Math 445, Fall 2016: - Homework

Hwk \#1: (from Sec. 1.1, \#17 - typo in book's part (c): $b^{2}<c$, not r)
For $c>0$, define $S:=\left\{x \in \mathbb{R} \mid x \geq 0, x^{2}<c\right\}$.
(a) Show that S is bounded above and nonempty (eg., that $c+1$ is an upper bound). Then using the supremum axiom (completeness axiom), let $b:=\sup S$.
(b) Assuming $b^{2}>c$, find some small $r>0$ such that $b-r$ is still an upper bound for S, thus contradicting that b is the least upper bound.
(c) Assuming $b^{2}<c$, find some small number $r>0$ such that $b+r$ is still in S, thus contradicting the choice of b being an upper bound at all.
(d) Conclude that $b^{2}=c$.
(e) Prove that if $b_{1}^{2}=c$ and $b_{2}^{2}=c$ and $b_{1}, b_{2}>0$, then $b_{1}=b_{2}$, so there is a unique number $b>0$ such that $b^{2}=c$. We call this number \sqrt{c}.

Hwk \#2: (from Sec. 1.3, \#13)
Prove by induction that $(1+x)^{n} \geq 1+n x$ for $n \in \mathbb{N}$ and $x>-1$.

Hwk \#3: (from Sec. 1.3, \#14-16)
(a) Show for any $a, b \in \mathbb{R}$ that $a b \leq \frac{1}{2}\left(a^{2}+b^{2}\right)$.
(b) Conclude for $a, b \geq 0$ that $\sqrt{a b} \leq \frac{1}{2}(a+b)$. (The inequality of the geometric and arithmetric mean, short adm-inequality)
(c) Prove for arbitrary $\varepsilon>0$ and $a, b \in \mathbb{R}$ that $a b \leq \frac{1}{2}\left(\varepsilon a^{2}+b^{2} / \varepsilon\right)$.

Hwk \#4: (Sec. 2.1, \#1)
\ll see book \gg

Hwk \#5: (Sec. 2.1, \#3a)
\ll see book \gg

Hwk \#6: (Sec. 2.1, \#10)
\ll see book \gg

Hwk \#7: (Sec. 2.1, \#11)
\ll see book \gg. Also characterize what each property does mean, if it's not equivalent to convergence.

Hwk \#8: (Sec. 2.1, \#15 \& \#17)
\ll see book \gg.

Hwk \#9: (Sec. 2.1, \#18)
\ll see book \gg. Hint: First define a k such that for $n>k,\left|a_{n}-a\right|<\varepsilon / 2$. Then estimate σ_{n} for $n>N>k$ with appropriately chosen N.

Hwk \#10: (Sec. 2.2, \#3)
\ll see book \gg.

Hwk \#11: (Sec. 2.2, \#5)
\ll see book \gg.

Hwk \#12: (Sec. 2.3, \#2)
\ll see book \gg.

Hwk \#13: (Sec. 2.3, \#11)
\ll see book \gg. (The referenced sec $2.3 \# 10$ was also our number 3(b)) (To build experience, use a pocket calculator to find the limit in question for $a=10$ and $b=1$, to 8 decimals.)

Hwk \#14:

