
Homework

UTK – M447 – Honors Advanced Calculus I – Fall 2015

Jochen Denzler

1. Prove that for every a ∈ R+, there exists a unique x ∈ R+ for which x2 = a. Specifically:
(a) Show uniqueness of x; also obtain the lemma “If x, y > 0 and x2 = a and y2 = b, and
a < b, then x < y” in this proof.
(b) Letting S := {y ∈ R | y > 0 and y2 ≤ a}, show that S is non-empty and bounded
above.
(c) Defining x := supS, show that for every ε > 0, a − ε < x2 < a + ε, then conclude
x2 = a.

2. For z = x+ iy ∈ C with x, y ∈ R, define |z| :=
√

x2 + y2. Prove that |z + w| ≤ |z| + |w|.
Make sure that any two inequalities you write down are properly connected with a logical
direction of implication (verbally or in symbols: =⇒ or ⇐= or ⇐⇒ ), and that the logical
direction of implication matches the needs for the proof.

You may only use ordered field axioms, simple conclusions from them (like subtraction on
both sides of inequalities, or ‘a < b and c < d implies a + c < b + d’ or ‘0 < a < b and
0 < c < d implies 0 < ab < cd’ and their analogs with ≤), the supremum axiom and simple
conclusions thereof, and results from the previous problem about the square root.

3. Prove: If lim an = a∗ and lim bn = b∗ and b∗ 6= 0, then lim(an/bn) = a∗/b∗.

4. Prove (directly from the axioms and consequences proved in class) that lim 1
n = 0. (That

should be just a few lines.)

5. Assuming (an) and (bn) are bounded sequences of real numbers: Is the following statement
true or false? “¿lim sup(an + bn) = lim sup an + lim sup bn?” If true, provide a proof; if
false, provide a counterexample, and if possible, prove an amendment replacing ‘=’ with
either ‘≤’ or ‘≥’ that results in a true statement. If no such amendment can be proved,
provide counterexamples against the amended versions.

6. Prove by induction the lemma: If y > −1 and n ∈ N, then (1+ y)n ≥ 1+ny. (You’ll need
it later.)

7. Note: The power laws (ab)n = anbn, (a/b)n = an/bn and an+m = anam are easy conse-
quences from the field axioms, and induction. You may use them without providing their
proof.
(a) Given x ∈ R, consider the sequence (an) given by an := (1 + x

n)
n. We will later write

an(x) for an, when the dependence on x plays a role. Show that an+1/an ≥ 1 whenever
x ≥ 0 or n > |x|+1. (The previous lemma may help in estimating [(1+ x

n+1)/(1+
x
n)]

n. )
(b) Show that the sequence (an) is bounded above.
Hint: There may be a variety of ways; but you could use that an(x)an(−x) < 1 for |x| < 1
and a lower bound of an(x) for −1 < x < 0 to get an upper bound for 0 < x < 1. And
maybe an(x+ y) < an(x)an(y) for x > 0.
(c) Defining exp(x) := limn→∞ an(x), prove that, for all x, y ∈ R, it holds exp(x) exp(−x) =
1 and exp(x+ y) = exp(x) exp(y). Also prove x < y =⇒ exp(x) < exp(y).

8. Let (an) be a sequence in R that is bounded below and ‘sub-additive’, i.e., ∀n,m : an+m ≤
an + am. Prove that lim an

n exists. Hints follow:
(a) Prove for k, n ∈ N that akn ≤ kan.
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(b) Prove for n, r ∈ N that lim supk→∞

akn+r

kn+r ≤ an
n .

(c) You may assume the ‘division with remainder theorem from elementary number theory’:
∀m,n ∈ N ∃k, r ∈ N0 : m = kn+ r and 0 ≤ r ≤ n− 1. Use it to prove lim sup am

m ≤ inf an
n

and conclude the original claim.

9. Using the dot product in Rn, namely ~u · ~v :=
∑n

i=1 uivi, we can write ‖~u‖22 = ~u · ~u.
(a) Prove the Cauchy-Schwarz inequality |~u · ~v| ≤ ‖~u‖2 ‖~v‖2 by exploiting the fact that
(~u+ t~v) · (~u+ t~v) ≥ 0 for all t ∈ R and then choosing a special t. (Actually the one that,
according to Calculus 1, minimizes the given expression. But note that, logically, you do
not need to justify your choice of t.)
(b) Use it to conclude ‖~u+ ~v‖2 ≤ ‖~u‖2 + ‖~v‖2.
[too elementary: I won’t collect this one for grading.]

