
Homework

UTK – M534 – Calculus of Variations

Spring 2014, Jochen Denzler, MWF 11:15–12:05

1. The Brachystochrone Problem: Among ‘all’ planar curves (x, y(x)), x ∈ [0, x0],
connecting (0, 0) to (x0, y0), find (the) one that minimizes the time a point of mass
would take to slide from (0, 0) to (x0, y0), beginning at rest and moving solely under
the influence of gravity, in the absence of friction.

Let’s view this as a modelling problem first: Explain how this problem translates to
the following mathematical formulation:

min

{

I[y] :=

∫ x0

0

√

1 + y′(x)2

y(x)
dx

∣

∣

∣

∣

y ∈ C0[0, x0] , y(0) = 0 , y(x0) = y0 , I[y] defined

}

Suggest a precise class of admissible functions y(·) for which I[y] is guaranteed to be
defined.

2. Informal analogy: Functions as ‘infinite dimensional vectors’: In comparing The calc’s are
a bit messy,
and you may
want to use
technology,
even though it
can be done
without. This
is a sample of
the Rayleigh-
Ritz and
(relatedly) of
the finite ele-
ment method.
But for the
moment, the
focus is that
you absorb
the idea from
the boldfaced
title of the
problem.

Calculus of Variations with Multivariable Calculus, the analog of a function u : x 7→
u(x) is a vector ~u = (u1, . . . , un). The vector ~u should not be represented as an arrow
in n-dimensional space, but rather like the graph of a function i 7→ ui that is defined
only for i ∈ {1, . . . , n}.

u : x 7→ x2 compare with ~u = (1, 0,−1, 1, 1
2
)

Let us compare the problem

min

{

I[u] :=

∫

1

0

(u′(x)2 − u(x)2 + 2u(x)) dx

∣

∣

∣

∣

u ∈ piecewiseC1[0, 1] , u(0) = 0 = u(1)

}

with an appropriate minimum problem in R
3: namely

min{I3(~u) | ~u = (u1, u2, u3) ∈ R
3}.

Task 1 is to find an appropriate function I3 that is a fair analog I[·]. Here is how: Given
~u = (u1, u2, u3), let û be the piecewise linear function satisfying û(0) = 0 = û(1) and
û(1

4
) = u1, û(

2

4
) = u2, û(

3

4
) = u3, linear on each of the segments [0, 1

4
], [1

4
, 1
2
], [1

2
, 3
4
],

[3
4
, 1]. Then we let I3(~u) := I[û]. Calculate a formula for I3 and use it to set up the

equations DI(~u) = 0. Solve these equations. (They have a unique solution ~u∗.) Next
show that the Hessian D2I(~u∗) is indeed positive definite.

Task 2 is to set up a corresponding equation for the original problem min I[u]. We’ll
soon learn how to do this. Until then, I just give you the answer: it is the ODE
u′′ + u = 1, together with the boundary conditions u(0) = 0 = u(1). Now solve this
ODE (BVP). (It has exactly one solution u∗.) For now, don’t worry about any possible
meaning of a ‘Hessian’ D2I[u∗] or what positive definiteness of such a ‘Hessian’ may
mean.

Task 3 is a simple comparison: Plot ~u∗, û∗ and u∗ in one coordinate system.

Note: In a thorough theory, one allows any u such that u′ ∈ L2, rather than requiring
piecewise C1. We are avoiding advanced-calculus technicalities here by being content
with piecewise C1 candidate functions u.
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3. A simple minimization problem without a solution: Show that the problem

min

{

I[u] :=

∫

1

0

u(x)2(1− u(x))2 dx

∣

∣

∣

∣

u ∈ C0[0, 1] , u(0) = 0 , u(1) = 1

}

has no solution because the infimum is not taken on. What number is the infimum?
Suggest a larger, still sensible, class of admissible functions within which the minimum
is taken on. How many minimizers do there exist in this larger class?