In this problem, we will define $\exp (x):=\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n}$ and prove from it the properties of the exponential function commonly called e^{x}. Do not use properties of the number e or the function $x \mapsto e^{x}$ yet. They are to BE PROVED FROM THIS DEFINITION.
(a) Show that for $x>-1$, the sequence $\left(a_{n}\right)$ given by $a_{n}=\left(1+\frac{x}{n}\right)^{n}$ is increasing. Hint: Write $\left(1+\frac{x}{n+1}\right)^{n+1} /\left(1+\frac{x}{n}\right)^{n+1}$ as $(1-?)^{n+1}$ and use hwk. \#2- Note that even for arbitrary x, the same is true for the subsequence $\left(a_{n}\right)_{n>|x|}$.
(b) Writing now $a_{n}(x)$ instead of a_{n} to have the dependence on x explicit, show that $a_{n}(x) a_{n}(-x)<1$ for large enough n, and conclude that $a_{n}(x)$ is bounded above. Using Hwk. \#2 again, also conclude that $a_{n}(x) a_{n}(-x)$ converges to 1 for every x.
(c) Letting $\exp (x):=\lim _{n \rightarrow \infty} a_{n}(x)$, show that $\exp (x) \exp (-x)=1$. Also, if x and y have the same sign $(x y \geq 0)$, prove that $a_{n}(x) a_{n}(y) \geq a_{n}(x+y)$ and conclude the analog for $\exp (x)$. Taking reciprocals, you should be able to prove $\exp (x) \exp (y)=\exp (x+y)$ provided $x y \geq 0$.
(d) How would you prove $\exp (x) \exp (y)=\exp (x+y)$ when x and y have opposite sign (or $x y \leq 0$) ?

Hwk \#15: (Sec. 2.4, \#1)
\ll see book \gg.

Hwk \#16: (Sec. 2.4, \#11)
\ll see book \gg.

Hwk \#17: (Sec. 2.4, \#12)
\ll see book \gg.

Hwk \#18: (Sec. 2.5, \#1)
\ll see book \gg.

Hwk \#19: (Sec. 2.5, \#7)
\ll see book \gg.

Hwk \#20: (Sec. 2.5, \#8)
\ll see book \gg.

Hwk \#21:

(a) Composition of continuous functions is continuous: Read the book page 56-57 for this - nothing to grade here; we need the material, but I won't use lecture time on this one.
(b) The square root function is continuous: Prove this. Hint: Assume $x_{n} \rightarrow x_{*}$ (with $x_{n}, x_{*} \geq 0$). Assume for contradiction that $\sqrt{x_{n}} \nrightarrow \sqrt{x_{*}}$. Find a subsequence converging elsewhere. Draw a conclusion based on the continuity of the square function.

Hwk \#22:

$($ Sec. $3.1, \# 3$ and $\# 6) \ll$ see book \gg.

Hwk \#23:

$($ Sec. $3.1, \# 9) \ll$ see book \gg.

Hwk \#24: (Sec. 3.1, \#14)
\ll see book \gg.

Hwk \#25: (Sec. 3.2, \#2)
\ll see book \gg.

Hwk \#26: (Sec. 3.3, \#3)
\ll see book \gg.

Hwk \#27: (Sec. 3.3, \#8 and \#9)
\ll see book \gg.

Hwk \#28:

Prove in two ways that the square root function $\sqrt{\cdot}:[0, \infty[\rightarrow[0, \infty[$ is uniformly continuous: by the sequence definition, and using ε and δ.

Hwk \#29: (Sec. 3.4, \#7)
\ll see book \gg.

Hwk \#30: (Sec. 3.5, \#5)
\ll see book \gg.

Hwk \#31: (Sec. 3.5, \#9)
\ll see book \gg.

Hwk \#32:

Prove that $\lim _{x \rightarrow 0} \frac{\exp x-1}{x}=1$. Hint: Recall the estimates I used in class to prove \exp is continuous at 0 . Then prove that $\lim _{y \rightarrow x_{0}} \frac{\exp y-\exp x_{0}}{y-x_{0}}=\exp x_{0}$.

Hwk \#33: (from Sec. 4.3, \#6, with some extra info by me)

Prove that the equation $x^{4}+2 x^{2}-6 x+2=0$ has exactly two solutions. Hint: use both IVT and monotonicity of f^{\prime}. State the theorems that you are using.

Hwk \#34:

For real numbers a, b, show that the equation $x^{3}+a x+b$ has exactly 3 real solutions if and only if $4 a^{3}+27 b^{2}<0$. Hint: Determine the position of the local extrema.