10. Prove the triangle inequality for ‖ · ‖∞ on BF(X → R) = {f : X → R : f bounded}. Here
‖f‖∞ := sup{|f(x)| : x ∈ X} and X is any set.

11. I mentioned the norms ‖u‖p := (
∑n

i=1|ui|p)
1/p without proof of the norm properties, where

p ≥ 1. Now try p = 1
2 . Is it a norm? Proof or counterexample.

12. Assume d is a distance function on X. Show that d1 := d
1+d is also a distance function.

Show that a sequence is convergent with respect to d if and only if it is convergent with
respect to d1.

13. On N a distance function d1 is given by d1(n,m) := |n−m|. Another distance function is

given by d2(n,m) := | 1n − 1
m |. Which are the convergent sequences in each case? Which

are Cauchy sequences in each case?

14. The following example is instructive, albeit not significant for purposes of Calculus: You
may and should use basic facts about prime factor decompositions of rational numbers in
this example. Given a rational q = m

n ∈ Q with m ∈ Z, n ∈ N, we consider the prime

factor decomposition q = ±pk11 · · · pkrr . Choosing a particular prime p, we define [0]p := 0;
and for q 6= 0, we define [q]p := 1/pk, where pk is the power of p that occurs in the prime
factor decomposition of q. Example: [1225 ]3 =

1
3 , [

2
9 ]3 = 9, [25 ]3 = [1]3 = 1.

Prove the strengthened triangle inequality [x + y]p ≤ max{[x]p, [y]p} and show that
dp(x, y) := [x− y]p defines a metric on Q. (It is called the p-adic metric).

Let an := 2n

2n+1 . Find the limit lim an in Q with the metric d(x, y) := |x − y| (that is too
easy). Next find lim an with respect to the metric d2.

15. Find an example of a function f : R → R that does not have a fixed point, but satisfies a
weakened contraction condition |f(x)− f(y)| < |x− y| whenever x 6= y. For this example,
you may use Calculus 1 knowledge (even though I think it can also be done with the
material constructed in this class already.)

16. Prove that f : [0,∞[ → R , x 7→ √
x is uniformly continuous. (Of course continuity is

understood here with respect to the usual distance on R.)

17. Let (X, d) be the metric space of R with the discrete metric d(x, y) := 1 whenever x 6= y.
Let (Y, d) be any metric space, and R be equipped with the usual metric.

(a) Show that every function f : X → Y is continuous. Is the same true with ‘uniformly
continuous’?
(b) Conjecture which functions f : R → X are continuous (we’ll prove it in class) .
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18. Suppose (X, dX) and (Y, dY ) are metric spaces: the set X × Y can be made into a metric
space by defining d∞((x, y), (x′, y′)) := max{dX (x, x′), dY (y, y

′)}.
(a) Prove this.
(b) With this definition of the metric on X × X, write out what the statement “dX :
X ×X → R is continuous” means and then prove it. Decide if the same statement is true
with ‘uniformly continuous’ instead of merely ‘continuous’.

19. Let g : X → Y and f : Y → Z be functions, where X, Y , Z are metric spaces; let
f ◦ g : X → Z , x 7→ f(g(x)) be their composition. If g is continuous at x0 and f is
continuous at y0 := g(x0), show that f ◦ g is continuous at x0.

20. Assume X and Y are metric spaces, where the metric on Y is bounded. Per #12, bound-
edness of the metric is no loss of generality. We can define F(X → Y ) to be the set
of all functions from X to Y and make it into a metric space by defining d∞(f, g) :=
sup{d(f(x), g(x)) : x ∈ X}. (You don’t need to prove these simple facts; they are similar
to #10.)

Show that convergence fn → f in the sense of the metric d∞ is equivalent to uniform
convergence fn → f .

We use the metric d∞ on C0(X → Y ), the subset of continuous functions from X to Y .
Show this metric space is complete, if Y is complete.

