
Roots and other inverse functions

Injectivity, and introduction to inverse functions, especially square root
functions

Remember that in a precise definition of the notion of a function f , the set E on which the
function is defined is part of the definition. So for example, strictly speaking, the function
f defined by f(x) = x2 for x ∈ R and the function g defined by g(x) = x2 for x ≥ 0 are
different functions. This distinction can be glossed over with impunity in much of elementary
real calculus, but is essential for what we are about to consider, namely nth root functions
in domains of the complex plane.

A key property functions may or may not have is called ‘injective’ or ‘one-to-one’: A function
f defined on a set E is called injective, if it assigns distinct values f(x), f(y) to distinct
inputs x, y ∈ E. In other words, if f(x) = f(y) with x, y ∈ E can only occur when x = y.
— Example: f given by f(x) = x2 for x ∈ R is not injective, because for instance f(7) =
f(−7). In contrast, the function g given by g(x) = x2 for x ∈ [0,+∞[ is injective, because
x2 = y2 for nonnegative x, y implies x = y. Similarly (re-using the letters f , g for new
functions again), the function f given by f(z) = z2 for z ∈ C is not injective, whereas the
function g given by g(z) = z2 for Re z > 0 is injective.

In complex variables, when we restrict our attention to holomorphic functions on a domain,
synonyms for ‘injective’ or ‘one-to-one’ have historically been used: univalent, or schlicht.
Silverman’s book uses the word ‘univalent’.

When f is an injective function, defined on a set E with the set of values being called f(E),
the image of E under f , we can define an inverse function f−1 (defined on f(E) with values
in E) as follows: f−1(w) = z exactly if f(z) = w. If f fails to be injective, it does not have
an inverse function, because f(z) = w for a given w may not uniquely determine z, so there
would be ambiguity in defining f−1(w).

Returning to the above examples, the function f given by f(x) = x2 on R does not have an
inverse function, but the function g given by g(x) = x2 for x ≥ 0 has an inverse function
called the square root. Similarly the function f given by f(z) = z2 for z ∈ C does not have an
inverse function, whereas the function g given by g(z) = z2 for Re z > 0 does have an inverse
function. g maps the right half plane Re z > 0 on the set C \ ]−∞, 0], so its inverse function
g−1 is defined for all w ∈ C that are not negative real numbers nor 0, and it has values in the
right half plane Re z > 0. There is a vast choice of possible domains G on which h(z) = z2

would be injective, and a correspondingly vast choice of corresponding inverse functions h−1.
No single domain is a naturally preferred choice in all context, and this is why we are dealing
with many square root functions in complex variables.

In real variables, we would in principle also have a vast number of choices (for instance
f(x) = x2 for x ∈ [3.7, 9.35] is injective), but there are two natural choices with largest
possible domains of injectivity: the square function on [0,∞[ whose inverse function is

√
,

and the square function on ]−∞, 0], whose inverse function is −√
. All purposes can be

met by the single choice of the square function on [0,+∞[, so there is no point in discussing
multiple square root functions in real variable calculus, even though, strictly logically, this
could have been done.

Definition: Assume n is an integer ≥ 2. We call f an nth root function on domain G, if
f(z)n = z for all z ∈ G.
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Outline

We have two main purposes here: To study root functions, and to understand the following
general theorem:
Thm: If f is holomorphic and injective on a domain G, then f ′ is automatically nonzero
in G, and the image f(G) (i.e., the set of all values f(z) for z ∈ G) is itself a domain. We
can then define the inverse function f−1 on f(G), with values in G, and f−1 is automatically
holomorphic. Moreover, the formula (f−1)′(f(z)) = 1/f ′(z) holds.

One can begin with the general theorem and study root functions as a special case. This
is the slicker approach. I will choose the somewhat clumsier path of doing root functions
first, because it is a more hands-on and practical experience that requires less heavy abstract
theory.

