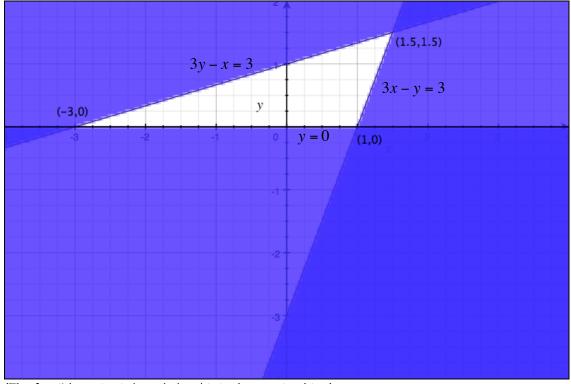
Name

SHOW AS MUCH WORK AS POSSIBLE BECAUSE YOU MAY RECEIVE PARTIAL CREDIT FOR THE WORK YOU DO IF YOUR ANSWER IS INCORRECT.

1. Formulate the following scenario as a system of inequalities using the given definitions of x_1 , x_2 , and x_3 :


Darrin is trying to lose weight and wants to limit his intake to 2,000 calories per day. Each gram of fat contributes 9 calories and each gram of protein or carbohydrates contributes 4 calories. The recommended amount of fat is no more than 65 grams per day. In addition, he is trying a "low-carb" diet and so he wants to eat at least as many grams of protein as grams of carbohydrates.

Let x_1 be the number of grams of fat, x_2 be the number of grams of protein, and x_3 be the number of grams of carbohydrates in his diet.

$$\begin{cases} 9x_1 + 4x_2 + 4x_3 \le 2000 \\ x_1 \le 65 \\ x_2 \ge x_3 \\ x_1 \ge 0, x_2 \ge 0, x_3 \ge 0 \end{cases}$$

$$\begin{cases} 3x - y \le 3\\ 3y - x \le 3\\ y \ge 0 \end{cases}$$

- 2. For the following system of inequalities:
 - Draw a graph of the system and shade in the feasible region.
 - On the graph, label each of the boundary lines with its equation.
 - On the graph, label each of the vertices with its coordinates.
 - State whether the feasible region is "bounded" or "unbounded."

(The feasible region is **bounded** and it is the part in white.)