
Homework Sample Solutions
UTK – M447 – Honors Advanced Calculus I – Fall 2015

Jochen Denzler

1: Prove that for every a ∈ R+, there exists a unique x ∈ R+ for which x2 = a.
Specifically:
(a) Show uniqueness of x; also obtain the lemma “If x, y > 0 and x2 = a and y2 = b,
and a < b, then x < y” in this proof.
(b) Letting S := {y ∈ R | y > 0 and y2 ≤ a}, show that S is non-empty and bounded
above.
(c) Defining x := supS, show that for every ε > 0, a− ε < x2 < a+ ε, then conclude
x2 = a.

Solution:
(a) We show:

(∗) If 0 < x < y, then x2 < y2.
Indeed, we may multiply the inequality x < y with the positive quantity x and get x2 < xy.
We also may multiply x < y with the positive quantity y and get xy < y2. By transitivity, we
obtain x2 < y2.

From (∗), uniqueness follows: Assuming x2 = y2 = a and x, y > 0, we can rule out x < y (which
would imply x2 < y2) and y < x (which would imply y2 < x2). So by trichotomy, only the
possibility x = y remains.

Trichotomy with (∗) also gives the converse statement “If x2 < y2 and x, y > 0, then x < y.”
For, if x were = y, we would conclude that x2 = y2; if x were > y, we would conclude x2 > y2.
Either conclusion violates the hypothesis x2 < y2. So by trichotomy, only x < y remains.

Note: Uniqueness alone can also be proved differently. Assuming x2 = y2, we can write this as
x2 − y2 = 0, or equivalently (x− y)(x+ y) = 0. Using the property(1) in a field that a product
can only be 0 if one factor is 0, we conclude that x− y = 0 or x+ y = 0. But x > 0 and y > 0
implies x+ y > 0, so the only remaining possibility is x = y = 0, i.e., x = y.

(1) The lemma used here, namely “If uv = 0 then u = 0 or v = 0” follows from the field axioms easily: If u = 0,

we are done. If u 6= 0, there exists a multiplicative inverse u
−1, and by multiplying uv = 0 with u

−1, we find

v = 0 · u−1 = 0, and we are again done.

(b) If a ≥ 1, then y = 1 is in S. If a < 1 (but a > 0 per assumption a ∈ R+), then a ∈ S because
a2 < a · 1 = a < 1. Either way, S 6= ∅.
To show that S is bounded above, we argue: If a ≤ 1, then 1 is an upper bound for S, because
y > 1 would imply y2 > 12 = 1, contradicting y2 ≤ a ≤ 1. If however a > 1, then a is an upper
bound, because y > a would imply y2 > a2 > a · 1 = a.

Note: We can summarize by saying min{a, 1} ∈ S, and max{a, 1} is an upper bound for S.

(c) By part (b), S has a supremum. Let x := supS, and let ε > 0. We know x > 0 because x is
an upper bound for a set S containing the positive number min{a, 1}.
To show x2 < a + ε we use that x is the smallest upper bound, i.e., that for any δ > 0, the
number x − δ is not an upper bound any more. We’ll specify δ shortly, but commit to δ < x
already. There exists an y ∈ S such that y > x − δ > 0. Then, from (∗) in part (a) we have
y2 > (x − δ)2 = x2 − 2xδ + δ2. This implies y2 > x2 − 2xδ. Since y ∈ S, we have y2 ≤ a also;
together we conclude x2 − 2xδ < a. Now choosing δ ≤ ε

2x , we conclude x2 < a+ 2xδ ≤ a+ ε.
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To show x2 > a − ε, we use that x is an upper bound for S and assume, for the sake of
contradiction, that x2 ≤ a− ε. We intend to exhibit δ > 0 such that x+ δ ∈ S, contradicting x
being an upper bound for S. To this end we calculate (x + δ)2 = x2 + 2xδ + δ2. Let’s require
that δ ≤ x and also δ ≤ ε

3x , namely we can take δ := min{x, ε
3x}. Then

(x+ δ)2 = x2 + 2xδ + δ2 ≤ a− ε+ 2xδ + δ · x = a− ε+ 3xδ ≤ a− ε+ 3x
ε

3x
= a ,

so x+ δ ∈ S.

We have thus proved: ∀ε > 0 : a−ε < x2 < a+ε. To conclude x2 = a, we rule out the other two
possibilities x2 > a and x2 < a. Indeed, if x2 were > a, then we could choose ε := x2 − a > 0
and conclude x2 < a+ ε = a+ (x2 − a), hence x2 < x2, a contradiction. If in contrast, x2 were
< a, then we could choose ε := a−x2 > 0 and conclude x2 > a−ε = a−(a−x2), hence x2 > x2,
again a contradiction.

2: For z = x+ iy ∈ C with x, y ∈ R, define |z| :=
√

x2 + y2. Prove that |z + w| ≤
|z|+ |w|. Make sure that any two inequalities you write down are properly connected
with a logical direction of implication (verbally or in symbols: =⇒ or ⇐= or ⇐⇒ ),
and that the logical direction of implication matches the needs for the proof.

You may only use ordered field axioms, simple conclusions from them (like subtrac-
tion on both sides of inequalities, or ‘a < b and c < d implies a + c < b + d’ or
‘0 < a < b and 0 < c < d implies 0 < ab < cd’ and their analogs with ≤), the supre-
mum axiom and simple conclusions thereof, and results from the previous problem
about the square root.

Solution:
Note beforehand: From the previous problem, we will use the existence and uniquenness of a
nonnegative square root for any nonnegative real number. It was proved for ‘positive’ instead of
nonnegative. Including 0 is an easy consequence.

Letting z = x+ iy and w = u+ iv, where x, y, u, v ∈ R, we want to prove

√

(x+ u)2 + (y + v)2 ≤
√

x2 + y2 +
√

u2 + v2 .

Since both sides are nonnegative, it is sufficient (and necessary – but the sufficiency part is
relevant) to prove

(

√

(x+ u)2 + (y + v)2
)2

≤
(

√

x2 + y2 +
√

u2 + v2
)2

,

or equivalently

(x+ u)2 + (y + v)2 ≤ (x2 + y2) + 2
√

x2 + y2
√

u2 + v2 + (u2 + v2) .

Subtracting x2 + y2 + u2 + v2, and dividing by 2, this is equivalent to

xu+ yv ≤
√

x2 + y2
√

u2 + v2 .

Since the right hand side is nonnegative, it is sufficient (but not necessary – eg the left hand
side could be negative) to prove

(xu+ yv)2 ≤
(

√

x2 + y2
√

u2 + v2
)2

.
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This is equivalent to
x2u2 + 2xuyv + y2v2 ≤ (x2 + y2)(u2 + v2) ,

or, by subtracting the left side and refactoring on the right

0 ≤ (xv − yu)2

which is known to be a true statement. (Squares are all nonnegative).

Note: An unmotivated writeup could start at the end and argue with ‘therefore’ in each step.
For the writeup as presented, which has the advantage of being motivated, it is crucial that
the words ‘sufficient’ or ‘equivalent’ (whichever is applicable), or synonymous wordings thereof,
connect the statements to make sure the logical direction is correct.

3: Prove: If lim an = a∗ and lim bn = b∗ and b∗ 6= 0, then lim(an/bn) = a∗/b∗.

Solution: Assume lim an = a∗ and lim bn = b∗ and b∗ 6= 0.

We now let ε > 0, and assume, without loss of generality, that ε ≤ min{|b∗|/2, 1}.
There exists then n0 such that for all n ≥ n0, it holds |an − a∗| < ε, and |bn − b∗| < ε; this
implies in particular that |bn| ≥ |b∗| − |bn − b∗| > |b∗|/2 and |an| ≤ |a∗|+ |an − a∗| < |a∗|+ 1.

∣

∣

∣

∣
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∣

∣

∣
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∣

∣

∣
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+
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∣

∣

∣
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∣
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∣

∣
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∣

∣

∣
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∣

∣

∣

∣

an
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− a∗
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∣

∣

∣

∣

=

∣

∣

∣

∣

an(b∗ − bn)

b∗bn

∣

∣

∣

∣

+

∣

∣

∣

∣

an − a∗
b∗

∣

∣

∣

∣

≤ |a∗|+ 1

|b∗|2/2
ε+

ε

|b∗|
=: Mε .

We have thus shown: for every ε > 0 there exists n0 such that for n ≥ n0 it holds |anbn − a∗
b∗
| < Mε

with M determined by a∗, b∗ (independent of ε).

Should M be larger than 1, we apply this result, for given ε > 0 to ε/M .

Note: There are of course many variants. One could restrict to proving the special case where
an = 1 for all n, and then appeal to the already proved product rule.
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4: Prove (directly from the axioms and consequences proved in class) that lim 1
n = 0.

(That should be just a few lines.)

