
Math 445, Fall 2016: — Homework

Hwk #1: (from Sec. 1.1, #17 — typo in book’s part (c): b2 < c, not r)

For c > 0, define S :=
{

x ∈ R

∣

∣

∣
x ≥ 0 , x2 < c

}

.

(a) Show that S is bounded above and nonempty (eg., that c + 1 is an upper
bound). Then using the supremum axiom (completeness axiom), let b := supS.
(b) Assuming b2 > c, find some small r > 0 such that b− r is still an upper bound
for S, thus contradicting that b is the least upper bound.
(c) Assuming b2 < c, find some small number r > 0 such that b+ r is still in S,
thus contradicting the choice of b being an upper bound at all.
(d) Conclude that b2 = c.
(e) Prove that if b21 = c and b22 = c and b1, b2 > 0, then b1 = b2, so there is a
unique number b > 0 such that b2 = c. We call this number

√
c.

Hwk #2: (from Sec. 1.3, #13)

Prove by induction that (1 + x)n ≥ 1 + nx for n ∈ N and x > −1.

Hwk #3: (from Sec. 1.3, #14–16)

(a) Show for any a, b ∈ R that ab ≤ 1
2(a

2 + b2).

(b) Conclude for a, b ≥ 0 that
√
ab ≤ 1

2(a + b). (The inequality of the geometric
and arithmetric mean, short adm–inequality)
(c) Prove for arbitrary ε > 0 and a, b ∈ R that ab ≤ 1

2 (εa
2 + b2/ε).

Hwk #4: (Sec. 2.1, #1)

≪ see book ≫

Hwk #5: (Sec. 2.1, #3a)

≪ see book ≫

Hwk #6: (Sec. 2.1, #10)

≪ see book ≫
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Hwk #7: (Sec. 2.1, #11)

≪ see book ≫. Also characterize what each property does mean, if it’s not
equivalent to convergence.

Hwk #8: (Sec. 2.1, #15 & #17)

≪ see book ≫.

Hwk #9: (Sec. 2.1, #18)

≪ see book ≫. Hint: First define a k such that for n > k, |an − a| < ε/2. Then
estimate σn for n > N > k with appropriately chosen N .

Hwk #10: (Sec. 2.2, #3)

≪ see book ≫.

Hwk #11: (Sec. 2.2, #5)

≪ see book ≫.
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Hwk #12: (Sec. 2.3, #2)

≪ see book ≫.

Hwk #13: (Sec. 2.3, #11)

≪ see book ≫. (The referenced sec 2.3 #10 was also our number 3(b)) (To build
experience, use a pocket calculator to find the limit in question for a = 10 and
b = 1, to 8 decimals.)

Hwk #14:

In this problem, we will define exp(x) := limn→∞(1 + x
n)

n and prove from it
the properties of the exponential function commonly called ex. Do not use

properties of the number e or the function x 7→ ex yet. They are to

be proved from this definition.

(a) Show that for x > −1, the sequence (an) given by an = (1+ x
n)

n is increasing.
Hint: Write (1 + x

n+1)
n+1/(1 + x

n)
n+1 as (1−?)n+1 and use hwk. #2 — Note that

even for arbitrary x, the same is true for the subsequence (an)n>|x|.
(b) Writing now an(x) instead of an to have the dependence on x explicit, show
that an(x)an(−x) < 1 for large enough n, and conclude that an(x) is bounded
above. Using Hwk. #2 again, also conclude that an(x)an(−x) converges to 1 for
every x.
(c) Letting exp(x) := limn→∞ an(x), show that exp(x) exp(−x) = 1. Also, if
x and y have the same sign (xy ≥ 0), prove that an(x)an(y) ≥ an(x + y) and
conclude the analog for exp(x). Taking reciprocals, you should be able to prove
exp(x) exp(y) = exp(x+ y) provided xy ≥ 0.
(d) How would you prove exp(x) exp(y) = exp(x+ y) when x and y have opposite
sign (or xy ≤ 0) ?

Hwk #15: (Sec. 2.4, #1)

≪ see book ≫.

Hwk #16: (Sec. 2.4, #11)

≪ see book ≫.

Hwk #17: (Sec. 2.4, #12)

≪ see book ≫.

Hwk #18: (Sec. 2.5, #1)

≪ see book ≫.

3



Hwk #19: (Sec. 2.5, #7)

≪ see book ≫.

Hwk #20: (Sec. 2.5, #8)

≪ see book ≫.

Hwk #21:

(a) Composition of continuous functions is continuous: Read the book page 56-57
for this – nothing to grade here; we need the material, but I won’t use lecture
time on this one.
(b) The square root function is continuous: Prove this. Hint: Assume xn → x∗
(with xn, x∗ ≥ 0). Assume for contradiction that

√
xn 6→ √

x∗. Find a subse-
quence converging elsewhere. Draw a conclusion based on the continuity of the
square function.