Those who have heard about Banach spaces should think about whether the larger class
of admissible functions being suggested is a Banach space. (Strictly, speaking: a closed
affine subspace of a Banach space, because the boundary condition u(1) = 1 kills any
vector space structure.)

4. Saddle Point at Infinity

This example is taken from I. Rosenholtz, L. Smylie: “The only Critical Point in Town”

Test, Mathematics Magazine 58(1985), 149–150.

Show that the function

I : (x, y) 7→ y2 + 3(y + ex − 1)2 + 2(y + ex − 1)3 , R2 → R

has exactly one critical point. (‘Critical point’ means: a point where the derivative
vanishes.) Also calculate the Hessian and show that this critical point is a relative
minimum. Furthermore notice that the function I is unbounded below. In particular
the relative minimum is not an absolute minimum.

The moral of this is: the only solution to the equation DI(u) = 0 need not be an
absolute minimum, even if it is a relative minimum. This phenomenon can already occur
if u = (x, y) ∈ R

2, so we cannot expect a better situation in Calculus of Variations,
where u lies in an infinite dimensional space. Making the extra assumption that I
should be bounded below does not help the situation, because then u 7→ exp I(u) still
serves as a counterexample.

Can you guess why the title of this problem is “saddle point at infinity”? More precisely,
can you supply a motivation how this example was constructed?

In single-variable calculus, this phenomenon cannot happen; indeed show: Suppose for
a function I ∈ C1(R) there is exactly one solution u0 to the equation I ′(u) = 0, and
that u0 is a relative minimum. Then u0 is an absolute minimum.

5. Sailing down the river, against headwind: It is possible to use headwind to
sail against the wind. The optimal strategy steers a zigzag course with a 45◦ against
the wind, while using an appropriate positioning of the sail. How this works is an
application of appropriate decompositions of the force vector, the (quite elementary)
details of which are of no concern here. If you are sailing down a river, against the
wind, you may also want to use the current (which is largest in the mid of the river) in
your favor.

Consider the problem to minimize (if possible)

I[u] :=

∫

1

−1

(

(1− u′(x)2)2 + u(x)2
)

dx

Construct a sequence of piecewise C1 functions un such that I[un] → 0. In contrast
show also that for every piecewise C1 function u, it holds I[u] > 0. So a minimum of I
again fails to exist.
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Explain the dilemma in mathematical terms as well as, qualitatively, in the analogy of
the sailing problem.

*6. This may be useful for present and aspiring Math graduate students, but is not required
for the course. Prereq: Know implicit function theorem. Work out the details of the
proof of the Lagrange multiplier theorem in R

n, using the implicit function theorem.

*7. This is just a refresher problem in case somebody finds it helpful. Show that the
function f : R2 → R, defined by f(0, 0) = 0 and f(x, y) = x2y/(x2 + y2) otherwise, is
continuous at the origin and has directional derivatives in each direction (cosϕ, sinϕ)
there, but that the graph does not have a tangential plane (the function is not differ-
entiable) there. Calculate the partial derivatives ∂1f(x, y) and ∂2f(x, y). Show that
indeed they are not continuous at the origin.

8. Johann Bernoulli’s Solution to the Brachystochrone Problem: The solution
alluded to here is outlined in the book “The parsimonious universe” by St. Hildebrandt
and A. Tromba, chapter 3. It consists of an optical re-interpretation of the same
mathematical model. Namely in an optical medium of varying optical density (i.e.,
varying speed of light), a light ray is bent. Fermat’s principle states that the path of
light between two points will be the one that takes the shortest time. To translate the
brachystochrone problem (Hwk #1) into a light travel problem, assume that the light
speed at height y is

√
y. In a discontinuous medium, Fermat’s principle translates into

Snell’s law of refraction, namely

α

α

1

2

2

1optically thinner: large speed c

optically thicker: small speed c

sinα1

sinα2

=
c1
c2

as can be seen by solving a Calc’1 style minimum problem. So Bernoulli first considered
the medium as consisting of many, but finitely many, thin slices in each of which the
light speed is constant, gave a condition for the light path from Snell’s law, and then
calculated the limit where the number of slices goes to infinity with their thickness
shrinking to 0 appropriately.

