Math 445, Fall 2016: — Homework
Hwk #1: (from Sec. 1.1, #17 — typo in book’s part (c): b* < ¢, not )

Forc>0,deﬁne5::{3:€R‘:E20,:E2<c}.

(a) Show that S is bounded above and nonempty (eg., that ¢ 4+ 1 is an upper
bound). Then using the supremum axiom (completeness axiom), let b := sup S.
(b) Assuming b? > ¢, find some small » > 0 such that b—r is still an upper bound
for S, thus contradicting that b is the least upper bound.

(c) Assuming b? < ¢, find some small number r > 0 such that b+ r is still in S,
thus contradicting the choice of b being an upper bound at all.

(d) Conclude that b2 = c.

(e) Prove that if b2 = ¢ and b3 = ¢ and by,by > 0, then by = by, so there is a
unique number b > 0 such that b? = c. We call this number /c.

Hwk #2: (from Sec. 1.3, #13)

Prove by induction that (1 + x)" > 1+ nx for n € N and z > —1.

Hwk #3: (from Sec. 1.3, #14-16)
(a) Show for any a,b € R that ab < 1(a® + b?).
(b) Conclude for a,b > 0 that vab < 3(a +b). (The inequality of the geometric

and arithmetric mean, short adm-inequality)
(c) Prove for arbitrary e > 0 and a,b € R that ab < 3(ca® + b%/e).

Hwk #4: (Sec. 2.1, #1)

< see book >

Hwk #5: (Sec. 2.1, #3a)

< see book >

Hwk #6: (Sec. 2.1, #10)

< see book >



Hwk #7: (Sec. 2.1, #11)

<& see book >. Also characterize what each property does mean, if it’s not
equivalent to convergence.

Hwk #8: (Sec. 2.1, #15 & #17)

< see book >.

Hwk #9: (Sec. 2.1, #18)

< see book >. Hint: First define a k such that for n > k, |a, — a| < /2. Then
estimate o,, for n > N > k with appropriately chosen N.

Hwk #10: (Sec. 2.2, #3)

< see book >.

Hwk #11: (Sec. 2.2, #5)

< see book >.



Hwk #12: (Sec. 2.3, #2)

< see book >.

Hwk #13: (Sec. 2.3, #11)

< see book >. (The referenced sec 2.3 #10 was also our number 3(b)) (To build
experience, use a pocket calculator to find the limit in question for ¢ = 10 and
b =1, to 8 decimals.)

Hwk #14:

In this problem, we will define exp(x) := lim, ,oo(1 + £)" and prove from it

the properties of the exponential function commonly called e*. DO NOT USE
PROPERTIES OF THE NUMBER e OR THE FUNCTION = — e€* YET. THEY ARE TO
BE PROVED FROM THIS DEFINITION.

(a) Show that for z > —1, the sequence (a,) given by a, = (1+ %)" is increasing.
Hint: Write (1+ 725)" " /(14 £)"*1 as (1-7)"*! and use hwk. #2 — Note that
even for arbitrary z, the same is true for the subsequence (an)p> |-

(b) Writing now a,(x) instead of a, to have the dependence on z explicit, show
that ap(z)a,(—x) < 1 for large enough n, and conclude that a,(z) is bounded
above. Using Hwk. #2 again, also conclude that a,(z)a,(—x) converges to 1 for
every x.

(c) Letting exp(z) := lim, o0 an(x), show that exp(z)exp(—z) = 1. Also, if
x and y have the same sign (ry > 0), prove that a,(x)a,(y) > a,(x + y) and
conclude the analog for exp(z). Taking reciprocals, you should be able to prove
exp(z) exp(y) = exp(x + y) provided zy > 0.

(d) How would you prove exp(z) exp(y) = exp(x +y) when x and y have opposite
sign (or xzy <0) ?

Hwk #15: (Sec. 2.4, #1)

< see book >.

Hwk #16: (Sec. 2.4, #11)

< see book >.

Hwk #17: (Sec. 2.4, #12)

< see book >.

Hwk #18: (Sec. 2.5, #1)

< see book >.



Hwk #19: (Sec. 2.5, #7)

< see book >.

Hwk #20: (Sec. 2.5, #8)

< see book >.

Hwk #21:
(a) Composition of continuous functions is continuous: Read the book page 56-57
for this — nothing to grade here; we need the material, but I won’t use lecture
time on this one.
(b) The square root function is continuous: Prove this. Hint: Assume z, — X,
(with x,,x, > 0). Assume for contradiction that \/z, # \/T«. Find a subse-

quence converging elsewhere. Draw a conclusion based on the continuity of the
square function.

