Math 445, Fall 2016: — Homework

Hwk #1: (from Sec. 1.1, #17 — typo in book's part (c): $b^2 < c$, not r)

For c > 0, define $S := \left\{ x \in \mathbb{R} \mid x \ge 0, \ x^2 < c \right\}$. (a) Show that S is bounded above and nonempty (eg., that c + 1 is an upper bound). Then using the supremum axiom (completeness axiom), let $b := \sup S$. (b) Assuming $b^2 > c$, find some small r > 0 such that b - r is still an upper bound for S, thus contradicting that b is the *least* upper bound. (c) Assuming $b^2 < c$, find some small number r > 0 such that b + r is still in S, thus contradicting the choice of b being an upper bound at all. (d) Conclude that $b^2 = c$. (e) Prove that if $b_1^2 = c$ and $b_2^2 = c$ and $b_1, b_2 > 0$, then $b_1 = b_2$, so there is a *unique* number b > 0 such that $b^2 = c$.

Hwk #2: (from Sec. 1.3, #13)

Prove by induction that $(1+x)^n \ge 1 + nx$ for $n \in \mathbb{N}$ and x > -1.

Hwk #3: (from Sec. 1.3, #14–16)

(a) Show for any $a, b \in \mathbb{R}$ that $ab \leq \frac{1}{2}(a^2 + b^2)$.

(b) Conclude for $a, b \ge 0$ that $\sqrt{ab} \le \frac{1}{2}(a+b)$. (The inequality of the geometric

and arithmetric mean, short adm–inequality)

(c) Prove for arbitrary $\varepsilon > 0$ and $a, b \in \mathbb{R}$ that $ab \leq \frac{1}{2}(\varepsilon a^2 + b^2/\varepsilon)$.

Hwk #4: (Sec. 2.1, #1)

 \ll see book \gg

Hwk #5: (Sec. 2.1, #3a)

 \ll see book \gg

Hwk #6: (Sec. 2.1, #10)

 \ll see book \gg

Hwk #7: (Sec. 2.1, #11)

 \ll see book \gg . Also characterize what each property does mean, if it's not equivalent to convergence.

Hwk #8: (Sec. 2.1, #15 & #17)

 \ll see book $\gg.$

Hwk #9: (Sec. 2.1, #18)

 \ll see book \gg . Hint: First define a k such that for n > k, $|a_n - a| < \varepsilon/2$. Then estimate σ_n for n > N > k with appropriately chosen N.

Hwk #10: (Sec. 2.2, #3)

 \ll see book $\gg.$

Hwk #11: (Sec. 2.2, #5)

 \ll see book $\gg.$

 \ll see book \gg .

Hwk #13: (Sec. 2.3, #11)

 \ll see book \gg . (The referenced sec 2.3 #10 was also our number 3(b)) (To build experience, use a pocket calculator to find the limit in question for a = 10 and b = 1, to 8 decimals.)

Hwk #14:

In this problem, we will define $\exp(x) := \lim_{n\to\infty} (1 + \frac{x}{n})^n$ and prove from it the properties of the exponential function commonly called e^x . Do not use properties of the number e or the function $x \mapsto e^x$ yet. They are to be proved from this definition.

(a) Show that for x > -1, the sequence (a_n) given by $a_n = (1 + \frac{x}{n})^n$ is increasing. Hint: Write $(1 + \frac{x}{n+1})^{n+1}/(1 + \frac{x}{n})^{n+1}$ as $(1-?)^{n+1}$ and use hwk. #2 — Note that even for arbitrary x, the same is true for the subsequence $(a_n)_{n>|x|}$.

(b) Writing now $a_n(x)$ instead of a_n to have the dependence on x explicit, show that $a_n(x)a_n(-x) < 1$ for large enough n, and conclude that $a_n(x)$ is bounded above. Using Hwk. #2 again, also conclude that $a_n(x)a_n(-x)$ converges to 1 for every x.

(c) Letting $\exp(x) := \lim_{n \to \infty} a_n(x)$, show that $\exp(x) \exp(-x) = 1$. Also, if x and y have the same sign $(xy \ge 0)$, prove that $a_n(x)a_n(y) \ge a_n(x+y)$ and conclude the analog for $\exp(x)$. Taking reciprocals, you should be able to prove $\exp(x) \exp(y) = \exp(x+y)$ provided $xy \ge 0$.

(d) How would you prove $\exp(x) \exp(y) = \exp(x+y)$ when x and y have opposite sign (or $xy \le 0$) ?

Hwk #15: (Sec. 2.4, #1)

 \ll see book \gg .

Hwk #16: (Sec. 2.4, #11)

 \ll see book \gg .

Hwk #17: (Sec. 2.4, #12)

 \ll see book \gg .

Hwk #18: (Sec. 2.5, #1)

 \ll see book \gg .

Hwk #19: (Sec. 2.5, #7)

 \ll see book \gg .

Hwk #20: (Sec. 2.5, #8)

 \ll see book \gg .

Hwk #21:

(a) Composition of continuous functions is continuous: Read the book page 56-57 for this – nothing to grade here; we need the material, but I won't use lecture time on this one.

(b) The square root function is continuous: Prove this. Hint: Assume $x_n \to x_*$ (with $x_n, x_* \ge 0$). Assume for contradiction that $\sqrt{x_n} \nrightarrow \sqrt{x_*}$. Find a subsequence converging elsewhere. Draw a conclusion based on the continuity of the square function.