Solution: Let ε > 0. We have to find n0 such that for n ≥ n0, it holds −ε < 1
n < ε. Let n0 be

a natural number larger than 1
ε . The existence of such an n0 is guaranteed by the Archimedean

property, as a consequence from the supremum axiom, as proved in class. Then, for n ≥ n0, we
have 1

n ≤ 1
n0

< ε. On the other side, trivially 1
n > 0 > −ε for all n.

5: Assuming (an) and (bn) are bounded sequences of real numbers: Is the following
statement true or false? “¿lim sup(an+bn) = lim sup an+lim sup bn?” If true, provide
a proof; if false, provide a counterexample, and if possible, prove an amendment
replacing ‘=’ with either ‘≤’ or ‘≥’ that results in a true statement. If no such
amendment can be proved, provide counterexamples against the amended versions.

Solution: The equality is false. For instance, let an = (−1)n and bn = (−1)n+1. Then
an + bn = 0. Now lim sup(an + bn) = 0, whereas lim sup an = lim sup bn = 1.

We prove the amended version

lim sup(an + bn) ≤ lim sup an + lim sup bn ,

in other words:

lim
k→∞

sup{an + bn : n ≥ k} ≤ lim
k→∞

sup{an : n ≥ k}+ lim
k→∞

sup{bn : n ≥ k} .

It suffices to show:

sup{an + bn : n ≥ k} ≤ sup{an : n ≥ k}+ sup{bn : n ≥ k} ,

because the limit limk→∞ preserves nonstrict inequalities. Since âk := sup{an : n ≥ k} satisfies
âk ≥ an for all n ≥ k and likewise b̂k := sup{bn : n ≥ k} satisfies b̂k ≥ bn for all n ≥ k, we obtain
an + bn ≤ âk + b̂k for all n ≥ k. So âk + b̂k is an upper bound for the set {an + bn : n ≥ k}, and
therefore it is ≥ the supremum of that set.

6: Prove by induction the lemma: If y > −1 and n ∈ N, then (1 + y)n ≥ 1 + ny.
(You’ll need it later.)

Solution: The claim is trivially true for n = 1. Assuming it true for some arbitrary n ∈ N,
we have to conclude that it is also true for n+ 1:

(1 + y)n+1 = (1 + y)n(1 + y) ≥(1) (1 + ny)(1 + y) = 1 + (n + 1)y + y2 ≥ 1 + (n+ 1)y ;

In step (1), the induction hypothesis and the fact that 1 + y > 0 was used.

7: (a) Given x ∈ R, consider the sequence (an) given by an := (1 + x
n)

n. We
will later write an(x) for an, when the dependence on x plays a role. Show that
an+1/an ≥ 1 whenever x ≥ 0 or n > |x| + 1. (The previous lemma may help in
estimating [(1 + x

n+1)/(1 +
x
n)]

n. )
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(b) Show that the sequence (an) is bounded above.
Hint: There may be a variety of ways; but you could use that an(x)an(−x) < 1
for |x| < 1 and a lower bound of an(x) for −1 < x < 0 to get an upper bound for
0 < x < 1. And maybe an(x+ y) < an(x)an(y) for x > 0.
(c) Defining exp(x) := limn→∞ an(x), prove that, for all x, y ∈ R, it holds exp(x) exp(−x) =
1 and exp(x+ y) = exp(x) exp(y). Also prove x < y =⇒ exp(x) < exp(y).

Solution: First note that the hypothesis x ≥ 0 or n ≥ |x|+1 guarantees that 1+ x
n , 1+

x
n+1 > 0.

Now to part (a):

an+1

an
=

(

1 + x
n+1

1 + x
n

)n+1
(

1+
x

n

)

=

(

(n+ 1 + x)n

(n+ x)(n+ 1)

)n+1
(

1+
x

n

)

=

(

1− x

(n+ x)(n+ 1)

)n+1
(

1+
x

n

)

Using the lemma from #6 with y = −x/(n + x) is permissible, because −x/(n + x) > −1. We
conclude

an+1

an
≥
(

1− (n+ 1)
x

(n + x)(n+ 1)

)

(

1 +
x

n

)

= 1

Part (b): If −1 < x ≤ 0, the sequence (an(x)) is trivially bounded above by 1, because
0 < 1 + x

n < 1. If x ≤ −1, we can take n0 > |x| and still infer 0 < 1 + x
n < 1 for n ≥ n0. So the

sequence is still bounded above by max{a1, a2, . . . , an0
, 1}. We have to show the boundedness

for x > 0 yet.

We first assume 0 < x < 1. Then an(−x)an(x) = (1 − x2/n2)n < 1. On the other hand
an(−x) ≥ 1− n x

n = 1− x > 0 from Hwk #6. This guarantees an(x) <
1

1−x .

Now let x > 0 be arbitrary and find k ∈ N such that k > x. Then we can use the previous
estimate for 0 < x/k < 1 and conclude.

an(x) =
(

1 +
x

n

)n
=
(

1 + k
x/k

n

)n
≤by #6

[

(

1 +
x/k

n

)k
]n

≤
[

1

1− x/k

]k

As a variant, let us note for x, y ≥ 0 that (1 + x
n)(1 + y

n) = 1 + x+y
n + xy

n2 ≥ 1 + x+y
n . This

implies an(x + y) ≤ an(x)an(y), and similar statements for an arbitrary number of summands
by induction. (BTW, the same reasoning also applies for x, y ≤ 0.) We again obtain the same
conclusion via an(x) = an(k · x/k) ≤ an(x/k)

k.

Part (c): The limit limn→∞ an(x) exists for each x, because the sequence is increasing from
some n = n0 on, and bounded above. Since for n > |x|, we can estimate

1− n · x
2

n2
≤by #6

(

1− x2

n2

)n
= an(x)an(−x) ≤ 1 ,

we conclude, by taking the limit, that

lim
n→∞

1− x2

n
≤ exp(x) exp(−x) ≤ lim

n→∞

1 ,

hence exp(x) exp(−x) = 1.

We note that an(x) > 0 for every n sufficiently large (namely n > |x|) and also that (an) is
increasing for sufficiently large n. This implies that exp(x) ≥ an(x) > 0.

We next conclude, for x, y either both nonnegative or both nonpositive, that exp(x + y) ≤
exp(x) exp(y) because a similar inequality was proved in part (b) for the an(x).
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By taking reciprocals (which is allowed with reversal of the inequality, because both sides are
positive), we conclude

exp(−x− y) =
1

exp(x+ y)
≥ 1

exp(x) exp(y)
= exp(−x) exp(−y) .

But the opposite inequality is also true, since −x and −y again are either both nonnegative or
both nonpositive.

So we have proved exp(x) exp(y) = exp(x + y) whenever x, y are both nonpositive or both
nonnegative. If x and y have opposite signs, we note that x+ y has either the same sign as −x
or the same sign as −y or is 0. Depending on which is the case, at least one of the following
statements is valid:

exp(x+ y) exp(−y) = exp((x+ y) + (−y)) = exp(x) or
exp(x+ y) exp(−x) = exp((x+ y) + (−x)) = exp(y)

But either of them implies exp(x+ y) = exp(x) exp(y).

So we have proved the exponential law for arbitrary x, y ∈ R.

Now exp(x) > 1 for x > 0, because 1 < a1(x) and a1(x) ≤ exp(x) from the monotonicity
of the sequence. This, together with the exponential law, implies, for x < y that exp(y) =
exp(y − x) exp(x). Since exp(x), exp(y) > 0 we infer exp(y)/ exp(x) = exp(y − x) > 1, and
therefore exp(y) > exp(x).

Note: The following wasn’t asked, but for 0 < x < 1, we have 1 ≤ exp(x) ≤ 1
1−x , and

this implies (anticipating the definition of continuity ‘officially’ covered later in the course)
that limx→0+ exp(x) = 1 = exp(0). Similarly, limx→0− exp(x) = 1 = exp(0), so we prove the
continuity of the exp function at 0. Finally, limx→x0

exp(x) = limx→x0
exp(x − x0) exp(x0) =

exp(0) exp(x0) = exp(x0) proves the continuity of exp at an arbitrary x0 ∈ R.

8: Let (an) be a sequence in R that is bounded below and ‘sub-additive’, i.e.,
∀n,m : an+m ≤ an + am. Prove that lim an

n exists. Hints follow:
(a) Prove for k, n ∈ N that akn ≤ kan.
(b) Prove for n, r ∈ N that lim supk→∞

akn+r

kn+r ≤ an
n .

(c) You may assume the ‘division with remainder theorem from elementary number
theory’: ∀m,n ∈ N ∃k, r ∈ N0 : m = kn + r and 0 ≤ r ≤ n − 1. Use it to prove
lim sup am

m ≤ inf an
n and conclude the original claim.