The first part of the theorem, that f ′ 6= 0 is typically complex-variable. In real variables, we
have the example f(x) = x3 for x ∈ R. f is injective (and differentiable), but f ′ may vanish:
f ′(0) = 0. This is no contradiction to the complex case since R is not a domain (as it is
not open in C). If we were to fix this deficit by defining the cube function on an open set
containing R, we would forfeit injectivity, because a neighborhood of 0 will contain triplets of
numbers ε, εe2πi/3 and εe4πi/3 that share the same cube ε3. — Silverman’s book postpones
the proof to later, but we will use power series and an ad-hoc study of root functions to prove
this part.

The second part of the theorem is technical: It guarantees that if f is holomorphic in a
domain G, then f(G) is again a domain, i.e., connected and open. Here the ‘open’ part is the
difficult one, whereas ‘connected’ is easy: If a curve C in G connects z1 with z2, then f(z1)
and f(z2) are connected by the image curve f(C). The ‘open’ part is again typical complex
variables. In real variables, f(x) = x2 maps the open interval ]−1, 1[ to the interval [0, 1[,
which is not open. This claim that f(G) is a domain again is known under the name ‘Open
Mapping Theorem’ or ‘Invariance of Domain Theorem’. Silverman’s book has to postpone
the proof for a few chapters; it is easier when we know f ′ 6= 0 already. Without knowing
f ′ 6= 0 one can have a workaround using power series and root functions again.

Finally, the theorem stipulates that the inverse function is automatically differentiable. Again
this is not true in real variable calculus, where the cube root function (as the inverse of the
cube function) is not differentiable at 0, because the cube function has derivative 0 at 0.
However, the complex cube function is not injective on any neighborhood of 0, so we are
forced to remove 0 from the domain before we get an injective function that has an inverse.
– The formula (f−1)′(f(z)) = 1/f ′(z) is of course well-known from real variable calculus
already.

Complex root functions constructed in real terms

You know already how to solve zn = w for given w: Write w in polar coordinates w = reiφ,
then the solutions z to the equation zn = w are given as z1 = r1/neiφ/n, z2 = r1/nei(2π+φ)/n,
. . . , zn = r1/nei(2(n−1)π+φ)/n.

Each of these solutions, combined with the restriction to a suitable domain, gives rise to a
complex nth root function, inverse function to an nth power function on a suitable domain.
You will learn here, why there is no one-size-fits-all choice of a suitable domain that would
allow us to select one definition as the nth root function; moreover, we have yet to see that
our root functions are holomorphic, i.e., we have to check the Cauchy-Riemann differential
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equations. As mentioned, this is a bit clumsy, and a more abstract approach would avoid this
detour through real variables. But I trust you will get a better practical grasp of complex
root functions via the longer route.

Let’s take as domain G the right half plane Re z > 0 and write z = x+ iy as usual. We can
convert z in polar coordinates z = (x2 + y2)1/2 exp[i arctan y

x ]. We can define an nth root
function f0 on G by setting

f0(z) := (x2 + y2)1/2n exp[i 1n arctan y
x ]

To check that f0 is holomorphic in G, we note that it is real differentiable with (continuous)
partial derivatives and confirm the CRDEs:

∂
∂x (x

2 + y2)1/2n cos( 1n arctan y
x) =

∂
∂y (x

2 + y2)1/2n sin( 1n arctan y
x)

∂
∂y (x

2 + y2)1/2n cos( 1n arctan y
x) = − ∂

∂x (x
2 + y2)1/2n sin( 1n arctan y

x)

I’ll spare you the actual evaluation of these partials; it would be routine, albeit tedious.

We have constructed a holomorphic nth root function f0 in the right half plane. For real
positive z, this function reduces to the real root function n

√
z. Remember that the values

of arctan are between −π
2 and π

2 , so the root function f0 takes values whose arguments are
between − π

2n and π
2n .

There is no natural reason why we should stay in the right half plane. However, the formula
defining f0 will cease to be useful when x = 0, because of the arctan y

x term. We could have
written arccot x

y = π
2 − arctan x

y instead of arctan y
x . This would have amounted to the same

result in the first quadrant x, y > 0, and would have given us an nth root function

f1(z) = (x2 + y2)1/2n exp[i 1n(
π
2 − arctan x

y )]

in the upper half plane y > 0. Recall that the arccot takes on values between 0 and π, so the
values of g have arguments between 0 and π

n .

