write <i>undefined</i>. 	ng sure to mptotes. inuity, a
 b) State the value of x for any discontinuities in the function. c) For each discontinuity, identify whether it is a removable discontinuity, or a vertical asymptote. d) Determine the value of the limit of the function at each discontinuit (i.e. Find lim f(x) where the discontinuity occurs at x = d .) If the limit is not defined at the discontinuity, write undefined. 	inuity, a
 c) For each discontinuity, identify whether it is a removable discontinuity, or a vertical asymptote. d) Determine the value of the limit of the function at each discontinuit (i.e. Find lim f(x) where the discontinuity occurs at x = d .) If the limit is not defined at the discontinuity, write undefined. 	
(i.e. Find $\lim_{x\to d} f(x)$ where the discontinuity occurs at $x = d$.) If the limit is not defined at the discontinuity, write <i>undefined</i> .	iity.
If the limit is not defined at the discontinuity, write <i>undefined</i> .	•
1) $f(x) = \frac{x^3 - 8}{x - 2}$	
$\mathbf{x} = \mathbf{z}$	
b) discontinuous at $x = 2$ since $f(2) = \frac{2^3 - 8}{2 - 2} = \frac{0}{0} = undefined$	
c) removable	
d) $\lim_{x \to 2} \frac{x^3 - 8}{x - 2} = \lim_{x \to 2} \frac{(x - 2)(x^2 + 2x + 4)}{x - 2} = \lim_{x \to 2} (x^2 + 2x + 4) = 2^2 + 2 \cdot 2$	2+4=12
$f(x) = \frac{ x+1 }{x+1}$	
b) discontinuous at $x = -1$ since $f(-1) = \frac{ -1+1 }{-1+1} = \frac{0}{0} = undefined$	
c) jump	
d) <i>undefined</i> since $\lim_{x \to -1^-} \frac{ x+1 }{x+1} = -1 \neq 1 = \lim_{x \to -1^+} \frac{ x+1 }{x+1}$	
3) Given the function: $f(x) = x^3$	
a) Find $f'(x)$ (1 point):	
$f'(x) = 3 \cdot x^{3-1} = 3x^2$	
b) Find $f'(2)$ (1 point):	
$f'(2) = 3 \cdot 2^2 = 12$	

2)

a) NOTE: There should be open circles at (-1,1) and (-1,-1) and there should not be a vertical line connecting those two points.