Hwk #22:

(Sec. 3.1, #3 and #6) \ll see book \gg .

Hwk #23:

(Sec. 3.1, #9) \ll see book \gg .

Hwk #24: (Sec. 3.1, #14)

 \ll see book \gg .

Hwk #25: (Sec. 3.2, #2)

 \ll see book \gg .

Hwk #26: (Sec. 3.3, #3)

 \ll see book \gg .

Hwk #27: (Sec. 3.3, #8 and #9)

 \ll see book \gg .

Hwk #28:

Prove in two ways that the square root function $\sqrt{\cdot} : [0, \infty[\to [0, \infty[$ is uniformly continuous: by the sequence definition, and using ε and δ .

Hwk #29: (Sec. 3.4, #7)

 \ll see book $\gg.$

Hwk #30: (Sec. 3.5, #5)

 \ll see book $\gg.$

Hwk #31: (Sec. 3.5, #9)

 \ll see book \gg .

Hwk #32:

Prove that $\lim_{x\to 0} \frac{\exp x - 1}{x} = 1$. Hint: Recall the estimates I used in class to prove exp is continuous at 0. Then prove that $\lim_{y\to x_0} \frac{\exp y - \exp x_0}{y - x_0} = \exp x_0$.

Hwk #33: (from Sec. 4.3, #6, with some extra info by me)

Prove that the equation $x^4 + 2x^2 - 6x + 2 = 0$ has exactly two solutions. *Hint:* use both *IVT* and monotonicity of f'. State the theorems that you are using.

Hwk #34:

For real numbers a, b, show that the equation $x^3 + ax + b$ has exactly 3 real solutions if and only if $4a^3 + 27b^2 < 0$. Hint: Determine the position of the local extrema.

Hwk #35:

Consider the following possible strengthening of the Cauchy MVT: \vdots "If f and g are differentiable in]a, b[and continuous on [a, b] and $g(b) \neq g(a)$, then there exists $c \in]a, b[$ such that $g'(c) \neq 0$ and $\frac{f(b)-f(a)}{g(b)-g(a)} = \frac{f'(c)}{g'(c)}$."? I had written this down tentatively in class, and proved (f(b) - f(a))g'(c) = (g(b) - g(a))f'(c), but then was not able to divide by g'(c) so I amended the thm to require $g' \neq 0$.

Show that the conjecture is not true by considering $f(x) = x^2 + \frac{1}{3}x^3$ and $g(x) = x^2 - \frac{1}{3}x^3$ on [-1, 1].

Hwk #36:

For the function f given by f(x) = 4x(1-x) on the interval [0,1], take an equidistant partition P with 5 intervals. Calculate numerically the upper and lower Darboux sums U(f, P) and L(f, P).

Hwk #37: (Sec. 6.1, # 6)

Hwk #38: (Sec. 6.3, # 1)

Suppose that the functions f, g, f^2, g^2 , and fg are integrable over the compact interval [a, b]. Prove that $(f - g)^2$ is also integrable over [a, b], and that $\int_a^b (f - g)^2 dx$. Use this to prove that

$$\int_{a}^{b} f(x)g(x) \, dx \le \frac{1}{2} \left[\int_{a}^{b} f^{2}(x) \, dx + \int_{a}^{b} g^{2}(x) \, dx \right]$$

Hwk #39: (Sec 6.3., #2)

Cauchy–Schwarz Inequality for Integrals: Suppose that the functions f, g, f^2, g^2 , and fg are integrable over [a, b]. Prove that

$$\int_{a}^{b} f(x)g(x) \, dx \le \left(\int_{a}^{b} f(x)^{2} \, dx\right)^{1/2} \, \left(\int_{a}^{b} g(x)^{2} \, dx\right)^{1/2}$$

Hint: For each number λ , define $p(\lambda) := \int_a^b (f(x) - \lambda g(x))^2 dx$. Show that $p(\lambda)$ is a quadratic polynomial that is nonnegative for all $\lambda \in \mathbb{R}$; therefore its discriminant is not positive.

Hwk #40: (Sec 6.4., #3)

Suppose $f : [a, b] \to \mathbb{R}$ is continuous and that $\int_a^b f(x) dx = 0$. Prove that there is some point x_0 in [a, b] for which $f(x_0) = 0$. «Hint given in book.»

Hwk #41: (Sec 6.4., #5)

Suppose $f : [a, b] \to \mathbb{R}$ is continuous, and that the inequality $\int_c^d f(x) dx \leq 0$ holds for any c, d satisfying $a \leq c < d \leq b$. Prove that $f(x) \leq 0$ for all $x \in [a, b]$. — Is the same conclusion still valid if we only assume integrability of f instead of continuity?

Hwk #42: (Sec 6.5., #5 – slightly modified and extended)

For this example, you may use knowledge of the sine and cosine function, in particular that $\sin' = \cos$ and $\cos' = -\sin$; and that $\cos x \leq 1$ for all $x \in \mathbb{R}$. [You won't need any further properties of these functions.]

By repeated use of the monotonicity property of the integral, show that each of the following inequalities (each for $x \ge 0$) implies the next one:

$$\cos x \le 1$$

$$\sin x \le x$$

$$\cos x \ge 1 - \frac{x^2}{2}$$

$$\sin x \ge x - \frac{x^3}{6}$$

Keep going and prove two more inequalities (one for cosine, and one for sine) in the same manner. Where does the hypothesis $x \ge 0$ enter into the argument?