1. The following diagram shows the daily transfer rates of some substance between the 3 compartments of a closed system:
a. Construct a transfer matrix for this system.
$T=\left[\begin{array}{ccc}0.5 & 0.2 & 0.3 \\ 0.1 & 0.8 & 0 \\ 0.4 & 0 & 0.7\end{array}\right]$

b. Initially there are 100 grams of the substance in compartment $a, 200$ grams in compartment b, and 300 grams in compartment c. How many grams of the substance will be in each compartment one day later?

$$
\mathbf{x}_{1}=T \mathbf{x}_{0}=\left[\begin{array}{ccc}
0.5 & 0.2 & 0.3 \\
0.1 & 0.8 & 0 \\
0.4 & 0 & 0.7
\end{array}\right]\left[\begin{array}{l}
100 \\
200 \\
300
\end{array}\right]=\left[\begin{array}{l}
50+40+90 \\
10+160+0 \\
40+0+210
\end{array}\right]=\left[\begin{array}{l}
180 \\
170 \\
250
\end{array}\right]
$$

c. How many grams of the substance will there be in the entire system after one year? The total amount (does not change) $=100+200+300=600$

For the following problem, you must show your work in order to receive full credit.

2. For the following Leslie matrix: $\left[\begin{array}{cc}0 & 3 \\ \frac{1}{2} & \frac{1}{2}\end{array}\right]$
a. Find all of the eigenvalues and their corresponding normalized eigenvectors.

$$
\begin{aligned}
& 0=\lambda^{2}-\operatorname{tr}(L) \lambda+\operatorname{det}(L)=\lambda^{2}-\left(0+\frac{1}{2}\right) \lambda+\left(0 \cdot \frac{1}{2}-3 \cdot \frac{1}{2}\right) \\
& 0=\lambda^{2}-\frac{1}{2} \lambda-\frac{3}{2}=\left(\lambda-\frac{3}{2}\right)(\lambda+1) \\
& \lambda=\frac{3}{2}, \lambda=-1 \\
& L \mathbf{x}=\frac{3}{2} \mathbf{x} \Rightarrow\left[\begin{array}{ll}
0 & 3 \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right]\left[\begin{array}{l}
j \\
a
\end{array}\right]=\frac{3}{2}\left[\begin{array}{l}
j \\
a
\end{array}\right] \Rightarrow\left[\begin{array}{c}
3 a \\
\frac{1}{2} j+\frac{1}{2} a
\end{array}\right]=\left[\begin{array}{c}
\frac{3}{2} j \\
\frac{3}{2} a
\end{array}\right] \Rightarrow 2 a=j \\
& \lambda=\frac{3}{2} \Rightarrow \mathbf{x}=\left[\begin{array}{l}
2 \\
1
\end{array}\right] \div 3=\left[\begin{array}{l}
\frac{2}{3} \\
\frac{1}{3}
\end{array}\right] \\
& L \mathbf{x}=-\mathbf{x} \Rightarrow\left[\begin{array}{ll}
0 & 3 \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right]\left[\begin{array}{l}
j \\
a
\end{array}\right]=-\left[\begin{array}{c}
j \\
a
\end{array}\right] \Rightarrow\left[\begin{array}{c}
3 a \\
\frac{1}{2} j+\frac{1}{2} a
\end{array}\right]=\left[\begin{array}{c}
-j \\
-a
\end{array}\right] \Rightarrow-3 a=j \\
& \lambda=-1 \Rightarrow \mathbf{x}=\left[\begin{array}{c}
-3 \\
1
\end{array}\right] \div-2=\left[\begin{array}{c}
\frac{3}{2} \\
-\frac{1}{2}
\end{array}\right]
\end{aligned}
$$

b. What is the long-term growth rate of the population described by this Leslie matrix? $\lambda=\frac{3}{2}$
c. What is the long-term age distribution of the population? (Assume the population consists of juveniles and adults.)

$$
\mathbf{x}=\left[\begin{array}{l}
j \\
a
\end{array}\right]=\left[\begin{array}{l}
\frac{2}{3} \\
\frac{1}{3}
\end{array}\right]
$$

