Equations were calculated using least squares linear regression in Matlab.
Your answers may vary if you used a freehand regression line or a different program for calculating the least squares regression line.
All graphs were created in Matlab.
25. least squares regression line: $y=0.0272 x+0.4991$

$r=0.9831$
$\ln N=0.0272 t+0.4991$
$e^{\ln N}=e^{0.0272 t+0.4991}=e^{0.0272 t} e^{0.4991}=e^{0.0272 t} \cdot 1.6472$
$N(t)=1.6472 \cdot e^{0.0272 t}$

26. least squares regression line: $y=0.3025 x+1.381$

27. least squares regression line: $y=1.5445 x-4.5528$

$r=0.9986$

$\ln C=1.5445 \cdot \ln B-4.5528=\ln \left(B^{1.5445}\right)-4.5528$
$e^{\ln C}=e^{\ln \left(B^{1.545}\right)-4.5528}=e^{\ln \left(B^{1.5455}\right)} e^{-4.5528}=B^{1.5445} \cdot 0.0105$ $C=0.0105 \cdot B^{1.5445}$
28. least squares regression line: $y=-0.0853 x+2.1577$

$r=-0.8977$

$$
\begin{aligned}
& \ln C=-0.0853 t+2.1577 \\
& e^{\ln C}=e^{-0.0853 t+2.1577}=e^{-0.0853 t} e^{2.1577}=e^{-0.0853 t} \cdot 8.6511 \\
& C(t)=8.6511 \cdot e^{-0.0853 t}
\end{aligned}
$$

NOTE: The point $(t, C)=(20,2.0)$ appears to be an outlier because in the semi-log plot at the top, the first 5 points appear to fall on a straight line. On the next page, I remove the outlier and fit an exponential decay function to only the first 5 points.
28. calculated without the last point: $(t, C)=(20,2.0)$
least squares regression line: $y=-0.1820 x+2.4960$

$\ln C=-0.1820 t+2.4960$
$e^{\ln C}=e^{-0.1820 t+2.4960}=e^{-0.1820 t} e^{2.4960}=e^{-0.1820 t} \cdot 12.1343$
$C(t)=12.1343 \cdot e^{-0.1820 t}$

NOTE: This appears to be a much better "fit" than the previous page.
29. least squares regression line: $y=2.9971 x+2.3397$

$r=1.000$

$$
\begin{aligned}
& \ln W=2.9971 \cdot \ln L+2.3397=\ln \left(L^{2.9971}\right)+2.3397 \\
& \frac{\left.e^{\ln W}=e^{\ln \left(L^{2.9971}\right.}\right)+2.3397}{W=10.3781 \cdot L^{2.9971}}=e^{\ln \left(L^{2.9991}\right)} e^{2.3397}=L^{2.9971} \cdot 10.3781 \\
& W=1
\end{aligned}
$$

30. least squares regression line: $y=0.8893 x+4.5622$

$$
\begin{aligned}
& \ln N=0.8893 t+4.5622 \\
& e^{\ln N}=e^{0.8893 t+4.5622}=e^{0.8893 t} e^{4.5622}=e^{0.8893 t} \cdot 95.7909 \\
& N(t)=95.7909 \cdot e^{0.8993 t}
\end{aligned}
$$

