Name

SHOW AS MUCH WORK AS POSSIBLE BECAUSE YOU MAY RECEIVE PARTIAL CREDIT FOR THE WORK YOU DO IF YOUR ANSWER IS INCORRECT.

For each of the following recursively-defined sequences:

- Starting with $x_0 = 2$, find x_1 , x_2 , and x_3 . (It is okay to use rounded-off decimals.)
- Find the equilibria of the sequence. (There may be zero, one, or more than one equilibria.)
- For each equilibrium, state whether it is stable or unstable (when $x_0 = 2$).

1.
$$x_{n+1} = \sqrt{4x_n - 3}$$

 $x_1 = \sqrt{4 \cdot 2 - 3} = \sqrt{5} = 2.2361$
 $x_2 = \sqrt{4 \cdot 2.2361 - 3} = 2.4381$
 $x_3 = \sqrt{4 \cdot 2.4381 - 3} = 2.5985$
 $A = \sqrt{4A - 3} \Rightarrow A^2 = 4A - 3$
 $\Rightarrow A^2 - 4A + 3 = 0 \Rightarrow (A - 1)(A - 3) = 0$
 $\Rightarrow A = 1$ (unstable)
 $\Rightarrow A = 3$ (stable)

2.
$$x_{n+1} = 4x_n - 3$$

 $x_1 = 4 \cdot 2 - 3 = 5$
 $x_2 = 4 \cdot 5 - 3 = 17$
 $x_3 = 4 \cdot 17 - 3 = 65$
 $A = 4A - 3 \Rightarrow -3A = -3$
 $\Rightarrow A = 1$ (unstable)

3.
$$x_{n+1} = 2x_n - \frac{(x_n)^2}{3}$$

 $x_1 = 2 \cdot 2 - \frac{2^2}{3} = 2\frac{2}{3} = 2.6667$
 $x_2 = 2 \cdot 2.6667 - \frac{2.6667^2}{3} = 2.9630$
 $x_3 = 2 \cdot 2.9630 - \frac{2.9630^2}{3} = 2.9995$
 $A = 2 \cdot A - \frac{A^2}{3} \Longrightarrow A^2 - 3A = 0 \Longrightarrow A(A-3) = 0$
 $\Rightarrow A = 0$ (unstable)
 $\Rightarrow A = 3$ (stable)