Obtain the ODE for the brachystochrone according to this method. (Never mind solving
it.) Also obtain the ODE as Euler–Lagrange equation directly the “modern” way.
(Never mind justifications for the exchange of d

dε
with

∫

. . . dx.)

9. The Catenoid, I:

Find (directly) the Euler-Lagrange equation for the problem of a rotational surface of
minimal area,

min

{

I[r] := 2π

∫ x1

−x1

r(x)
√

1 + r′(x)2 dx

∣

∣

∣

∣

r ∈ C1([−x1, x1] → R
+) , r(±x1) = r1

}

.

(We’ll solve it later).

10. Erdmann’s Corner Condition

Let L ∈ C1(]t0, t1[×G ×R
n → R) with G ⊂ R

n open. Assume y∗ is piecewise C1 where
a corner may possibly occur at a certain t̂ ∈ ]t0, t1[. If such a y∗ is a weak mimimum
for the variational problem

I[y] :=

∫ t1

t0

L(t, y(t), ẏ(t)) dt , y(t0) = y0 , y(t1) = y1 ,
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then the usual Euler equation holds for t 6= t̂ (explain why). Show that at t = t̂, the
corner condition p∗(t−) = p∗(t+) must be verified, where

p(t) := Lẏ(t, y(t), ẏ(t)) .

In other words, even if ẏ∗ should have a jump discontinuity at t̂, nevertheless p∗ must
be continuous there.

11. Corners may occur

Find (by direct inspection) all solutions to the variational problem

min

{
∫

3

0

ẏ2(t)(1 − ẏ(t))2 dt

∣

∣

∣

∣

y piecewise C1 , y(0) = 0 , y(3) = 1

}

and confirm that Erdmann’s corner condition is verified at corners.

Also find the Euler equation of the variational problem and show that the only C1

solution (with no corners) on [0, 3] subject to the boundary conditions is y(t) = t/3. It
is clearly not an absolute minimum, not even locally a strong minimum. (We’ll leave
open for the moment whether it is at least a weak minimum.) Ok, if you

can’t bear to
be left in the
dark: FYI, it’s
a weak max

12. Natural Boundary Conditions

Assume L as in Problem 10 and assume that y∗ ∈ C1([t0, t1] → R
n) is a (weak)

minimum for I[y] :=
∫ t1
t0
L(t, y, ẏ) dt, but this time we do not prescribe boundary

conditions. Show that in this case, on top of the Euler equations, the natural boundary
conditions p∗(t0) = p∗(t1) = 0 must hold. (p is the same as in pblm #10)

13. The Catenoid, II:

By means of an independent calculation, find a first order ODE that must necessarily
hold for a minimizer r (if one exists), using the lemma from class that was called
‘Energy theorem’ in anticipation of future discussions. It is a once-integrated version
of the Euler-Lagrange equation.

Next solve the Euler-Lagrange equation, showing that the general solution is

r(x) = E cosh
x− x0
E

(1)

Note: cosh t = (et + e−t)/2 and sinh t = (et − e−t)/2, tanh t = sinh t/ cosh t, coth t =
cosh t/ sinh t, just in case they ruthlessly skipped these perfectly useful functions in
calculus.

Because of the boundary conditions r(±x1) = r1, we have x0 = 0.

Show that there exists exactly one positive number ζ satisfying the equation ζ = coth ζ,
find its numerical value, and show that there exists no / exactly one / exactly two
solutions (1) satisfying the boundary conditions r(±x1) = r1, provided r1/x1 is smaller
than / equal to / larger than sinh ζ (respectively).