21. (a) Prove that exp : R → R+ as defined previously is bijective.
(b) We’ll denote its inverse function as ln, so y = lnx : ⇐⇒ x = exp(y). Prove that
ln : R+ → R is increasing and continuous. Also prove ln(xy) = lnx+ ln y.
(c) For x > 0 and q ∈ R, we define xq := exp(q lnx). Prove for all x > 0 and q1, q2 ∈ R

that xq1+q2 = xq1xq2 and xq1q2 = (xq1)q2 . Also prove (xy)q = xqyq for all x, y > 0 and
q ∈ R. Note that (x, q) 7→ xq, R+ × R → R+ is continuous.
(d) letting e := exp(1), show that exp(x) = ex

22. Having constructed arbitrary powers, it’s time to introduce the inequality of the arithmetic
and geometric mean (short: agm inequality): “If n ∈ N and x1, x2, . . . , xn ∈ R+, then
(x1x2 · · · xn)1/n ≤ 1

n(x1 + x2 + . . .+ xn). The inequality is strict unless x1 = . . . = xn.”

(a) Prove the inequality for n = 2k by induction over k.
(b) Then prove it for arbitrary n by choosing some k such that m := 2k > n and defining
xn+1, . . . , xm wisely.

(I won’t collect this for grading, but if you’re not familiar with it, you should do it, as it
is a ‘must know’.)

23. Young’s inequality frequently comes in handy: “If x, y > 0 and p, q > 1 such that 1
p+

1
q = 1,

then xy ≤ 1
px

p + 1
qy

q.” (This is often proved as a single variable calculus minimization
problem, using the derivative.)

(a) Show that for p > 1, L > 0, the function f : R+ → R+ , x 7→ 1
px

p + (1 − 1
p)(

L
x )

p/(p−1)

has a minimum. (Hint: Start with some random x0 (eg., x0 = 1), then show there exists
[a, b] ⊂ R+ such that for x ∈ R+ \ [a, b], it holds f(x) > f(x0). Use the sequential
compactness of [a, b]. )

(b) Assuming for the moment Calculus-1 knowledge about derivatives without having
proved it, you can now find the location and value of the minimum.
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(c) Alternatively, prove Young’s inequality at least for rational p, q writing p = m+n
n with

m,n ∈ N, as a consequence of the agm inequality. Then generalize to p > 1 real by using
a continuity and limit argument.

24. Show that a sequentially compact metric space is complete. Also show by counterexample
that the converse implication is false.

25. Suppose (X, d) is a sequentially compact metric space and assume f : X → X is a weak
contraction, i.e., d(f(x), f(y)) < d(x, y) unless x = y. Prove that f has a unique fixed
point. Hint for the existence part: Study the function r : X → R , x 7→ d(f(x), x)
and show that it has a minimum. Assuming the minimum value is positive, obtain a
contradiction.

26. Show that every continuous function f : [a, b] → [a, b] has a fixed point (not necessarily
unique).

27. Hölder inequality in Rn: Prove, for xi, yi ∈ R with i = 1, 2, . . . , n and for p, q > 1 subject

to 1
p + 1

q = 1, that
∑

i|xiyi| ≤
(

∑

i|xi|p
)1/p (

∑

i|yi|q
)1/q

. Hint: First prove it under the

extra hypothesis
∑

i|xi|p = 1 =
∑

i|yi|q = 1, using Young’s inequality; then conclude the
general case by replacing xi with λxi and yi with µyi for appropriate λ, µ.

28. Let p > 1. For x ∈ Rn, define ‖x‖p := (
∑n

i=1|xi|p)
1/p. Show that ‖ · ‖p is a norm. Hint: to

prove the triangle inequality, observe that |xi + yi|p ≤ |xi + yi|p−1|xi|+ |xi + yi|p−1|yi| and
use Hölder’s inequality. Note: The triangle inequality for this norm is also known under the

name Minkowski’s inequality; the correct pronounciation of the name is minn-COUGH-skee,

even though anglicized pronounciations are frequently encountered.

29. (a) Show that T := {]−∞, a[ : a ∈ R} ∪ {∅,R} is a topology on R. Use the separation
property (namely that for any two distinct points x, y in a metric space one can find disjoint
r-balls U(x, r) and U(y, r)) to show that this topology is not generated by a metric (i.e.,
is not the family of open sets defined in terms of any metric on R).
(b) analogously, T ′ := {]a,∞[ : a ∈ R}∪ {∅,R} is a topology. No need to redo part (a) for
this one; just mentioning it.

30. With the topology from the previous problem chosen on R, prove that

f : (R, |·|) → (R,T )

has the property “V open =⇒ f−1(V ) open” if and only if lim supx→x0
f(x) ≤ f(x0) for

all x0. — Def: We call such functions upper semicontinuous.