Solution:
Part (a) is an immediate induction over k. Trivially true for k = 1 (b/c an ≤ an), the step
from k to k + 1 is

a(k+1)n = akn+n ≤subadd akn + an ≤IH kan + an = (k + 1)an .

Part (b): Since
akn+r

kn+ r
≤ akn + ar

kn+ r
≤ kan + ar

kn+ r

we can take the lim supk→∞
on both sides (noticing that bk ≤ ck =⇒ sup{bk : k ≥ ℓ} ≤ sup{ck :

k ≥ ℓ} =⇒ lim sup bk ≤ lim sup ck) and conclude

lim sup
k→∞

akn+r

kn+ r
≤ lim sup

k→∞

kan + ar
kn+ r
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The limsup on the right can actually be calculated as a limit since

kan + ar
kn+ r

= an
k

kn+ r
+

ar
kn+ r

= an
1

n+ r
k

+
ar/k

n+ r
k

,

which converges, as k → ∞, to an
1

n+r·0 +
ar ·0
n+r·0 = an/n.

Part (c): Given m ∈ N and n ∈ N, there are n cases to distinguish: Either there exists k such
that m = nk, or there exists k such that m = nk + 1, or there exists k such that m = nk + 2,
etc., the last case being m = nk + (n− 1). This implies that

{am
m

: m ≥ ℓ
}

=
n−1
⋃

r=0

{ ank+r

nk + r
: k ≥ (ℓ− r)/n

}

⊂
n−1
⋃

r=0

{ ank+r

nk + r
: k ≥ ℓ

n
− 1
}

Therefore

sup
{am
m

: m ≥ ℓ
}

≤ maxn−1
r=0 sup

{ ank+r

nk + r
: k ≥ ℓ

n
− 1
}

(The right hand side is an upper bound for the union
⋃

r, and therefore for the set on the left
hand side. The sup on the left side is the smallest upper bound, hence ≤ the upper bound
provided from the right side.)

As ℓ → ∞, so does ℓ
n − 1 → ∞, and we obtain (using the simple lemma: limmax{bk, ck} =

max{lim bk, lim ck} provided the limits on the right exist – proof later):

lim sup
am
m

≤ maxn−1
r=0 lim sup

k→∞

akn+r

kn+ r
≤ maxn−1

r=0

an
n

=
an
n

Since this inequality is true for every n, we can take the infimum (or lim inf) over all n and
conclude lim sup am

m ≤ lim inf an
n , from which the existence of the limit follows.

Since we never proved the lemma, let me prove it:
Lemma: “Assume lim bk = b∗ and lim ck = c∗. Then limmax{bk, ck} = max{b∗, c∗}.”
Proof: Without loss of generality assume b∗ ≤ c∗, so that max{b∗, c∗} = c∗. Let ε > 0. Then
there exists k0 such that for all k ≥ k0 the following hold:

b∗ − ε < bk < b∗ + ε ≤ c∗ + ε
c∗ − ε < ck < c∗ + ε

Since bk and ck are both < c∗ + ε, so is their maximum: max{bk, ck} < c∗ + ε. On the other
side, max{bk, ck} ≥ ck > c∗ − ε. Hence limmax{bk, ck} = c∗.
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9: Using the dot product in Rn, namely ~u ·~v :=
∑n

i=1 uivi, we can write ‖~u‖22 = ~u ·~u.
(a) Prove the Cauchy-Schwarz inequality |~u · ~v| ≤ ‖~u‖2 ‖~v‖2 by exploiting the fact
that (~u+ t~v) · (~u+ t~v) ≥ 0 for all t ∈ R and then choosing a special t. (Actually the
one that, according to Calculus 1, minimizes the given expression. But note that,
logically, you do not need to justify your choice of t.)
(b) Use it to conclude ‖~u+ ~v‖2 ≤ ‖~u‖2 + ‖~v‖2.
[too elementary: I won’t collect this one for grading.]

Solution: It is obvious from the definition that the distributive law applies for the dot product
with addition; dito the rule ~u · (t~v) = t(~u · ~v) and the commutative law. So we have

0 ≤ (~u+ t~v) · (~u+ t~v) = ~u · ~u+ 2t~u · ~v + t2~v · ~v = ‖~u‖22 + 2t~u · ~v + t2‖~v‖22

Since the Cauchy-Schwarz inequality is trivially true when ~v = 0, we may now assume ~v 6= 0.
Choosing t = −(~u · ~v)/‖~v‖22 we obtain

0 ≤ ‖~u‖22 − 2
(~u · ~v)2
‖~v‖22

+
(~u · ~v)2
‖~v‖22

and hence by simplifying (~y · ~v)2 ≤ (‖~u‖2 ‖~v‖2)2. Taking the square root yields the CSI.

10: Prove the triangle inequality for ‖ · ‖∞ on BF(X → R) = {f : X → R :
f bounded}. Here ‖f‖∞ := sup{|f(x)| : x ∈ X} and X is any set.

Solution: We need to show ‖f + g‖∞ ≤ ‖f‖∞ + ‖g‖∞ for any functions f, g ∈ BF(X → R).
First note that for any x ∈ X, we have |(f + g)(x)| := |f(x) + g(x)| ≤ |f(x)| + |g(x)| ≤
‖f‖∞ + ‖g‖∞.

Taking the supremum over x ∈ X on the left immediately gives the claim.

11: I mentioned the norms ‖u‖p := (
∑n

i=1|ui|p)
1/p without proof of the norm prop-

erties, where p ≥ 1. Now try p = 1
2 . Is it a norm? Proof or counterexample.

Solution: The function ‖·‖1/2 given by the formula above is not a norm, despite the appearance
created by misusing the symbol ‖ · ‖. While the homogeneity and positivity properties of the
norm are indeed verified (trivially), the triangle inequality is violated.

Here is a counterexample in the case n = 2: Let u = (1, 0) and v = (0, 1). Then

‖u+ v‖1/2 = ‖(1, 1)‖1/2 = (
√
1 +

√
1)2 = 4 whereas ‖u‖1/2 + ‖v‖1/2 = 1 + 1 = 2

For larger n, the same example, padded with 0’s in the extra components, can be used.

Of course the trivial case n = 1 is an exception: there, any ‖u‖p (with p > 0) is equal to |u| and
is therefore a norm.

12: Assume d is a distance function on X. Show that d1 := d
1+d is also a distance

function. Show that a sequence is convergent with respect to d if and only if it is
convergent with respect to d1.
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Solution: d1(x, y) =
d(x,y)

1+d(x,y) ≥ 0 is obvious from d(x, y) ≥ 0. Also d1(x, y) = 0 if and only if

d(x, y) = 0. Likewise, symmetry of d1 follows trivially from symmetry of d. The only nontrivial
issue is to verify the triangle inequality:

Let x, y, z ∈ X and call d(x, y) =: a, d(y, z) =: b, and d(x, z) =: c. We know from the triangle
inequality for d that c ≤ a+ b. And we also have a, b, c ≥ 0. We have to show c

1+c ≤ a
1+a +

b
1+b .

Since the function c 7→ c
1+c = 1 − 1

1+c is increasing (c < c′ =⇒ c
1+c < c′

1+c′ ), it suffices to show
the second step in the following inequality:

c

1 + c
≤ a+ b

1 + a+ b
≤ a

1 + a
+

b

1 + b

Multiplying with the common denominator (which is positive), this last claimed inequality is
equivalent to

(a+ b)(1 + a)(1 + b) ≤ a(1 + a+ b)(1 + b) + b(1 + a+ b)(1 + a)

Subtracting (a+ b)(1 + a+ b), this is equivalent to

(a+ b)ab ≤ (1 + a+ b) 2ab ,

which is clearly true since a+ b ≤ 1 + a + b and ab ≤ 2ab. Since the steps form one inequality
to the next were equiavlences, this proves the triangle inequality for d1.

Now since d1 ≤ d, we argue that if d(xn, x) < ε then d1(xn, x) < ε. Dittoing all the quantifiers
in the definition, we see: If (xn) is Cauchy wrt d, then it is Cauchy wrt d1; and if lim xn = x
wrt d, then lim xn = x wrt d1.

For the converse direction, we notice that d = d1/(1 − d1) and argue: If d1 < ε and ε ≤ 1
2 then

d < 2ε. Suppose (xn) is Cauchy wrt d1 and let ε > 0. Using the definition of Cauchy with
ε′ = min{1

2 ,
ε
2}, we get an n0 such that for n,m ≥ n0, it holds d1(xn, xm) < ε′ ≤ 1

2 . This implies
d(x, y) < 2ε′ ≤ ε. So (xn) is Cauchy wrt d. The same reasoning applies to convergence.

13: On N a distance function d1 is given by d1(n,m) := |n−m|. Another distance
function is given by d2(n,m) := | 1n − 1

m |. Which are the convergent sequences in
each case? Which are Cauchy sequences in each case?