14. Absolute Minimizers say ‘Farewell’ rather than ‘See you later’

Assume ȳ : [a, b] → R und ỹ : [a, b] → R are absolute minimizers of a variational

problem I[y] :=
∫ b

a
L(t, y, ẏ) dt (with respect to different boundary conditions). We

assume Lẏẏ > 0. Show that there cannot exist two points t0, t1 ∈ [a, b[ in which ȳ und
ỹ intersect. Assume as many derivatives of L as you need. Hint: Otherwise, a minimal
with corners could be constructed.
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15. The Catenoid, III

We have seen that for r1/x1 sufficiently small, there do not exist C1 curves that
minimize the area of the rotational surface, because the boundary value problem for
the Euler Lagrange equation has no solution. So let us now study the case r1/x1 >
ρ := sinh ζ.

Which of the two solutions of the boundary value problem should we proclaim as the
best candidate for a minimizer? This is the focus of the present problem.

First show (letting u := x1/E, s := r1/x1) that the area of the catenoid satisfies:

A :=
I[r(·, E)]

2πr2
1

=
u

cosh2 u
+ tanhu

with s = coshu/u. Moreover show that these relations define two decreasing functions
s 7→ A±(s) where

A+ : [ρ,∞[ → ]1, ζ] , A+(ρ) = ζ , A+(s) → 1 as s→ ∞
A− : [ρ,∞[ → ]0, ζ] , A−(ρ) = ζ , A−(s) ∼ 2/s as s→ ∞
A′

+(s) > A′
−(s) for s > ρ and therefore A+(s) > A−(s)

and where A+ corresponds to the smaller choice for E. (Consider the graphs of A± als
parametrized by u.) We conclude therefore that the smaller of the two possible choices
of E is disqualified for an absolute minimum. (Later it will transpire that it is even
disqualified for a relative minimum.)

There is another interesting curve that leads to a sensible surface of rotation, but was
omitted from the original domain: Namely we consider the polygonal path connecting
(−x1, r1) . . . (−x1, 0) . . . (x1, 0) . . . (x1, r1). It is also known under name of Goldschmidt
solution. Let us denote its area functional, with the same normalization that was used
for A±, as A⊔. Plot the graph of all three functions A+, A−, A⊔, and for a representative
choice of parameters s, plot also the corresponding curves in the (x, r) plane.

16. The Catenoid, IV

Let us begin with an extended, motivating overview of what we know already: For
s = r1/x1 small, namely s < ρ, no graph of a C1 function can qualify as a minimizer,
even in the weakest possible sense of a weak minimizer on short segments only. However,
in a larger class of curves, we have a natural candidate for a minimizer, namely the
Golschmidt solution r⊔. It fills separately each of the circles that span the surface,
but does not connect these two circles, because they are too far away from each other.
However, as the spanning circles move closer, s > ρ, one obtains two bona fide curves.
The one that hangs lower, r+, is certainly not an absolute minimizer, because it yields
a larger area than its competitor r−, which hangs higher. r− might be an absolute
minimizer.

We therefore venture the conjecture that r⊔ and r− are relative (strong) minimizers,
whereas r+ is a saddle point (only short segments are minimals). This is a familiar
scenario even in minimax problems in R

2: When tuning through a parameter s, new
relative minima may arise at a certain threshold value of s, and other critical points that
are not minima arise at the same time. Here is a simple example for this phenomenon
in R

2: Take the function I given by I(x, y) := x + 1

3
x3 − sx2 + y2 on [0,∞[×R. For

s < 1, the only minimum is on the boundary, namely x⊔ = 0, y = 0. But for s > 1,
another relative minimum x− = s +

√
s2 − 1, y = 0 arises, and there is a saddle point
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x+ = s−
√
s2 − 1, y = 0 between the two relative minima. Both come into existence at

s = 1, and this is where the second derivative ∂2xI(x, y) = 0. A little sketch indicates
that the latter property is essential for the phenomenon.

Building on this analogy, we hope to find a direction φ in function space (i.e., a variation)
for the catenoid problem at s = ρ, such that the second derivative at r+ = r− vanishes
in direction φ. By a small modification, we hope to find a similar direction φ for the
case s > ρ such that the second derivative at r+ in this direction becomes negative. Or
at least we want to do this for those s > ρ that are still close to ρ. Having found such
a direction, we could know for sure that r+ is not even a weak minimum. (Conversely,
we’ll need to await further development of the theory to show that r− is indeed a strong
minimum.)

