Name

SHOW AS MUCH WORK AS POSSIBLE BECAUSE YOU MAY RECEIVE PARTIAL CREDIT FOR THE WORK YOU DO IF YOUR ANSWER IS INCORRECT.

1. Formulate the following scenario as a linear programming problem using the given definitions of x and y:

A non-profit urban development corporation has agreed to rebuild at least 24 city blocks in the east end of the city. At least 15 blocks will be semidetached single-family homes and at least 3 but not more than 10 blocks will be commercial buildings. It will cost \$6 million to rebuild 1 block with homes and \$7 million to rebuild 1 block for commercial use, and the corporation wants to meet its rebuilding goals at the least cost.

Let x be the number of blocks rebuilt with homes and y be the number of blocks rebuilt with commercial buildings.

Minimize	C = 6x + 7y
	$\begin{cases} x + y \ge 24 \end{cases}$
	$x \ge 15$
subject to	$y \ge 3$
	$y \le 10$
	$x \ge 0, y \ge 0$

2. Solve the following linear programming problem by sketching the feasible region and labeling the vertices, deciding whether a solution exists, and then finding it if it does exist:

Maximize	P = 80x + 70y
	$\int x + 2y \le 18$
subject to	$x + y \le 10$
	$x \ge 0, y \ge 0$

Since the feasible region is bounded, a solution exists at one of the vertices. The maximum value of P is 800 and it occurs at (10,0).