The same formula as for f0 defines a holomorphic function f∗ in the left half plane x < 0,
but this function satifies f∗(z)

n = −z, not z, b/c arctan still takes values between −π
2 and

π
2 , whereas the argument of z in this plane is between π

2 and 3π
2 . So we have a root function

in the left half plane given by

f2(z) = (x2 + y2)1/2n exp[i 1n(π + arctan y
x)]

In the 2nd quadrant, f2 coincides with f1. We can continue this way and define

f3(z) = (x2 + y2)1/2n exp[i 1n (
3π
2 − arctan x

y )]

f3 coincides with f2 in the third quadrant, but it does not coincide with f0 back in the 4th
quadrant. Rather, f4 = e2πi/nf0 in the 4th quadrant.

The issue is geometrically easy to understand: as z moves around the origin (say on a circle),
beginning on the real line with arg z = 0 there, its argument increases and will have become
2π when z returns to the real axis. However, any nth root function we may choose, will
have the argument of its value increase by a factor 1

n more slowly, starting (e.g.) at 0 as
z is on the real line, and after coming around full circle, the value of that root function
will have argument 2π

n , inconsistent with the original value. This is why we cannot define a
holomorphic root function on all of C, or for that matter, C \ {0}. We need to restrict the
domain to some that disallows walking around 0.
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Time to summarize the discussion in a picture (which is to scale for n = 3):

f0

f1

f2

f3

f0 = f1
here

f1 = f2
here

f2 = f3
here

f3 6= f0
here

f0(z) = |z|1/n exp[i 1n arctan y
x ] , Re z > 0

f1(z) = |z|1/n exp[i 1n(π2 − arctan x
y )] , Im z > 0

f2(z) = |z|1/n exp[i 1n(π + arctan y
x)] , Re z < 0

f3(z) = |z|1/n exp[i 1n(3π2 − arctan x
y )] , Im z < 0

f0

f1

f2 maps to

f0

f1

f2

f3

f0

f3

maps to

This is the opportunity to discuss which domains can actually carry an nth root function.
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Fact 1: If f is one holomorphic nth root function in G, then e2πki/nf for k = 0, 1, . . . , n− 1
are also holomorphic root functions in G, and there are no others. — This is clear since we
know how to solve the equation f(z)n = z for f(z); the only issue is that k doesn’t depend
on z; and this follows by continuity and the connectedness of G.

Fact 2: If 0 ∈ G, then G cannot contain a holomorphic nth root function. — Proof:
differentiate f(z)n = z and get nf(z)n−1f ′(z) = 1. Since f(0)n = 0 implies f(z) = 0, the
derivative at z = 0 would require n · 0n−1 · f ′(0) = 1, an impossibility.

Fact 3: If G contains a circle going around 0, then G cannot contain a holomorphic root
function. — We have seen this by deliberations about how the argument of z and a root
function of z changes. The reasoning generalizes to arbitrary curves going around 0.

Fact 4: A simply connected domain that does not contain 0 does carry a holomorphic nth
root function. — You’ll see a proof shortly, after we have done logarithm functions.

Logarithm and general power functions

Def: We say f is a logarithm function in G if ef(z) = z for all z ∈ G.

[Only natural logarithms deserve to be considered. Stuff like log10 x is nothing but an abbre-
viation of lnx/ ln 10 for the benefit of the uninitiated.]

We know how to solve ew = z for z 6= 0: If we write w = u + iv then ew = eueiv; writing
z = reiφ in polar coordinates, we see that u has to be ln r, and v has to be φ or differ from φ
by a multiple of 2π. You have seen in a prior homework a logarithm function constructed in
the right half plane by the formula f0(z) = ln|z|+ i arctan y

x ; you have checked the CRDEs.
The method of getting logarithm functions in the upper half plane, left half plane, etc.,
carries over, and again you get an inconsistency if you try to continue the process all the way
around 0.