Take a fixed φ ∈ C1
0 [−x∗, x∗], which we consider as a piecewise C1 function on the

larger interval [−x1, x1] ⊃ [−x∗, x∗] (extended by 0). Show that the second derivative
of I in this direction can be written as

(

d2

dε2

)
∣

∣

∣

∣

ε=0

I[r(·, E) + εφ] = 2π

∫ x∗

−x∗

(

Eφ′(x)2 − 1

E
φ(x)2

)

cosh−2 x

E
dx . (2)

We now attempt, using expressions that occur in (2) already, to guess a simple formula
for some φ that does not vanish until x = ζE. (Here ζ is the solution to ζ = coth ζ.)
Such a function φ becomes a legitimate variation exactly at s = ρ, but fails to fit
between the boundary conditions while s < ρ. This supports the hope that such a
φ may make (2) vanish. If we are successful, we try to modifiy the formula slightly,
such as to find a legitimate variation for s > ρ, and we check whether we can make (2)
negative with such a φ. A wise but plausible choice of φ will succeed on both counts.

Study the roadmap given here, proceeding with the details until eqn. (2), in preparation
for a more comprehensive presentation in the lecture.

17. Spherical Pendulum

A mass point is attached to a (weightless) rod so that it can move freely on a sphere,
but not leave the sphere. It moves under the force of gravity alone (no friction). In
terms of spherical polar coordinates ϑ and ϕ, derive the equations of motion and the
law of conservation of energy, using the Lagrange function method. Here ϑ denotes
the angular distance from the zenith position (it is π/2− geographical latitude), and ϕ
denotes the geographical longitude.

Think how you would need to decompose forces into tangential and normal components
and transform the accelerations from cartesian coordinates into spherical coordinates,
as compared to the ease of writing the scalar quantities kinetic and potential energy
in spherical polar coordinates.

18. The Kepler Problem

A planet of mass m moves in the gravitational potential of a heavy point mass. The
variational problem

I[r, φ] :=

∫ t1

t0

{

m

2
(ṙ2 + r2φ̇2) +

mG

r

}

dt

describes this system. Note how the kinetic and potential energy have been transformed
into polar coordinates. Derive the equations of motion and the law of conservation of
energy.
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Remember that energy is conserved because the Lagrange function L(t, φ, r, φ̇, ṙ) =
m
2
(ṙ2+r2φ̇2)+ mG

r
does not actually depend on t. Now have a look at your calculations

of the EL equations and notice that L also does not depend on φ. This implies that a
certain other quantity is a constant. Which quantity? Give it in terms of (r, φ̇, ṙ). If
you have the physics background, identify the quantity by its name as well.

19. Newton’s Air Resistance Model: A Misbehaving Example, from the Point

of View of the General Theory

We study the problem to find the surface of a bullet with given
cross section (we’ll assume a disc of radius R as the cross sec-
tion) such as to minimize air resistance. Newton suggested the
following model:

(1) I[u] :=

∫ R

0

r dr

1 + u′(r)2
.

In this model the surface is described as the graph of a
radially symmetric piecewise C1 function r 7→ u(r).

r

u

The physical hypotheses underlying this model are that the air resistance is caused by
the exchange of momentum with individual gas molecules ‘above’ the cross section, as
they are hit, and that each gas molecule will be reflected out of the path of the bullet
by this impact so that it hits the bullet only once.

We are insisting here that the surface should be rotationally symmetric. It was shown
recently that the analogous model without this symmetry requirement (but the same
amendments as discussed below for the rotational symmetric case) yields minimizers
that are not automatically rotationally symmetric.

Firstly show, that the problem needs further assumptions to allow for a solution at
all: Very long bullets give inf I = 0. However, even if we require u ≤ M for some
prescribed M , the infimum is still 0. (The idea that worked for long bullets can be
salvaged with modification). You may however observe, once you have examples that
give arbitrarily small I in spite of the bound u ≤ M , that these examples will not
abide by the physical modeling assumption underlying the model.