Solution: We call a sequence (xn) ‘eventually constant’ if there exists an n0 such that for all
n,m ≥ n0, it holds xn = xm. We say that a sequence xn in N goes to infinity if lim inf xn = ∞
as defined within R; in other words if for every M > 0, there exists a k ∈ N such that an ≥ M
for n ≥ k.

We claim:
(1) A sequence in N is Cauchy wrt the usual metric d1 if and only if it is eventually constant,
and also, if an only if it converges.
(2) A sequence in N converges wrt d2 if and only it it is eventually constant. It is Cauchy if and
only if it is eventually constant or goes to infinity.

To prove this we only have to show:
(a) An eventually constant sequence converges wrt any metric (with the limit being that same
constant).
(b) A Cauchy sequence wrt d1 is eventually constant.

9



(c) A Cauchy sequence wrt d2 is eventually constant or goes to infinity.
(d) If a sequence goes to infinity, then it is Cauchy wrt d2.
(e) If a sequence converges wrt d2, it is eventually constant.

Then (1) follows from concatenating: Cauchy =⇒(b) ev.const. =⇒(a) convergent =⇒general Thm
Cauchy.

Also (2) follows similarly: Cauchy =⇒(b) ev.const. or to-infinity =⇒like (1), or (d) Cauchy. And

Convergent (a) ⇐⇒ (e) ev.const.

Now (a) is trivial: If for all n,m ≥ n0 we have xn = xm, then we call this common value x∗, and
have d(xn, x∗) = 0 < ε. The same n0 from the def. of eventually constant works for all ε > 0 in
the def. of convergence.

For (b), use the Cauchy property with ε = 1
2 to conclude: ∃n0 ∀n,m ≥ n0 : d(xn, xm) < 1

2 .
Since absolute values of differences between natural numbers are always natural numbers or 0,
this implies d1(xn, xm) = 0, hence xn = xm. So Cauchy implies eventually constant.

For (c), we assume (xn) is Cauchy and does not go to infinity. The second property means
∃M ∀k ∈ N ∃n ≥ k : xn ≤ M . It is no loss of generality to assume M ≥ 1. Now we use the
definition of Cauchy with ε = 1

2M(M+1) . Then d2(xn, xm) < ε means | 1
xn

− 1
xm

| < 1
2M(M+1) ,

which is equivalent to
|xn − xm|
xn xm

<
1

2M(M + 1)

This has to hold for every n,m ≥ n0, in particular we choose n in such a manner that xn ≤ M .
Then xm ≤ xn + |xn − xm| < xn + ε < xn + 1 and we conclude |xn − xm| < xn(xn+1)

2M(M+11) ≤ 1
2 .

Since xn and xm are natural numbers, this implies xn = xm. So we have concluded that (xn) is
eventually constant.

As for (d), if (xn) goes to infinity, we assume ε > 0 and choose M > 2
ε . Then there is a k

such that for any n,m ≥ k, we have xn, xm ≥ M , hence 1
xn

, 1
xm

< ε
2 . But then d2(xm, xn) =

| 1
xn

− 1
xm

| ≤ 1
xn

+ 1
xm

< ε. So (xn) is Cauchy.

For (e) we assume lim xm = x∗ wrt d2. We copy the proof of (c) with x∗ replacing both xn and
M .

Comment: This example shows that even if two metrics on the same set define the same
notions of convergence (and subsequently the same notions of open sets, as we will see for this
example), they may still define different notions of Cauchy, in other words, the property of
completeness is not determined by the topology alone, but depends on the metric.

14: The following example is instructive, albeit not significant for purposes of Cal-
culus: You may and should use basic facts about prime factor decompositions of
rational numbers in this example. Given a rational q = m

n ∈ Q with m ∈ Z, n ∈ N,

we consider the prime factor decomposition q = ±pk11 · · · pkrr . Choosing a particular
prime p, we define [0]p := 0; and for q 6= 0, we define [q]p := 1/pk, where pk is the
power of p that occurs in the prime factor decomposition of q. Example: [1225 ]3 = 1

3 ,
[29 ]3 = 9, [25 ]3 = [1]3 = 1.

Prove the strengthened triangle inequality [x + y]p ≤ max{[x]p, [y]p} and show that
dp(x, y) := [x− y]p defines a metric on Q. (It is called the p-adic metric).

Let an := 2n

2n+1 . Find the limit lim an in Q with the metric d(x, y) := |x− y| (that is
too easy). Next find lim an with respect to the metric d2.

10



Solution: We let p be any chosen prime number. Every rational number x can be written in

the form x = ±pk
a

b
where k ∈ Z and a and b are integers that do not contain p in their prime

factorization. (We may assume that the prime factors in a and in b are distinct, i.e., that a
b is

in lowest terms, but we will not need this.) Likewise, we write y = ±pℓ
c

d
with the analogous

hypotheses.

We now prove the strengthened triangle inequality for x and y, applying the notation just
established. Without loss of generality, we assume k ≥ ℓ.

Then [x]p = p−k and [y]p = p−ℓ and max{[x]p, [y]p} = p−ℓ. To calculate [x+ y]p we write

x+ y = ±pk
a

b
± pℓ

c

d
= ±pℓ

pk−ℓad± bc

bd
.

Now the denominator, the integer bd, does not contain a prime p because neither b nor d does.
The numerator pk−ℓad ± bc is an integer and it may or may not contain a prime p. If it does
not, then [x + y]p = p−ℓ (so it exactly equals the maximum in question); on the other hand if
the numerator does contain p (to some positive power s, exactly), then [x + y]p = p−ℓ−s and
thus smaller than the maximum in question.

This proves the strengthened triangle inequality. We can actually say more: If k = ℓ, i.e.,
[x]p = [y]p, then strict inequality may indeed hold (but doesn’t need to). However if k > ℓ,
i.e., [x]p 6= [y]p, then the numerator will not contain an extra factor p and the strengthened
triangle inequality becomes an equality. This is because if p divided the sum pk−ℓad± bc in the
numerator and is known to divide one summand pk−ℓad, then it would have to divide the other
summand bc also, which is however ruled out since neither b nor c has a factor p.

So we have actually proved:
[x+ y]p ≤ max{[x]p, [y]p} and if [x]p 6= [y]p then equality holds. (∗)
Now for the specific sequence an = 2n

2n+1 . In the usual metric d, lim an = 1 because

|an − 1| = 1

2n + 1
<

1

2n
<

1

n
,

and so lim an = 0 b/c lim 1
n = 0. We have used the lemma “∀n ∈ N : 2n > n” in this calculation.

It is very easy to prove this lemma by induction.

In contrast, wrt to the p-adic metric dp for p = 2, we have lim xn = 0 because [an]2 = 2−n < 1
n

(since the denominator of an, namely 2n + 1, does not contain a prime factor 2).

Note: If we were to study the sequence wrt another p-adic metric, say we choose p = 3, then
it is easy to see that 3 divides 2n + 1 for odd n, but does not divide 2n + 1 for even n. So we
know [an]3 = 1 for even n and [an]3 ≥ 31 for odd n. The amended version (∗) then tells us that
d3(am, an) ≥ 3 whenever one of m,n is even and the other is odd. In particular (an) is not a
Cauchy sequence wrt d3.

If you show, by induction over k, that 3k+1 divides 23
k+1 + 1, you can even conclude that [an]3

is unbounded.

So we see why this example is not from the analyst’s playground, but more from algebra and
number theory. However, ultrametrics, which are metrics that satisfy the strengthened triangle
inequality with max instead of +, may occur occasionally in contexts of interest to us.
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15: Find an example of a function f : R → R that does not have a fixed point, but
satisfies a weakened contraction condition |f(x) − f(y)| < |x − y| whenever x 6= y.
For this example, you may use Calculus 1 knowledge (even though I think it can also
be done with the material constructed in this class already.)

Solution: We could for instance take f(x) = 1
2 (x+

√
x2 + 1). Clearly f(x) > 1

2(x + |x|) ≥ x
so f has no fixed point.

|f(x)− f(y)| ≤ 1

2
|x− y|+ 1

2
|
√

x2 + 1−
√

y2 + 1| = 1

2
|x− y|+ 1

2

|x2 − y2|√
x2 + 1 +

√

y2 + 1

So
|f(x)− f(y)|

|x− y| ≤ 1

2
+

1

2

|x+ y|√
x2 + 1 +

√

y2 + 1
<

1

2
+

1

2

|x+ y|
|x|+ |y| ≤ 1

Variants: If we are willing to rely on claculus 1 knowledge, we are looking for a function f : R →
R whose derivative is everywhere < 1 and > −1, and which is always > x or else always < x.
The derivative guarantees by the mean value theorem that |f(x2)− f(x1)| < |x2 −x1| whenever
x2 6= x1. Examples of such functions are given by the formulas ln(1 + ex), or x− arctan x− π

2 .

