Name
SHOW AS MUCH WORK AS POSSIBLE BECAUSE YOU MAY RECEIVE PARTIAL CREDIT FOR THE WORK YOU DO IF YOUR ANSWER IS INCORRECT.

1. Formulate the following scenario as a linear programming problem using the given definitions of x and y :

A non-profit urban development corporation has agreed to rebuild at least 24 city blocks in the east end of the city. At least 15 blocks will be semidetached single-family homes and at least 3 but not more than 10 blocks will be commercial buildings. It will cost $\$ 6$ million to rebuild 1 block with homes and $\$ 7$ million to rebuild 1 block for commercial use, and the corporation wants to meet its rebuilding goals at the least cost. Let x be the number of blocks rebuilt with homes and y be the number of blocks rebuilt with commercial buildings.

$$
\begin{array}{ll}
\text { Minimize } & C=6 x+7 y \\
\text { subject to } & \left\{\begin{array}{l}
x+y \geq 24 \\
x \geq 15 \\
y \geq 3 \\
y \leq 10 \\
x \geq 0, y \geq 0
\end{array}\right.
\end{array}
$$

2. Solve the following linear programming problem by sketching the feasible region and labeling the vertices, deciding whether a solution exists, and then finding it if it does exist:

$$
\begin{array}{ll}
\text { Maximize } & P=80 x+70 y \\
\text { subject to } & \left\{\begin{array}{l}
x+2 y \leq 18 \\
x+y \leq 10 \\
x \geq 0, y \geq 0
\end{array}\right.
\end{array}
$$

Since the feasible region is bounded, a solution exists at one of the vertices.
The maximum value of P is 800 and it occurs at $(10,0)$.