A reasonable and popular hypothesis that should be compatible with the ‘one hit per
molecule’ modeling assumption is as follows: We require u′(r) ≤ 0 und u ≤M , u(0) =
M , u(R) = 0. It can be shown that under these constraints a minimum does exist
and that a minimizing function u is constant M on some interval [0, a] and then has a
corner at a. (You are not asked to show the claims of this paragraph.)

Obtain Euler’s equation and show that a solution to the minimization problem as de-
scribed in the previous paragraph violates the Erdmann corner condition. Check the
reasoning and hypotheses used for Euler’s equation and the corner condition carefully
and explain which of the assumptions entering there fails in the present problem. (One
assumption must fail to avoid a contradiction.)

Now test the Legendre condition: Show that it is also violated on the interval [0, a].
(Failure of the same hypothesis makes this possible.) Show however that the Legendre
condition does imply some nontrivial information about the slope (namely?) on the
interval ]a,R[ where u is not constant.
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20. Eigenvalues of symmetric matrices: Let A be a symmetric n × n matrix with
real entries. We are going to use the Lagrange multiplier technique to prove the follow-
ing fundamental theomrem from linear algebra: There exists an orthonormal set of n
real eigenvectors u1, . . . ,un of A with corresponding real eigenvalues λ1, . . . λn, i.e., in
formulas:

Aui = λiui i = 1, . . . n
ui · uj = 0 if i 6= j . ui · ui = 1

We specify the numbering by assuming λ1 ≤ λ2 ≤ . . . ≤ λn.

(a) Show the existence of (λ1,u1) by means of a direct existence proof for the problem
min{uTAu | u

T
u = 1}, and a Lagrange multiplier argument to find an equation

satisfied by the minimizer.

(b) The same argument can be used for (λn,un), with a maximization, but we forego this
option, because we want all intermediate eigenvalues as well: Given some u1 from part
(a), show the existence of (λ2,u2) by means of a direct existence proof for the problem
min{uTAu | uT

u = 1 , u · u1 = 0}, and another Lagrange multiplier argument.

(c) The method can be repeated to find (λ3,u3) from the minimum problemmin{uTAu |
u
T
u = 1 , u · u1 = 0 , u · u2 = 0}, etc., until all eigenvalues are constructed.

This is the most fundamental application of the multivariable calculus version of La-
grange multipliers. It lends itself to a natural generalization in calculus of variations, to
prove the existence of solutions for eigenvalue problems in ODEs (in particular Fourier
analysis as a special case) and PDEs, and it can even be used to extract some properties
of the eigenfunctions.

21. Minimax and Maximin: In the previous problem, it is sometimes inconvenient that
one has to construct the eigenvalues recursively, in particular that information about
u1, . . . ,ui−1 enters into the construction of (λi,ui). This deficit can be mended by
showing the following:

λi = min

{

max
{

u
TAu

∣

∣

∣
u
T
u = 1 ; u ∈ E

}

∣

∣

∣

∣

E an i dim. subspace of Rn

}

λi = max

{

min
{

u
TAu

∣

∣

∣
u
T
u = 1 ; u ⊥ E

}

∣

∣

∣

∣

E an i− 1 dim. subspace of Rn

}
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22. Sturm Comparison Principle; Catenoid V: The Sturm comparison principle is
designed for scalar, (primarily) linear, ODEs of 2nd order, occasionally also for differ-
ential inequalities. Assume ϕ and ψ solve the same ODE (or, occasionally, very similar
ODEs). One considers the Wronskian W := ϕ′ψ − ϕψ′, uses the ODE(s) to obtain
information about W ′ and uses this information in

∫

W ′ to draw conclusions about the
relative location of zeros of ϕ and ψ.