16: Prove that f : [0,∞[ → R , x 7→ √
x is uniformly continuous. (Of course

continuity is understood here with respect to the usual distance on R.)

Solution:
(1) The following ‘routine’ solution shows continuity, but fails to prove uniform continuity; it is
just offered for insight of instruction; only (2) below is needed:

For continuity at x0 = 0, we assume ε > 0 is given and choose δ = ε2. Then we estimate, for
x ≥ 0 and |x− x0| < δ that

|√x−√
x0| =

√
x <

√
δ =

√
ε2 = ε

For continuity at x0 > 0, we assume ε > 0 given and choose δ =
√
x0 ε to estimate for |x−x0| < δ

and x ≥ 0 that

|√x−√
x0| =

|x− x0|√
x+

√
x0

<
δ√
x0

= ε

So the square root function is continuous at every x0 ≥ 0.

(2) A somewhat smarter proof proves uniform continuity, making (1) obsolete: Given ε > 0,
we choose δ = ε2 (motivated by the intuitive insight that x0 = 0 should be the ‘worst case
scenario’). We assume x, y ≥ 0 with |x − y| < δ and want to estimate |√x −√

y| to show it is
< ε. To this end, assume w/olog that y ≥ x. Two different estimates will be used depending on
the size of y: If y < δ, we argue

|√y −√
x| = √

y −√
x ≤ √

y <
√
δ = ε

If y ≥ δ, we estimate

|√y −√
x| = |y − x|√

y +
√
x
<

δ√
y
≤ δ√

δ
=

√
δ = ε
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17: Let (X, d) be the metric space of R with the discrete metric d(x, y) := 1 whenever
x 6= y. Let (Y, d) be any metric space, and R be equipped with the usual metric.

(a) Show that every function f : X → Y is continuous. Is the same true with
‘uniformly continuous’?
(b) Conjecture which functions f : R → X are continuous (we’ll prove it in class).

Solution:
(a) to show continuity of f : X → Y where X is a discrete metric space, given ε > 0, we
choose δ = 1

2 . Then the claim “if d(x1, x2) < δ, then d(f(x1), f(x2)) < ε” is true, because the
hypothesis d(x1, x2) < 1

2 implies x1 = x2 in a discrete metric space. Then f(x1) = f(x2), so
d(f(x1), f(x2)) = 0 < ε. So if the domain is a discrete metric space, then every f is uniformly
continuous.

(b) We claim that the only continuous functions from R to a discrete metric space are the
constant functions. It is clear that constant functions are continuous, we only have to prove the
implication “continuous =⇒ constant”.

So let f : R → X be continuous at each x0 and choose ε = 1
2 in the definition. Then there

exists δ0 > 0 such that for |x − x0| < δ0, we have d(f(x), f(x0)) < ε = 1
2 , i.e f(x) = f(x0).

We first use this argument for one x0, (we could take x0 = 0) and conclude there exists a value
C = f(x0) and a δ0 > 0 such that f(x) = C for x0 − δ0 < x < x0 + δ0. Then we define
S := {δ > 0 | ∀x ∈ [x0, x0 + δ[; f(x) = C}. We have just shown that S 6= ∅. We next want to
show (by indirect argument) that S is unbounded above; this will then immediately imply that
f(x) = C for all x > x0.

So let’s assume that S is bounded above; define s := supS and let x1 := x0 + s. Since f
is continuous at x1, we know that there exists δ1 > 0 (and w/olog δ1 < s) such that for all
x ∈ ]x1 − δ1, x1 + δ1[, it holds f(x) = f(x1). In particular, choosing x = x1 − δ1/2, we have
f(x) = C, hence f(x1) = C. But this means that f(x) = C for x ∈ [x0, x1[∪ ]x1 − δ1, x1 + δ1[ =
[x0, x0 + s+ δ1[. So s+ δ1 ∈ S, and this contradicts the fact that s was the supremum of S.

This contradiction shows f(x) = C for all x ≥ x0. A similar argument shows f(x) = C for all
x ≤ 0. So f is constant.

18: Suppose (X, dX ) and (Y, dY ) are metric spaces: the set X×Y can be made into
a metric space by defining d∞((x, y), (x′, y′)) := max{dX(x, x′), dY (y, y

′)}.
(a) Prove this.
(b) With this definition of the metric on X × X, write out what the statement
“dX : X × X → R is continuous” means and then prove it. Decide if the same
statement is true with ‘uniformly continuous’ instead of merely ‘continuous’.

Solution:
(a) Symmetry and positivity are easy:
d∞((x, y), (x′, y′)) = d∞((x′, y′), (x, y)), because the symmetry for dX and dY gives
max{dX(x, x′), dY (y, y

′)} = max{dX (x′, x), dY (y
′, y)}.

d∞((x, y), (x′, y′)) ≥ 0 because dX(x, x′) ≥ 0 (or because dY (y, y
′) ≥ 0). If d∞((x, y), (x′, y′)) =

0, then both dX(x, x′) and dY (y, y
′) are ≤ 0 (and always ≥ 0, hence 0), so x = x′ and y = y′,

implying (x, y) = (x′, y′).

The triangle inequality is proved as in #10: We have to show
d∞((x, y), (x′′, y′′)) ≤ d∞((x, y), (x′, y′)) + d∞((x′, y′), (x′′, y′′)), i.e.,
max{dX(x, x′′), dY (y, y

′′)} ≤ max{dX(x, x′), dY (y, y
′)}+max{dX (x′, x′′), dY (y

′, y′′)}.
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We have
dX(x, x′′) ≤ dX(x, x′) + dX(x′, x′′) ≤ max{dX(x, x′), dY (y, y

′)}+max{dX (x′, x′′), dY (y
′, y′′)}

and likewise
dY (y, y

′′) ≤ dY (y, y
′) + dY (y

′, y′′) ≤ max{dX(x, x′), dY (y, y
′)}+max{dX(x′, x′′), dY (y

′, y′′)}.
Therefore the max of the two left hand sides is less or equal the common right hand side.

(b) The statement “dX : X ×X → R is continuous at (x, y)” is defined to be:

∀ε > 0∃δ > 0∀(x′, y′) : d∞((x, y), (x′, y′)) < δ =⇒ |dX(x, y)− dX(x′, y′)| < ε ,

or, using the definition of d∞,

∀ε > 0∃δ > 0∀(x′, y′) : dX(x, x′) < δ ∧ dX(y, y′) < δ =⇒ |dX(x, y)− dX(x′, y′)| < ε .

To prove this statement, we use the triangle inequality for dX and say

dX(x, y) ≤ dX(x, x′) + dX(x′, y′) + dX(y′, y) hence

dX(x, y)− dX(x′, y′) ≤ dX(x, x′) + dX(y′, y) .

Given ε > 0, we now choose δ := 1
2ε and conclude that the right hand side is < δ + δ = ε. By

swapping the primed with the unprimed variables, we also prove dX(x′, y′)− dX(x, y) < ε with
the same choice of δ.

This proves the continuity of d. Actually, we have proved uniform continuity because the choice
of δ did not depend on (x, y).

19: Let g : X → Y and f : Y → Z be functions, where X, Y , Z are metric spaces;
let f ◦ g : X → Z , x 7→ f(g(x)) be their composition. If g is continuous at x0 and f
is continuous at y0 := g(x0), show that f ◦ g is continuous at x0.

Solution: Let x0 ∈ X and ε > 0. We need to find δ > 0 such that d(x, x0) < δ implies
d( f(g(x)), f(g(x0)) ) < ε.

Since f is continuous at y0 := g(x0), there is an η > 0 such that d(y, y0) < η implies
d(f(y), f(y0)) < ε. We take this η as the ε in the definition of continuity for g. Namely,
there exists δ > 0 such that d(x, x0) < δ implies d(g(x), g(x0)) = d(g(x), y0) < η. Using the
continuity estimate for f with y := g(x) we therefore obtain d( f(g(x)), f(y0) ) < ε as required.

20: Assume X and Y are metric spaces, where the metric on Y is bounded. Per
#12, boundedness of the metric is no loss of generality. We can define F(X → Y ) to
be the set of all functions from X to Y and make it into a metric space by defining
d∞(f, g) := sup{d(f(x), g(x)) : x ∈ X}. (You don’t need to prove these simple facts;
they are similar to #10.)

Show that convergence fn → f in the sense of the metric d∞ is equivalent to uniform
convergence fn → f .

We use the metric d∞ on C0(X → Y ), the subset of continuous functions from X
to Y . Show this metric space is complete, if Y is complete.
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Solution: Let me note beforehand that the assumption that the metric on Y be bounded is
only used to guarantee that the sup by which d∞ is defined is a real number (rather than the
symbol ∞), but will not be needed anywhere below.

