Name
SHOW AS MUCH WORK AS POSSIBLE BECAUSE YOU MAY RECEIVE PARTIAL CREDIT FOR THE WORK YOU DO IF YOUR ANSWER IS INCORRECT.

For each of the following recursively-defined sequences:

- Starting with $x_{0}=2$, find x_{1}, x_{2}, and x_{3}. (It is okay to use rounded-off decimals.)
- Find the equilibria of the sequence. (There may be zero, one, or more than one equilibria.)
- For each equilibrium, state whether it is stable or unstable (when $x_{0}=2$).

1. $x_{n+1}=\sqrt{4 x_{n}-3}$
$x_{1}=\sqrt{4 \cdot 2-3}=\sqrt{5}=2.2361$
$x_{2}=\sqrt{4 \cdot 2.2361-3}=2.4381$
$x_{3}=\sqrt{4 \cdot 2.4381-3}=2.5985$
$A=\sqrt{4 A-3} \Rightarrow A^{2}=4 A-3$
$\Rightarrow A^{2}-4 A+3=0 \Rightarrow(A-1)(A-3)=0$
$\Rightarrow A=1$ (unstable)
$\Rightarrow A=3$ (stable)
2. $x_{n+1}=4 x_{n}-3$
$x_{1}=4 \cdot 2-3=5$
$x_{2}=4 \cdot 5-3=17$
$x_{3}=4 \cdot 17-3=65$
$A=4 A-3 \Rightarrow-3 A=-3$
$\Rightarrow A=1$ (unstable)
3. $x_{n+1}=2 x_{n}-\frac{\left(x_{n}\right)^{2}}{3}$

$$
\begin{aligned}
& x_{1}=2 \cdot 2-\frac{2^{2}}{3}=2 \frac{2}{3}=2.6667 \\
& x_{2}=2 \cdot 2.6667-\frac{2.6667^{2}}{3}=2.9630 \\
& x_{3}=2 \cdot 2.9630-\frac{2.9630^{2}}{3}=2.9995 \\
& A=2 \cdot A-\frac{A^{2}}{3} \Rightarrow A^{2}-3 A=0 \Rightarrow A(A-3)=0 \\
& \Rightarrow A=0 \text { (unstable) } \\
& \Rightarrow A=3 \text { (stable) }
\end{aligned}
$$