We get similar conclusions as for root functions:

Fact 1: If f is one holomorphic logarithm function in G, then 2πik + f for k ∈ Z are also
holomorphic logarithm functions in G, and there are no others.

Fact 2: If 0 ∈ G, then G cannot contain a logarithm function (because ez never vanishes).

Fact 3: If G contains a circle (or other Jordan curve) going around 0, then G cannot contain
a holomorphic logarithm function.

These are proved exactly as in the case of root functions.

Fact 4: A simply connected domain that does not contain 0 does carry a holomorphic
logarithm function.

Proof: Choose z0 ∈ G and some number w0 such that ew0 = z0. (Such w0 exist, because
z0 ∈ G, whereas 0 /∈ G). Define f(z) := w0 +

∫ z
z0

dζ
ζ . The integral is independent of the path

because G is simply connected and 1
ζ is holomorpohic in G. It therefore defines a holomorphic

function that we will call L(z). We want to show that eL(z) = z in G. To this end we first
show that z−1eL(z) is constant:

d

dz

(

z−1eL(z)
)

= −z−2eL(z) + z−1L′(z)eL(z) = 0

since L′(z) = 1
z . Now we calculate the constant by evaluating the expression at z = z0:

z−1
0 eL(z0) = z−1

0 ew0+0 = 1. We have thus constructed L as a holomorphic logarithm function
in G.
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Once we have chosen a domain and a logarithm function on it, we can define the general
power function on that same domain by zα := exp(α ln z). It is easy to see that for α = 1

n ,
this power function is an nth root function. If α is an integer, then every choice of logarithm
function results in the same value for the power zα, consistent with our old understanding of
zα as repeated multiplication.

In particular, with α = 1
n , we can use a holomorphic logarithm function in a simply connected

domain G that doesn’t contain 0 to construct a holomorphic root function there. This is an
alternative approach to the one outlined before.

Policy: From now on, we consider usage of notations like
√
z, n

√
z, zα, ln z for complex z

as acceptable if and only if the context explicitly states or implicitly clarifies the domain of
admissible z and a unique determination of the choice of root or logarithm function.

When possible, if the domain contains the positive real axis, we will deem it wise and con-
venient (albeit not strictly necessary) to choose root and logarithm functions that coincide
with the real-variables definition on the positive real axis.

Example: ‘Let
√
z denote the square root function for z ∈ C\ ]−∞, 0] that has positive real

values for z > 0.’ In this context,
√
4 would equal 2,

√
±i would be (1+±i)/

√
2 respectively,

and
√
−1 would not be defined.

Other example: ‘Let
√
z denote the square root function for z ∈ C \ i]−∞, 0] (i.e., the

complex plane minus the negative imaginary axis) that has positive real values for z > 0.’ In
this context,

√
4 would equal 2,

√
i would be (1 + i)/

√
2 ,

√
−1 would be i, but

√
−i would

not be defined.

If ln z is a logarithm function in a domain G, then we obtain by differentiating eln z = z that
d
dz ln z = 1

z .

If n
√
z is an nth root function in a domain G, then by differentiating ( n

√
z)n = z, we obtain

d
dz

n
√
z = 1

n
n
√
z/z.

Power series:

In this chapter, we take the nth root function in the right half plane that has real positive
values on the real positve axis, and likewise we choose the logarithm function in the right
half plane that takes real values on the positive real axis:

Then, using Taylor’s formula and repeated differentiation at 1, we can obtain a power series
representation

ln(1 + z) = z − 1

2
z2 +

1

3
z3 − 1

4
z4 +

1

5
z5 −+ . . . =

∞∑

n=1

(−1)n−1 1

n
zn , |z| < 1

The radius of convergence 1 can be read off from the coefficients, but is also predicted by
the fact that the nearest point to 0 where ln(1 + z) ceases to be definable as a holomorphic
function is z = −1.