Convergence in the sense of the metric means (with the definition of d∞ written out):

(MC) ∀ε > 0∃n0 ∀n ≥ n0 : sup{d(fn(x), f(x)) : x ∈ X} < ε

Uniform convergence means:

(UC) ∀ε > 0∃n0 ∀n ≥ n0 ∀x ∈ X : d(fn(x), f(x)) < ε

Now clearly (MC) implies (UC), with the same choice of n0, since d(. . .) ≤ sup{d(. . .)} < ε.
Conversely, if (UC) holds, we may use it with 0.9ε instead of ε, and when d(fn(x), f(x)) < 0.9ε
for all x ∈ X, then the supremum over these x is at least ≤ 0.9ε < ε, hence we conclude (MC).

Now to prove completeness of C0(X → Y ), suppose we have a Cauchy sequence (fn) in this
space, i.e., again writing out the definition of d∞,

(MCS) ∀ε > 0∃n0 ∀n,m ≥ n0 : sup{d(fn(x), fm(x)) : x ∈ X} < ε

Again, since for each x, we have d(. . .) ≤ sup{d(. . .)}, we infer that for each x ∈ X, the sequence
(fn(x))n is a Cauchy sequence in Y . The completness of Y guarantees us that this Cauchy
sequence has a limit, and we define f(x) := lim fn(x).

We have thus constructed a function f : X → Y as a pointwise limit of the fn. (At this
moment, we wouldn’t know yet whether f is actually continuous.) Now we will show that
fn → f uniformly. From (MCS), we get:

∀ε > 0∃n0 ∀n,m ≥ n0 ∀x ∈ X : d(fn(x), fm(x)) < ε .

Taking the limit m → ∞ in d(fn(x), fm(x)) < ε (and using the continuity of d), we obtain
d(fn(x), f(x)) ≤ ε, i.e., fn → f uniformly (except that we have ≤ ε instead of < ε, an inconse-
quential difference, since we can use 0.9ε instead of ε again).

By the theorem in class, uniform limits of continuous functions are continuous, so f ∈ C0(X →
Y ). And by the equivalence of metric convergence with uniform convergence, we know fn → f
in the metric sense. This proves completeness of (C0, d∞).

Note: As an aside, there does not exist a metric on C0([0, 1] → R) for which convergence in the
sense of the metric is equivalent to pointwise convergence. A proof can be found in “M.K. Fort:
A note on pointwise convergence, Proceedings of the AMS, 2 (1951), pp. 34–35”.

21: (a) Prove that exp : R → R+ as defined previously is bijective.
(b) We’ll denote its inverse function as ln, so y = lnx : ⇐⇒ x = exp(y). Prove that
ln : R+ → R is increasing and continuous. Also prove ln(xy) = lnx+ ln y.
(c) For x > 0 and q ∈ R, we define xq := exp(q lnx). Prove for all x > 0 and
q1, q2 ∈ R that xq1+q2 = xq1xq2 and xq1q2 = (xq1)q2 . Also prove (xy)q = xqyq for all
x, y > 0 and q ∈ R. Note that (x, q) 7→ xq, R+ × R → R+ is continuous.
(d) letting e := exp(1), show that exp(x) = ex

Solution: (a) We know from #7 that values of exp are positive since they are ≥ an(x) =
(1 + x

n)
n > 0 provided n > |x|. We also know that x1 < x2 implies exp(x1) < exp(x2) (and

likewise with >), so by trichotomy and contrapositive, exp(x1) = exp(x2) implies x1 = x2.
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We have seen in class that exp is continuous. To show that any y > 0 is in the range of exp,
we first assume y ≥ 1. Then exp(y) ≥ 1 + y > y, whereas exp(0) = 1 ≤ y. By the intermediate
value theorem there exists x ∈ [0, y] for which exp(x) = y. If in contrast y < 1, but still > 0,
then 1/y > 1 and therefore there exists x such that exp(x) = 1/y. But then exp(−x) = y. So
we have shown that exp is onto R+.

(b) Suppose y1 < y2. We want to show ln y1 < ln y2. By contrapositive, we have to show:
If ln y1 ≥ ln y2, then y1 ≥ y2. This indeed follows from the fact that exp is increasing and
exp ln y = y.

To show continuity of ln at y0, we have to show:

∀ε > 0∃δ > 0 : |y − y0| < δ =⇒ |ln y − ln y0| < ε .

We show this by showing the contrapositive (and let x := ln y, x0 := ln y0); so we show:

∀ε > 0∃δ > 0 : |x− x0| ≥ ε =⇒ |exp x− expx0| ≥ δ .

We do this by letting δ := ε
1+ε expx0. Then, assuming |x− x0| ≥ ε, we have either x ≥ x0 + ε

or x ≤ x0 − ε. If x ≥ x0 + ε, then

exp(x) ≥ exp(x0 + ε) = exp(x0) exp(ε) ≥ exp(x0) (1 + ε) =

= exp(x0) + ε exp(x0) = exp(x0) + (1 + ε)δ > exp(x0) + δ

On the other hand, if x ≤ x0 − ε, then

exp(x) ≤ exp(x0 − ε) = exp(x0) exp(−ε) ≤ exp(x0)
1

1+ε =

= exp(x0)− ε
1+ε exp(x0) = exp(x0)− δ

This proves continuity of ln.

Since exp is bijective, the claim ln(xy) = lnx+ln y is equivalent to exp(ln(xy)) = exp(lnx+ln y).
But the left hand side is xy, the right hand side is exp(ln x) exp(ln y) = xy as well.

(c)

xq1+q2 := exp((q1 + q2) ln x) = exp(q1 lnx+ q2 lnx) = exp(q1 lnx) exp(q2 lnx) = xq1 xq2

(xq1)q2 = exp[q2 ln(x
q1)] = exp[q2 ln(exp(q1 lnx))] = exp[q2 q1 lnx] = xq2 q1 = xq1 q2

(xy)q = exp[q ln(xy)] = exp[q(lnx+ ln y)] = exp[q lnx+ q ln y] = exp(q lnx) exp(q ln y) = xq yq

The power function is continuous, because it is a composition of the ln function (more precisely
(id, ln)), the product function, and the exp function, all of which are continuous. More precisely:

(q, x) 7→ (q, lnx) 7→ q · lnx 7→ exp(q lnx)

∈

(id, ln)

∈

times

∈

exp

∈

R× R+ → R× R → R → R+

(d) ex = exp(x ln e) = exp(x ln(exp 1)) = exp(x · 1) = exp(x).

22: Having constructed arbitrary powers, it’s time to introduce the inequality
of the arithmetic and geometric mean (short: agm inequality): “If n ∈ N and
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x1, x2, . . . , xn ∈ R+, then (x1x2 · · · xn)1/n ≤ 1
n(x1 + x2 + . . . + xn). The inequal-

ity is strict unless x1 = . . . = xn.”

(a) Prove the inequality for n = 2k by induction over k.
(b) Then prove it for arbitrary n by choosing some k such that m := 2k > n and
defining xn+1, . . . , xm wisely.

(I won’t collect this for grading, but if you’re not familiar with it, you should do it,
as it is a ‘must know’.)

Solution: (a) Start the induction with k = 1, i.e., n = 2. We need to show
√
x1x2 ≤ 1

2(x1+x2).
Since both sides are positive, this is equivalent to x1x2 ≤ 1

4(x1 + x2)
2, or equivalently, 4x1x2 ≤

x21 + 2x1x2 + x22. This in turn is equivalent to 0 ≤ x21 − 2x1x2 + x22, which is true, because the
right hand side is a square, (x1 − x2)

2. Clearly, equality holds only when x1 − x2 = 0.

Now the induction step from k to k + 1, i.e., from n to 2n:

(x1x2 . . . x2n)
1/(2n) =

√

(x1 . . . xn)1/n(xn+1 . . . x2n)1/n . (∗)

By induction hypothesis,

(x1 . . . xn)
1/n ≤ x1 + . . .+ xn

n
and (xn+1 . . . x2n)

1/n ≤ xn+1 + . . .+ x2n
n

with equality only if x1 = . . . = xn and xn+1 = . . . = x2n respectively. Therefore, using
monotonicity of the square root, we can continue (∗) to get

(x1x2 . . . x2n)
1/(2n) ≤

√

x1 + . . .+ xn
n

× xn+1 + . . . + x2n
n

with equality only if x1 = . . . = xn (=: a) and xn+1 = . . . = x2n (=: b). Now using the base
case, we continue

(x1x2 . . . x2n)
1/(2n) ≤ 1

2

(

x1 + . . .+ xn
n

+
xn+1 + . . .+ x2n

n

)

=
x1 + . . . x2n

2n

with equality only if we had it in the previous step and now also have x1+...+xn

n = xn+1+...+x2n

n
(i.e., a = b). In other words, now equality holds only when all xi are equal.