Hwk \#35:

Consider the following possible strengthening of the Cauchy MVT:
$¿$ "If f and g are differentiable in $] a, b[$ and continuous on $[a, b]$ and $g(b) \neq g(a)$, then there exists $c \in] a, b\left[\right.$ such that $g^{\prime}(c) \neq 0$ and $\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f^{\prime}(c)}{\left.g^{\prime} c\right)} . " ?$
I had written this down tentatively in class, and proved $(f(b)-f(a)) g^{\prime}(c)=$ $(g(b)-g(a)) f^{\prime}(c)$, but then was not able to divide by $g^{\prime}(c)$ so I amended the thm to require $g^{\prime} \neq 0$.
Show that the conjecture is not true by considering $f(x)=x^{2}+\frac{1}{3} x^{3}$ and $g(x)=$ $x^{2}-\frac{1}{3} x^{3}$ on $[-1,1]$.

Hwk \#36:

For the function f given by $f(x)=4 x(1-x)$ on the interval $[0,1]$, take an equidistant partition P with 5 intervals. Calculate numerically the upper and lower Darboux sums $U(f, P)$ and $L(f, P)$.

Hwk \#37: (Sec. 6.1, \# 6)

Hwk \#38: (Sec. 6.3, \# 1)
Suppose that the functions f, g, f^{2}, g^{2}, and $f g$ are integrable over the compact interval $[a, b]$. Prove that $(f-g)^{2}$ is also integrable over $[a, b]$, and that $\int_{a}^{b}(f-$ $g)^{2} d x$. Use this to prove that

$$
\int_{a}^{b} f(x) g(x) d x \leq \frac{1}{2}\left[\int_{a}^{b} f^{2}(x) d x+\int_{a}^{b} g^{2}(x) d x\right]
$$

Hwk \#39: (Sec 6.3., \#2)
Cauchy-Schwarz Inequality for Integrals: Suppose that the functions f, g, f^{2}, g^{2}, and $f g$ are integrable over $[a, b]$. Prove that

$$
\int_{a}^{b} f(x) g(x) d x \leq\left(\int_{a}^{b} f(x)^{2} d x\right)^{1 / 2}\left(\int_{a}^{b} g(x)^{2} d x\right)^{1 / 2}
$$

Hint: For each number λ, define $p(\lambda):=\int_{a}^{b}(f(x)-\lambda g(x))^{2} d x$. Show that $p(\lambda)$ is a quadratic polynomial that is nonnegative for all $\lambda \in \mathbb{R}$; therefore its discriminant is not positive.

Hwk \#40: (Sec 6.4., \#3)
Suppose $f:[a, b] \rightarrow \mathbb{R}$ is continuous and that $\int_{a}^{b} f(x) d x=0$. Prove that there is some point x_{0} in $[a, b]$ for which $f\left(x_{0}\right)=0$. <Hint given in book. \gg

Hwk \#41: (Sec 6.4., \#5)
Suppose $f:[a, b] \rightarrow \mathbb{R}$ is continuous, and that the inequality $\int_{c}^{d} f(x) d x \leq 0$ holds for any c, d satisfying $a \leq c<d \leq b$. Prove that $f(x) \leq 0$ for all $x \in[a, b]$. Is the same conclusion still valid if we only assume integrability of f instead of continuity?

Hwk \#42: (Sec 6.5., \#5 - slightly modified and extended)
For this example, you may use knowledge of the sine and cosine function, in particular that $\sin ^{\prime}=\cos$ and $\cos ^{\prime}=-\sin$; and that $\cos x \leq 1$ for all $x \in \mathbb{R}$. [You won't need any further properties of these functions.]
By repeated use of the monotonicity property of the integral, show that each of the following inequalities (each for $x \geq 0$) implies the next one:

$$
\begin{gathered}
\cos x \leq 1 \\
\sin x \leq x \\
\cos x \geq 1-\frac{x^{2}}{2} \\
\sin x \geq x-\frac{x^{3}}{6}
\end{gathered}
$$

Keep going and prove two more inequalities (one for cosine, and one for sine) in the same manner. Where does the hypothesis $x \geq 0$ enter into the argument?