Given any complex number α, and k a nonnegative integer, we define the binomial coefficient
(
α

k

)

:=
α(α − 1) . . . (α− k + 1)

k!

There are k terms in the numerator. For k = 0 the above expression is to be understood as
(α
0

)
= 1 in accordance with the convention that empty products have the value 1. With this
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notation established, we get the binomial series:

(1 + z)α =

∞∑

n=0

(
α

n

)

zn , |z| < 1 (or for 0 ≤ α ∈ Z: z ∈ C)

The radius of convergence 1 can be calculated from the coefficients with a bit of effort and
Cauchy-Hadamard, but is more easily predicted by the fact that the nearest point to 0 where
ln(1 + z) ceases to be definable as a holomorphic function is z = −1; except, when α is a
nonnegative integer. Then the power series terminates at n = α and (1+z)α is a polynomial.

Interlude for purists:

Instead of appealing to the real variables functions, we could have constructed a root function
in the domain |z − 1| < 1 directly by the binomial series:

zα :=

∞∑

j=0

(
α

j

)

(z − 1)j for |z − 1| < 1

To show that this series, for α = 1
n is indeed an nth root function, we would need to prove

first the formula
j
∑

k=0

(
α

k

)(
β

j − k

)

=

(
α+ β

j

)

which guarantees that the Cauchy-Product for series zα and zβ is indeed the series for zα+β.
In particular, the nth power of the z1/n series is z.

This proof is not relevant for our purposes, so I just provide it for your reference, but am
skipping it in class.

First we observe the relation
(α
k

)
=
(α−1
k−1

)
+
(α−1

k

)
. This is easily shown from the definition,

by simplifying from the right hand side. With this lemma, we set up an induction proof: The
claim is trivial for j = 0 or j = 1. Now for j ≥ 2, we write an induction step:

j
∑

k=0

(
α

k

)(
β

j − k

)

=

j−1
∑

k=0

(
α

k

){(
β − 1

j − k − 1

)

+

(
β − 1

j − k

)}

+

(
α

j

)(
β

0

)

=

j−1
∑

k=0

(
α

k

)(
β − 1

j − 1− k

)

+

j
∑

k=0

(
α

k

)(
β − 1

j − k

)

=

(
α+ β − 1

j − 1

)

+

(
α+ β − 1

j

)

=

(
α+ β

j

)

Once this root function is constructed in |z − 1| < 1, one can extend the definition to larger
sets by a variety of algebraic means, like for instance (2nz)1/n = 2z1/n, which extends the
definition from the circle |z − 1| < 1 to the larger circle |z − 2n| < 2n, and ultimately, by
taking larger and larger n, to the entire right half plane. We won’t bother to elaborate on
this.
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Inverse Functions in General:

Suppose f is holomorphic and injective in a domain G and f ′ does not vanish.1 We claim
that the inverse function f−1 is holomorphic on f(G), in particular that f(G) is a domain.

Proof 1 (sketch), following Silverman’s book:

For those of you who are familiar with the implicit function theorem / inverse function
theorem from advanced real multi-variable calculus, this is routine: The applicable variant
of the theorem says that if we have a continuously differentiable real function f on an open
set of Rn and a solution z0 to the equation f(z0) = w0, and if the Jacobi matrix DF (z0)
is invertible (i.e., its determinant non-zero), then there is a neighborhood V of w0 and a
neighborhood U of z0 such that the equation f(z) = w for w ∈ V is still solvable, with a
solution z ∈ U that is unique there, and this solution z = h(w) describes a continuously
differentiable function h.

The proof of this theorem in advanced calculus basically relies on Newton’s iteration method;
and the fact that the Jacobi-Matrix is invertible makes Newton’s iteration work. I omit
technical details.

Now if f is holomorphic, the Jacobi matrix is
[
ux uy

vx vy

]

=
[

ux uy

−uy ux

]

using the CRDEs. The

determinant of this matrix is u2x + u2y = |f ′|2 > 0. So the inverse function theorem applies,
and tells us that f−1 is real differentiable. The Jacobi matrix for f−1 is then the inverse of
the Jacobi matrix for f and it can be seen from this that it again satisfies the CRDEs. Hence
f−1 is holomorphic.