Hwk #22:

(Sec. 3.1, #3 and #6) ≪ see book ≫.

Hwk #23:

(Sec. 3.1, #9) ≪ see book ≫.

Hwk #24: (Sec. 3.1, #14)

≪ see book ≫.

Hwk #25: (Sec. 3.2, #2)

≪ see book ≫.

Hwk #26: (Sec. 3.3, #3)

≪ see book ≫.

Hwk #27: (Sec. 3.3, #8 and #9)

≪ see book ≫.
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Hwk #28:

Prove in two ways that the square root function
√ · : [0,∞[ → [0,∞[ is uniformly

continuous: by the sequence definition, and using ε and δ.

Hwk #29: (Sec. 3.4, #7)

≪ see book ≫.

Hwk #30: (Sec. 3.5, #5)

≪ see book ≫.

Hwk #31: (Sec. 3.5, #9)

≪ see book ≫.

Hwk #32:

Prove that limx→0
expx−1

x = 1. Hint: Recall the estimates I used in class to prove
exp is continuous at 0. Then prove that limy→x0

exp y−exp x0

y−x0
= expx0.
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Hwk #33: (from Sec. 4.3, #6, with some extra info by me)

Prove that the equation x4 + 2x2 − 6x + 2 = 0 has exactly two solutions. Hint:
use both IVT and monotonicity of f ′. State the theorems that you are using.

Hwk #34:

For real numbers a, b, show that the equation x3 + ax + b has exactly 3 real
solutions if and only if 4a3 + 27b2 < 0. Hint: Determine the position of the local
extrema.

Hwk #35:

Consider the following possible strengthening of the Cauchy MVT:
¿“If f and g are differentiable in ]a, b[ and continuous on [a, b] and g(b) 6= g(a),

then there exists c ∈ ]a, b[ such that g′(c) 6= 0 and f(b)−f(a)
g(b)−g(a) = f ′(c)

g′c) .”?

I had written this down tentatively in class, and proved (f(b) − f(a))g′(c) =
(g(b)− g(a))f ′(c), but then was not able to divide by g′(c) so I amended the thm
to require g′ 6= 0.

Show that the conjecture is not true by considering f(x) = x2 + 1
3x

3 and g(x) =
x2 − 1

3x
3 on [−1, 1].

Hwk #36:

For the function f given by f(x) = 4x(1 − x) on the interval [0, 1], take an
equidistant partition P with 5 intervals. Calculate numerically the upper and
lower Darboux sums U(f, P ) and L(f, P ).

Hwk #37: (Sec. 6.1, # 6)
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Hwk #38: (Sec. 6.3, # 1)

Suppose that the functions f , g, f2, g2, and fg are integrable over the compact
interval [a, b]. Prove that (f − g)2 is also integrable over [a, b], and that

∫ b
a (f −

g)2 dx. Use this to prove that

∫ b

a
f(x)g(x) dx ≤ 1

2

[
∫ b

a
f2(x) dx +

∫ b

a
g2(x) dx

]

.

Hwk #39: (Sec 6.3., #2)

Cauchy–Schwarz Inequality for Integrals: Suppose that the functions f , g, f2, g2,
and fg are integrable over [a, b]. Prove that

∫ b

a
f(x)g(x) dx ≤

(
∫ b

a
f(x)2 dx

)1/2 (
∫ b

a
g(x)2 dx

)1/2

.

Hint: For each number λ, define p(λ) :=
∫ b
a (f(x) − λg(x))2 dx. Show that

p(λ) is a quadratic polynomial that is nonnegative for all λ ∈ R; therefore its
discriminant is not positive.

Hwk #40: (Sec 6.4., #3)

Suppose f : [a, b] → R is continuous and that
∫ b
a f(x) dx = 0. Prove that there is

some point x0 in [a, b] for which f(x0) = 0. ≪Hint given in book.≫

Hwk #41: (Sec 6.4., #5)

Suppose f : [a, b] → R is continuous, and that the inequality
∫ d
c f(x) dx ≤ 0 holds

for any c, d satisfying a ≤ c < d ≤ b. Prove that f(x) ≤ 0 for all x ∈ [a, b]. —
Is the same conclusion still valid if we only assume integrability of f instead of
continuity?

Hwk #42: (Sec 6.5., #5 – slightly modified and extended)

For this example, you may use knowledge of the sine and cosine function, in
particular that sin′ = cos and cos′ = − sin; and that cos x ≤ 1 for all x ∈ R. [You
won’t need any further properties of these functions.]

By repeated use of the monotonicity property of the integral, show that each of
the following inequalities (each for x ≥ 0) implies the next one:

cos x ≤ 1
sinx ≤ x

cos x ≥ 1− x2

2

sinx ≥ x− x3

6

Keep going and prove two more inequalities (one for cosine, and one for sine) in
the same manner. Where does the hypothesis x ≥ 0 enter into the argument?
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