Clarification: The notation f : (R, |·|) → (R,T ) means that the domain of f is the
metric space R, equipped with the usual metric defined by the absolute value. In contrast,
the target set is the set of real numbers with the topology T (i.e., it is not seen as a metric
space). By definition, a set V ∈ (R,T ) will be called open, iff V ∈ T . As set U ∈ (R, |·|)
is called open according to the definition of open in metric spaces.

31. In a metric space (X, d), let A be a closed set and define f(x) := dist(A, x) := inf{d(x, z) :
z ∈ A}. Show that f : X → R is continuous and that f−1({0}) = A. (In particular, any
closed set can occur as the inverse image of a singleton under a continuous function.)

32. Give an example of a continuous f : R → R (with the usual topology defined by the
metric), and a connected C ⊂ R, such that f−1(C) is not connected.
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33. (a) Give an example of a function f : R → R that is continuous and a compact set K such
that f−1(K) is not compact.
(b) Give an example of a function g : R → R which maps compact sets into compact sets,
but which is not continuous.

34. Show that every compact metric space K contains a dense sequence, i.e., a sequence (an)
such that the closure of the set {an : n ∈ N} is K.

35. In a metric space X, let C1 ⊃ C2 ⊃ C3 ⊃ . . . be a descending sequence of connected
and non-empty sets (the notion ‘descending’ is defined by the given set inclusions). Let
C∗ :=

⋂

∞

n=1 Cn.
(a) Show by counterexamples, eg., in R2, that C∗ need not be non-empty, and also that
C∗ need not be connected.
(b) Show: if (Cn) is a descending sequence of compact connected non-empty sets, then
C∗ :=

⋂

∞

n=1Cn is also compact, connected, and non-empty. Hint: for the connectedness,
assume C∗ = Ω1

∗
∪Ω2

∗
, a disjoint union of non-empty open sets. Define Ω1

n := (X \Ω2
∗
)∩Cn

and Ω2
n := (X \ Ω1

∗
) ∩ Cn.

36. Show: If a function f : Rn → Rm has both the properties “K compact =⇒ f(K) compact”
and “C connected =⇒ f(C) connected”, then f is necessarily continuous.
Hint: To show continuity at 0 (with no loss of generality), let Bn := B(0, 1

n) and consider
f(Bn) =: Dn. Use the previous hwk to learn about

⋂

Dn =: D∗. Explain why D∗ must
consist of either one or infinitely many points. Then, assuming D∗ is infinite, construct a
sequence (yn) of distinct points in D∗ \ {f(0)} that converges to a point y∗ that is neither
f(0) nor any of the yn. From xn satisfying yn = f(xn), construct a compact set whose
image under S is not compact. Conclude continuity from D∗ being a singleton.

37. Show that f : X → R is continuous exactly if it is both lower and upper semi-continuous.

38. Assume f : K → R is lower semicontinuous and K is compact. Show in two ways that f
takes on a minimum; namely using sequential compactness, then using cover-compactness.
— Also give an example of a lower semi-continuous function f : K → R that does not take
on a maximum.

39. Assume f : X → Y is continuous and injective (not necessarily surjective); here X,Y are
metric spaces. We wonder whether the inverse function f−1 : f(X) → X is continuous as
well:
(a) Show: If X is compact, then we can conclude that f−1 is continuous.
(b) Show: IfX is an interval in R, and Y = R, then we can conclude that f−1 is continuous.
(c) Give a counterexample where X = [0, 2π[ and Y = R2 where f−1 is not continuous.
(d) Give a counterexample with X ⊂ R and Y = R, where f−1 is not continuous.

40. Show that for a set M in a metric space X, its interior M̊ , which we had defined as M \∂M
where ∂M = {x ∈ X : ∀ε > 0 : U(x, ε) ∩M 6= ∅ ∧ U(x, ε) ∩ (X \M) 6= ∅}, is the union
of all open subsets of M , and thus is the largest open subset of M . Also, show that the
closure M̄ , which we had defined as M ∪ ∂M , is the intersection of all closed sets that
contain M .

41. Find a set M ⊂ R for which all of the following sets are different:

M , M̊ , M̄ , ˚̄M ,
¯̊
M ,

¯̄̊
M ,

˚̊̄
M .
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