Homework

UTK - M448 - Honors Advanced Calculus II - Spring 2016 Jochen Denzler

1. Prove by hand that $f: \mathbb{R}^{2} \rightarrow \mathbb{R},(x, y) \mapsto x^{2}+2 x y^{2}+5 y^{3}$ is differentiable at $(2,1)$ with $D F(2,1)=[6,3]$. Note: $\frac{\partial f}{\partial x}(2,1)=2 x+\left.2 x^{2}\right|_{x=2, y=1}=6$ and $\frac{\partial f}{\partial y}(2,1)=4 x y+$ $\left.15 y^{2}\right|_{x=2, y=1}=23$.
2. Show that the operator norm $\|\cdot\| \|$ is a norm.
3. Show for $\mathbb{R}^{m}, \mathbb{R}^{n}$ equipped with $\|\cdot\|_{1}\left(\right.$ where $\left.\|\vec{x}\|_{1}:=\sum_{i}\left|x_{i}\right|\right)$ that the operator norm $\|A\|$
of $A=\left(\left(a_{i j}\right)\right)=\left[\begin{array}{ccc}a_{11} & \cdots & a_{1 n} \\ \vdots & & \vdots \\ a_{m 1} & \cdots & a_{m n}\end{array}\right]$ is

$$
\|A\| \|=\max _{j=1}^{n} \sum_{i=1}^{m}\left|a_{i j}\right|
$$

(i.e., the largest 1-norm of any column).