(b) Now let n be arbitrary and choose m > n to be a power of 2. We are given x1, . . . , xn > 0
and define xn+1 = . . . = xm := x1+...+xn

n . Then by part (a), we have

(

x1 · · · xn ×
(x1 + . . .+ xn

n

)m−n
)1/m

≤ x1 + . . . + xn + (m− n)x1+...+xn

n

m

with equality only if x1 = . . . = xn = x1+...+xn

n . (The last of these equalities is redundant since
it follows from the others.) Simplifying both sides, we get

(x1 · · · xn)1/m ×
(x1 + . . . + xn

n

)(m−n)/m
≤ x1 + . . . + xn

n

with equality only if x1 = . . . = xn. Cancelling the power of the average from the left side, we
get

(x1 · · · xn)1/m ≤
(x1 + . . .+ xn

n

)n/m
.

Taking the m
n
th power proves the agm inequality for n. (The monotonicity of x 7→ xq for q > 0

has followed immediately from its definition and the monotonicity of ln and exp.)
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23: Young’s inequality frequently comes in handy: “If x, y > 0 and p, q > 1 such

that 1
p + 1

q = 1, then xy ≤ 1
px

p + 1
qy

q.” (This is often proved as a single variable
calculus minimization problem, using the derivative.)

(a) Show that for p > 1, L > 0, the function f : R+ → R+ , x 7→ 1
px

p + (1 −
1
p)(

L
x )

p/(p−1) has a minimum. (Hint: Start with some random x0 (eg., x0 = 1), then
show there exists [a, b] ⊂ R+ such that for x ∈ R+ \ [a, b], it holds f(x) > f(x0). Use
the sequential compactness of [a, b]. )

(b) Assuming for the moment Calculus-1 knowledge about derivatives without having
proved it, you can now find the location and value of the minimum.

(c) Alternatively, prove Young’s inequality at least for rational p, q writing p = m+n
n

with m,n ∈ N, as a consequence of the agm inequality. Then generalize to p > 1
real by using a continuity and limit argument.

Solution: (a) Choosing some arbitrary x0 we let f(x0) =: y0 > 0.
Since f(x) > (1 − 1

p) (L/x)
p/(p−1), there is some z0 (namely z0 := [y0/(1 − 1

p)]
(p−1)/p) such that

for L/x > z0, we have f(x) > y0. We choose a := L/z0 > 0. So, if x < a, then f(x) > y0.
Similarly, since f(x) > 1

px
p, we can choose b := (py0)

1/p to get: If x > b, then f(x) > y0.

Now f is continuous on [a, b], so it takes a minimum there. Since f(x0) = y0, x0 cannot be < a,
nor > b, so x0 ∈ [a, b] and m := min{f(x) : x ∈ [a, b]} ≤ f(x0) = y0. Since for x > b and x < a,
we know f(x) > y0 ≥ m, too, f has a minimum over all of R+.

(b) Accepting the Calc 1 result that at a minimum, the derivative has to vanish, we can find the
minimum among the solutions of f ′(x) = 0. This is xp−1+(1− 1

p)L
p/(p−1)(− p

p−1)x
−p/(p−1)−1 = 0.

This simplifies easily to x = L1/p. And m = f(L1/p) = L.

Young’s inequality follows by letting L := xy. We also get from the uniqueness of the minimum
that equality holds if and only if xp = yq.

(c) If p > 1 is rational, we can write it as m+n
n for some m,n ∈ N. The q = (1 − 1

p)
−1 = m+n

m .
Using the agm inequality with n copies of xp and m copies of yq, we get

(

(xp)n (yq)m
)1/(m+n)

≤ n

m+ n
xp +

m

m+ n
yq =

1

p
xp +

1

q
xq .

The left hand side simplifies to (xm+nym+n)1/(m+n) = xy. Again, we get equality if and only if
xp = yq, because this is when equality holds in agm.

Now let p > 1 be real. We can find a sequence pj of rational numbers such that pj → p.
(Consequence of the Archimedean property.) Then qj := (1− 1

pj
)−1 converges to (1− 1

p)
−1 = q.

Taking the limit on the right hand side of

xy ≤ 1

pj
xpj +

1

qj
yqj

and using the continuity of the power function, we conclude xy ≤ 1
px

p + 1
q y

q.

Note: The disadvantage of (c) over (b) is that due to the limj→∞, we get ≤ in Young’s
inequality even for those x, y for which we had strict inequality for the pj , qj. So we lose the
part “with equality only if xp = yq ” when p, q are irrational.

24: Show that a sequentially compact metric space is complete. Also show by
counterexample that the converse implication is false.
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Solution: The converse is false, since R is complete but not sequentially compact: (n)n∈N has
no convergent subsequence since every subsequence is unbounded.

Now let (xn) be a Cauchy sequence in a sequentially compact metric spaceX. It has a convergent
subsequence (xnj

), whose limit we call x∗.

Given ε > 0, we use the Cauchy property for ε
2 and get

∃n0 ∀n,m ≥ n0 : d(xn, xm) <
ε

2
.

We also use the limit property for ε
2 and get

∃j0 ∀j ≥ j0 : d(xnj
, x∗) <

ε

2
.

It is no loss of generality to assume j0 so large that nj0 ≥ n0. Then the Cauchy property applies
with m := nj. We argue for n ≥ n0 that

d(xn, x∗) ≤ d(xn, xnj
) + d(xnj

, x∗) <
ε

2
+

ε

2
.

So limxn = x∗.

25: Suppose (X, d) is a sequentially compact metric space and assume f : X → X
is a weak contraction, i.e., d(f(x), f(y)) < d(x, y) unless x = y. Prove that f has
a unique fixed point. Hint for the existence part: Study the function r : X →
R , x 7→ d(f(x), x) and show that it has a minimum. Assuming the minimum value
is positive, obtain a contradiction.

Solution: Note that the contraction property implies continuity of f (with δ := ε in the
definition. The function r : x 7→ d(f(x), x) is continuous, because f is continuous and d is,
and compositions of continuous functions are continuous. As X is sequentially compact, r
takes on a minimum there, say at x0. Suppose m := r(x0) = min r(x) : x ∈ X is positive.
This means d(f(x0), x0) > 0, so x0 6= f(x0). But then the weak contraction property implies
d(f(f(x0)), f(x0)) < d(f(x0), x0) = m. So we have a point f(x0) ∈ X that gives a smaller value
than m to the function r. This contradicts the mnimality of m.

The contradiction shows that m = 0, so there exists some x0 ∈ X for which r(x0) = 0, i.e.,
f(x0) = x0.

Variant: We can easily show the continuity of the function r directly: namely we have to show
that for every ε > 0 there is a δ > 00 such that |r(x)− r(y)| < ε, provided d(x, y) < δ.

Now

r(x)−r(y) = d(f(x), x)−d(f(y), y) ≤
(

d(f(x), f(y))+d(f(y), y)+d(y, x)
)

−d(f(y), y) ≤ d(x, y)+d(y, x)

where we have used the weak contraction property in the last step. We can choose δ = 1
2ε to

conclude r(x) − r(y) < ε if d(x, y) < δ. By symmetry, the inequality r(y) − r(x) < ε is shown
analogously. (We have even proved uniform continuity.)
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26: Show that every continuous function f : [a, b] → [a, b] has a fixed point (not
necessarily unique).

Solution: Clearly f(a) ≥ a and f(b) ≤ b. The function g given by g(x) := f(x) − x is
continuous and satisfies g(a) ≥ 0 and g(b) ≤ 0, so it has a zero in [a, b]. But zeros of g are fixed
points of f .

Note: The following theorem (called Brouwer’s Fixed Point Theorem) is a generalization that
is useful to know. For now (and possibly ever), we are not proving it in this class. Thm.: Let
B be a closed ball in Rn and f : B → B continuous. Then f has a fixed point.

(The theorem can be generalized to other Banach spaces, but needs another, major hypothesis
to be added.)

27: Hölder inequality in Rn: Prove, for xi, yi ∈ R with i = 1, 2, . . . , n and for

p, q > 1 subject to 1
p + 1

q = 1, that
∑

i|xiyi| ≤
(

∑

i|xi|p
)1/p (

∑

i|yi|q
)1/q

. Hint:

First prove it under the extra hypothesis
∑

i|xi|p = 1 =
∑

i|yi|q = 1, using Young’s
inequality; then conclude the general case by replacing xi with λxi and yi with µyi
for appropriate λ, µ.

Solution: Using Young’s inequality on |xi| and |yi|, we have |xiyi| ≤ 1
p |xi|p+ 1

q |yi|q. Summing
over i gives

∑

i

|xiyi| ≤
1

p

(

∑

i

|xi|p
)

+
1

q

(

∑

i

|yi|q
)

.