Use this principle to show the following: If ϕ solves the ODE u′′(y)−tanh yu′(y)+u(y) =
0 subject to the boundary conditions ϕ(y−) = ϕ(y+) = 0 and ϕ > 0 in ]y−, y+[, and if ψ
solves the same ODE (no boundary information) with ψ(y0) = 0 for some y0 ∈ ]y−, y+[,
then ψ cannot have another zero in the closed interval [y−, y+], unless ψ ≡ 0. Use this
result to show, by Jacobi’s criterion, that the ‘flat’ catenoid r− is (at least) a weak
minimum. (You may need to absorb or adjust a few constants to match the two parts
of the problem.)

23. Catenoid VI: Carry out the calculation outlined in the notes to show, by means of
extremal fields and the Weierstrass E function, that the segment r− is indeed a strong
minimum with respect to symmetric boundary conditions r(±x1) = r1.

Find some explicit threshold θ such that for r1/x1 > θ, r− can be shown to be an
absolute minimum. This could be done according to the following principle: A certain
(‘sufficiently large’) neighbourhood of the graph of r− can be covered with noninter-
secting extremals, such as to guarantee that r− yields the smallest area among those
curves that stay inside the neighbourhood; an explicit estimate shows that any curve
leaving this neighbourhood must of necessity give a larger area than r−. Competition:
who can find the smallest valid θ by this method? Of course, if an existence proof
can be obtained by a nontrivial variant of direct methods, one can get a sharp result,
because then only the three candidates discussed previously need to be compared.

24. Family of Extremals: Assuming sufficient differentiability we assume that y(t; b) is
a family of extremals, i.e., for each b, the function y(·, b) solves the EL equation. We
make no hypotheses on boundary conditions. Distinguish ẏ = ∂y/∂t from y′ = ∂y/∂b.

With the obvious notation

It1t0 [y(·, b)] :=
∫ t1

t0

L(t, y(t, b), ẏ(t, b)) dt .

show that
∂

∂b
It1t0 [y(·, b)] =

[

Lẏ(t, y(t, b), ẏ(t, b))y
′(t, b)

]t1

t0

25. Strong Minimals and the Weierstrass E-Function:

Here we derive a necessary condition for a strong minimum. To this end, ‘weak’ vari-
ations of the type y∗ → y∗ + εϕ do not suffice, because for small ε the comparison
functions would automatically be in a narrow neighbourhood. So instead we need to
invent comparison curves which, for ε → 0, converge to y∗ in such a way that the
derivatives do not converge; at least they must fail to converge in some point.

We do this by considering the following
variation ŷ of the segment y∗ on the inter-
val [t0, t2]: For any curve segment u with
u(t0) = y∗(t0) we let ŷ = u on [t0, t1], and
ŷ = ỹ(·; t1) on [t1, t2], where ỹ ỹ(t1; t1) =
u(t1) and ỹ(t2; t1) = y∗(t2). t0 t1 t2

y∗ = ỹ(·; t0)

ỹ(·; t1)

u
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For the moment, we don’t worry about the question how to construct such a segment
ỹ. (It can be shown that a unique such segment exists for t1 sufficiently close to t0, provided

conjugate points don’t exist. And they don’t if the strict Legendre condition is satisfied and t2
is sufficiently close to t0.)

If y∗ is a strong minimal over the interval [t0, t2], then obviously it must hold:

d

dt1

(

It1t0 [u] + It2t1 [ỹ(·; t1)]
)

≥ 0 at t1 = t0 .

(a) Explain why we only get an inequality rather than an equality.

(b) Carrying out the derivative and using the previous problem, conclude that for
strong minimality of short segments (near t0), it is necessary that the Weierstrass
condition

E(t0, y∗(t0), ẏ∗(t0), Ẏ ) ≥ 0 ∀ Ẏ ∈ R
n with

E(t, y, ẏ, Ẏ ) := L(t, y, Ẏ )− L(t, y, ẏ)− Lẏ(t, y, ẏ)(Ẏ − ẏ)

be verified.

26. Brachystochrone again:

Use the method of extremal fields to show that the brachystochrone is indeed an absolute
minimal.
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