Hwk #22:

(Sec. 3.1, #3 and #6) < see book >>.

Hwk #23:

(Sec. 3.1, #9) < see book >.

Hwk #24: (Sec. 3.1, #14)

< see book >.

Hwk #25: (Sec. 3.2, #2)

< see book >.

Hwk #26: (Sec. 3.3, #3)

< see book >.

Hwk #27: (Sec. 3.3, #8 and #9)

< see book >.



Hwk #28:

Prove in two ways that the square root function /- : [0, 00] — [0, oo is uniformly
continuous: by the sequence definition, and using € and §.

Hwk #29: (Sec. 3.4, #7)

< see book >.

Hwk #30: (Sec. 3.5, #5)

< see book >.

Hwk #31: (Sec. 3.5, #9)

< see book >.

Hwk #32:

Prove that lim,_,q %

exp is continuous at 0. Then prove that lim,_,,,

= 1. Hint: Recall the estimates I used in class to prove

eXpy—expro __
BT — eXp Tp.



Hwk #33: (from Sec. 4.3, #6, with some extra info by me)

Prove that the equation x* 4+ 222 — 62 + 2 = 0 has exactly two solutions. Hint:
use both IVT and monotonicity of f'. State the theorems that you are using.

Hwk #34:

For real numbers a,b, show that the equation x® + ax + b has exactly 3 real
solutions if and only if 4a® 4 27b? < 0. Hint: Determine the position of the local
extrema.

Hwk #35:

Consider the following possible strengthening of the Cauchy MVT:
JIf f and g are differentiable in ]a,b[ and continuous on [a,b] and g(b) # g(a),

then there exists ¢ € ]a, b[ such that ¢'(c) # 0 and fE ; g((a)) r (c)) 77

I had written this down tentatively in class, and proved (f ( ) — f(a))d'(c) =
(9(b) — g(a))f'(c), but then was not able to divide by ¢’(c) so I amended the thm

to require g’ # 0.

Show that the conjecture is not true by considering f(z) = 22 + %:Es and g(x) =

z? — éaj?’ on [—1,1].

Hwk #36:

For the function f given by f(x) = 4x(1 — z) on the interval [0, 1], take an
equidistant partition P with 5 intervals. Calculate numerically the upper and
lower Darboux sums U(f, P) and L(f, P).

Hwk #37: (Sec. 6.1, # 6)



Hwk #38: (Sec. 6.3, # 1)

Suppose that the functions f, g, f2, g%, and fg are integrable over the compact
interval [a,b]. Prove that (f — ¢)? is also integrable over [a,b], and that fab( f-
g)? dz. Use this to prove that

[r@uwa <[ r@w [ pwal] .

Hwk #39: (Sec 6.3., #2)

Cauchy-Schwarz Inequality for Integrals: Suppose that the functions f, g, f2, ¢°,
and fg are integrable over [a,b]. Prove that

/ ’ Fa)oe) do < (/ flay iz ) - (/ gl iz ) "

Hint: For each number A, define p(\) := fab(f(a:) — Ag(x))? dx. Show that
p(A) is a quadratic polynomial that is nonnegative for all A\ € R; therefore its

discriminant is not positive.
Hwk #40: (Sec 6.4., #3)

Suppose f : [a,b] — R is continuous and that ff f(x)dx = 0. Prove that there is
some point zg in [a, b] for which f(z) = 0. <Hint given in book.>>

Hwk #41: (Sec 6.4., #5)

Suppose f : [a,b] — R is continuous, and that the inequality fcd f(x)dx <0 holds
for any ¢, d satisfying a < ¢ < d < b. Prove that f(z) < 0 for all z € [a,b]. —
Is the same conclusion still valid if we only assume integrability of f instead of
continuity?

Hwk #42: (Sec 6.5., #5 — slightly modified and extended)

For this example, you may use knowledge of the sine and cosine function, in
particular that sin’ = cos and cos’ = —sin; and that cosx < 1 for all z € R. [You
won’t need any further properties of these functions.]

By repeated use of the monotonicity property of the integral, show that each of

the following inequalities (each for 2 > 0) implies the next one:

cosx <1
sinz <z

»

costl—%
. 3
sing > x — %

=2}

Keep going and prove two more inequalities (one for cosine, and one for sine) in
the same manner. Where does the hypothesis > 0 enter into the argument?