Proof 2 (by power series):

I want to show you a proof of this theorem by means of power series. This proof levels
the playing field between those that have and those that have not had senior level advanced
calculus and stresses practical skills in working with power series, that are beneficial to both
practically and theoretically-minded people:

Here is the overview: We first construct the coefficients for a power series representing f−1,
using a recursive algebraic calculation: If f−1 exists and is analytic, then its Taylor series
can only be the one we are about to calculate. Next we show that the obtained power series
has a positive radius of convergence and therefore defines an analytic function h in some
(small) disk. Interpreted in this light, our previously formal calculation then means that h
is indeed the inverse function f−1. (The convergence proof is the tricky part).

In this argument we only use that f ′(z0) 6= 0 at a point z0; the injectivity of f is not required;
injectivity of f in a neighborhood of z0 follows from this reasoning. Injectivity of f in all of
G is a different matter and still needs to be assumed to get an inverse function on all of f(G)
rather than just on a small disk.

After this overview, let’s go into details: f is injective on G, so f−1 exists and is defined on
f(G). Since f is holomorphic in G, we can write it as a power series in a neighborhood of an
arbitrary z0 ∈ G.

f(z) = f(z0)
︸ ︷︷ ︸

=:w0

+ a1(z − z0)− a2(z − z0)
2 − a3(z − z0)

3 − a4(z − z0)
4 − . . .

Here a0 = f(z0) and a1 = f ′(z0) 6= 0. For reasons of convenience that will become clear only

1As mentioned in the outline, it is an automatic consequence of ‘holomorphic and injective in G’ that f ′

doesn’t vanish in G. But since we are not yet in a position to understand why this is the case, I am throwing

the nonvanishing of f ′ in as an extra assumption here.
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by later hindsight, I have chosen to call the coefficients beyond the linear term −an rather
than an.

Since this power series converges, there exists an R such that |an| ≤ |a1|Rn−1 (which is
nontrivial only for n ≥ 2): Indeed, for R0 bigger than 1/(radius of convergence), we have
|an| ≤ CRn

0 = (CR0)R
n−1
0 for some constant C. By making R yet larger, we have (assuming

n ≥ 2) the estimate |an| ≤ [CR0(
R0

R )n−1]Rn−1 ≤ [CR2
0/R]Rn−1, and we can get CR2

0/R ≤
|a1|.
So we have the following growth estimate for the an:

|a1| =: A1 , |a2| ≤ A1R , |a3| ≤ A1R
2 , . . . , |an| ≤ A1R

n−1

We will now study the calculation of the coefficients of a power series h(w), centered at
w0 = f(z0) with h(w0) = z0, that satisfies f(h(w)) = w. So we write

h(w) = h(w0)
︸ ︷︷ ︸

=z0

+ b1(w − w0) + b2(w − w0)
2 + b3(w − w0)

3 + b4(w − w0)
4 + . . .

This time it is convenient to define the coefficients without the extra minus sign, as you’d
expect anyways.

Now let’s calculate f(h(w)) by plugging one power series into another. This will result in a
glorious mess, that we can nevertheless handle skillfully (watch for the wisdom of indentation):

f(h(w)) = w0

+ a1
(
b1(w − w0) + b2(w − w0)

2 + b3(w − w0)
3 + b4(w − w0)

4 + . . .
)

− a2
(
b1(w −w0) + b2(w − w0)

2 + b3(w − w0)
3 + . . .

)2

− a3
(
b1(w − w0) + b2(w − w0)

2 + . . .
)3

− a4 (b1(w − w0) + . . .)4

− . . .

The second line is a power series starting at power (w − w0)
1; and I have written enough

terms to eventually carry all powers up to order 4. The third line, once multiplied out, starts
with power (w − w0)

2; look carefully at it: I only need to carry terms up to b3 if eventually
I want to get all terms up to (w − w0)

4. The fourth line, once multiplied out, begins with
power (w − w0)

3; and I only need to consider terms up to b2 if I eventually want to get all
terms up to power (w − w0)

4. The fifth line begins with order (w − w0)
4, and the (omitted)

b2 term will already not contribute to this order any more.