If
∑|xi|p = 1 and

∑|yi|q = 1, then both Young (proved) and Hölder (to be shown) claim the
same, namely

∑|xiyi| ≤ 1. So Hölder is proved under this hypothesis.

Given arbitrary xi, not all 0, we let λ := (
∑|xi|p)1/p; given arbitrary yi, not all 0, we let

µ := (
∑|yi|q)1/q; then xi/λ and yi/µ satisfy the extra hypothesis under which Hölder was just

proved. So we have
∑

i

|xiyi|
λµ

≤
(

∑

i

|xi/λ|p
)1/p (∑

i

|yi/µ|q
)1/q

Multiplying by λµ, proves Hölder in the general case, except when all xi are 0 or all yi are 0.
However, if all xi are zero, or all yi are zero, Hölder reduces to 0 ≤ 0 and is obviously true.

28: Let p > 1. For x ∈ Rn, define ‖x‖p := (
∑n

i=1|xi|p)
1/p. Show that ‖·‖p is a norm.

Hint: to prove the triangle inequality, observe that |xi+yi|p ≤ |xi+yi|p−1|xi|+ |xi+
yi|p−1|yi| and use Hölder’s inequality. Note: The triangle inequality for this norm is also

known under the name Minkowski’s inequality; the correct pronounciation of the name is

minn-COUGH-skee, even though anglicized pronounciations are frequently encountered.

Solution: The properties ‖x‖p ≥ 0, and ‖x‖p = 0 =⇒ x = 0, and ‖λx‖p = |λ|‖x‖p are trivial.
For the triangle inequality, we multiply |xi+ yi| ≤ |xi|+ |yi| with |xi+ yi|p−1, and then sum over
i, we get

∑

i

|xi + yi|p ≤
∑

i

|xi + yi|p−1|xi|+
∑

i

|xi + yi|p−1|yi| .
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Using Hölder’s inequality on each summand on the right, with exponent p on the 2nd factor and
exponent q = p

p−1 on the first factor, we conclude

∑

i

|xi + yi|p ≤
(

∑

i

|xi + yi|p
)(p−1)/p(

∑

i

|xi|p
)1/p

+

(

∑

i

|xi + yi|p
)(p−1)/p(

∑

i

|yi|p
)1/p

.

Cancelling the common factor proves

(

∑

i

|xi + yi|p
)1/p

≤
(

∑

i

|xi|p
)1/p

+

(

∑

i

|yi|p
)1/p

, i.e., ‖x+ y‖p ≤ ‖x‖p + ‖y‖p .

29: (a) Show that T := {]−∞, a[ : a ∈ R} ∪ {∅,R} is a topology on R. Use the
separation property (namely that for any two distinct points x, y in a metric space
one can find disjoint r-balls U(x, r) and U(y, r)) to show that this topology is not
generated by a metric (i.e., is not the family of open sets defined in terms of any
metric on R).
(b) analogously, T ′ := {]a,∞[ : a ∈ R} ∪ {∅,R} is a topology. No need to redo part
(a) for this one; just mentioning it.

Solution: (a) It is trivial that ∅,R ∈ T . As for finite intersections, let Ui ∈ T for i = 1, . . . , n.
If any of the Ui is the empty set, then so is the intersection and we are done. Otherwise, if
all of the Ui are R, the intersection is R and we are done again. So we may assume that some
of the Ui are of the form ]−∞, ai[ with ai ∈ R, and none are empty. If there are also some
Ui = R in the list, they do not affect the intersection; so it is no loss of generality to assume
Ui = ]−∞, ai[ for all ai. Then

⋂n
i=1 Ui = ]−∞, a[ where a = minni=1 ai. Note: It suffices to show

that U, V ∈ T =⇒ U ∩ V ∈ T , since the case of n sets follows by induction.

Now let Uλ for λ ∈ Λ be an arbitrary family of sets from T . We need to show U :=
⋃

λ∈Λ Uλ ∈ T .
If any of the Uλ is R, the union is R and we are done. If all Uλ are empty, the union is empty and
we are done again. So we may assume that none are R and some are of the form Uλ = ]−∞, aλ[;
we may ignore any remining Uλ that are empty, because they do not affect the union. So it is
no loss of generality to assume Uλ = ]−∞, aλ[ for all λ ∈ Λ.

If S := {aλ : λ ∈ Λ} is unbounded, the union is R because any x ∈ R is not a bound for S,
so we find λ ∈ Λ with aλ > x; and then x ∈ Uλ ⊂ U . On the other hand, if S is bounded, let
a := supS ∈ R. We claim U = ]−∞, a[. Indeed, since a ≥ aλ for all λ, we have Uλ ⊂ ]−∞, a[,
and therefore U ⊂ ]−∞, a[. Conversely, if x ∈ ]−∞, a[, then x < a, and x is not an upper
bound for S (because a was the smallest upper bound). So there exists an aλ > x; but then
x ∈ Uλ ⊂ U .

We have proved that T is a topology on R.

Clearly, if U, V ∈ T and U 6= ∅, V 6= ∅, then U ∩V 6= ∅. On the other hand, if T consisted of the
open sets defined by a metric, then (using that R has at least two distinct points x, y), we could
find disjoint nonempty open sets U, V ∈ T ; namely open balls of radius < 1

2d(x, y) centered at
x and y respectively. So T is not generated by a metric.
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30: With the topology from the previous problem chosen on R, prove that

f : (R, |·|) → (R,T )

has the property “V open =⇒ f−1(V ) open” if and only if lim supx→x0
f(x) ≤ f(x0)

for all x0. — Def: We call such functions upper semicontinuous.

Solution: Assume f has the property “V open =⇒ f−1(V ) open”. For given x0, we define
s := lim supx→x0

f(x) and want to show that f(x0) ≥ s. Writing out the definition of lim sup,
we have

s := lim
ε→0

sε where sε := sup{f(x) : |x− x0| < ε} .

Since ε 7→ sε is nonincreasing, we know sε ≥ s for all ε.

Now assume, for the sake of contradiction, that f(x0) were < s, so we find an s′ between f(x0)
and s, namely we have: f(x0) < s′ < s. So f(x0) ∈ ]−∞, s′[ =: V ∈ T ; then we know from the
assumed property of f that f−1(V ) is open, i.e., with x0 ∈ f−1(V ), an entire open ball U(x0, ε)
is contained in f−1(V ). But then all x in this ε-ball satisfy f(x) < s′, hence their sup of these
f(x), namely sε, is still ≤ s′, and thus s ≤ sε ≤ s′ < s, a contradiction.

This contradiction has proved that lim supx→x0
f(x) ≤ f(x0).

Now conversely, we assume that f satisfies the property lim supx→x0
f(x) ≤ f(x0) for all x0. We

need to conclude the property “f−1(V ) open for V ∈ T ”. We may assume V = ]−∞, a[ with
a ∈ R, since the property is trivially true when V = ∅ or V = R.

So let x0 ∈ f−1(]−∞, a[), i.e., f(x0) < a. Then lim supx→x0
f(x) ≤ f(x0) < a. But by the

definition of lim sup, this implies that there is an ε > 0 for which sε < a, where sε is as defined
above. But then all x ∈ U(x0, ε) satisfy f(x) ≤ sε < a and are therefore in f−1(]−∞, a[). So
we have showed that f−1(V ) is open when V = ]−∞, a[. As mentioned before, the cases V = ∅
and V = R are trivial.

31: In a metric space (X, d), let A be a closed set and define f(x) := dist(A, x) :=
inf{d(x, z) : z ∈ A}. Show that f : X → R is continuous and that f−1({0}) = A.
(In particular, any closed set can occur as the inverse image of a singleton under a
continuous function.)

Solution: First, to show the continuity we show that |dist(A, x)−dist(A, y)| ≤ d(x, y): Indeed
for any z ∈ A, it holds d(x, z) ≤ d(x, y) + d(y, z). Tanking the inf over z ∈ A on both sides,
we obtain dist(A, x) ≤ d(x, y) + dist(A, y), hence dist(A, x) − dist(A, y) ≤ d(x, y). The same
argument applies with x and y swapped. The closedness of A was not needed in this argument.

Next we have to show dist(A, x) = 0 iff x ∈ A. The ‘if’ part is trivial because we can choose
z = x in the definition of dist. For the converse, we assume dist(A, x) = 0 and want to show
x ∈ A. So inf{d(x, z) : z ∈ A} = 0, and therefore for every n ∈ N, there is some zn ∈ A for
which d(zn, x) <

1
n . This implies that the sequence (zn) has limit x. Since (zn) ⊂ A and A is

closed, its limit x is also in A.

32: Give an example of a continuous f : R → R (with the usual topology defined
by the metric), and a connected C ∈ R, such that f−1(C) is not connected.
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Solution: We can for instance take f(x) = x2 and C = [1, 4]. Then f−1(C) = [−2,−1]∪ [1, 2]
is not connected.

33:
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