The upshot of this expansion is that the coefficient for each individual power (w − w0)
n can

be calculated routinely (if tediously) by a finite algebraic calculation. This is because we
centered the power series h that gets plugged into the other power series in such a way that
no constant term remains.

We want to choose the bn in such a way that

f(h(w)) = w = w0 + 1 · (w − w0) + 0 · (w − w0)
2 + 0 · (w − w0)

3 + 0 · (w − w0)
4 + . . . .
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So we calculate the above mess, order by order and then compare coefficients:

f(h(w)) = w0 + a1b1 (w − w0)

+
{

a1b2 − a2b
2
1

}

(w − w0)
2

+
{

a1b3 − a2 · 2b1b2 − a3b
3
1

}

(w − w0)
3

+
{

a1b4 − a2(2b1b2 + b22)− a3 · 3b21b2 − a4b
4
1

}

(w − w0)
4

+ . . .

The terms in braces must vanish, and a1b1 is desired to be 1. So we determine b1 = 1/a1 from
the first line. Given the a’s and b1, we determine b2 from the second line, then b3 from the
third line, and so on. In each step, to solve for bn, we solve an equation a1bn = a combination
of previously calculated terms, since a1 6= 0, we can divide by it.

There is therefore a power series h that, if convergent , represents the inverse function h = f−1,
and we can practically calculate it by routine algebra (albeit tedious) to any order we like.
However, we do not see a clear picture of a general formula for the nth term bn emerging
(and we can live with this ignorance).

We do not want to be more explicit about formulas for the bn. That would be an awful
mess, from which no insight can be gleaned! How then can we say that the bn are such that
the series h converges? This is the big miracle, and to force the good fortune, I had put the
minus signs in front of the coefficients a2, a3, a4, . . .. Because now, when I write the equation

bn =
a combination of previously calculated stuff

a1

the numerator on the right hand side is actually a polynomial with all positive coefficients,
involving a1, . . . , an and the previously calculated b1, . . . , bn−1 (look at how the expressions
in braces arise above, and you’ll see it). If I plug the formulas for the previously obtained
bj in, these in turn would be polynomials with all positive coefficients, involving only the ai
and yet previously obtained bi. In the end,

bn =
poly(a1, . . . an)

a
N(n)
1

where N(n) is a certain integer that we do not need to know in detail, and poly(a1, . . . , an)
is a polynomial with all positive coefficients. And this is the info that we will live on.

Let’s consider the specific example

F (z) = w0 +A1(z − z0)−A1R(z − z0)
2 −A1R

2(z − z0)
3 −A1R

3(z − z0)
4 − . . .

For the solution series H to F (H(w)) = w with H(w0) = z0, we call the coefficients Bn:

H(w) = z0 +B1(w − w0) +B2(w − w0) +B3(w − w0) +B4(w − w0)
4 + . . .

The Bn arise from the An by exactly the same formula as the bn arise from the an:

Bn =
poly(A1, . . . , An)

A
N(n)
1

where An = A1R
n−1

The following two features now save the day: (1) we can get explicit and simple formulas for
the Bn even if we don’t have nice formulas for the polynomial, namely Bn = Rn−1/An

1 ; and
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(2) |bn| ≤ Bn for all n. With these two, we conclude the convergence of
∑

bn(w−w0)
n from

the convergence of Bn(w − w0)
n.

Namely for (2),

|bn| =
|poly(a1, . . . , an)|

|a1|N(n)
≤ poly(|a1|, . . . , |an|)

A
N(n)
1

≤ poly(A1, . . . , An)

A
N(n)
1

= Bn

where, at both ≤ signs we have made use of the fact that the coefficients in the polynomial
were positive.

And for (1): how do we know the Bn explicitly? Simply because we can explicitly sum the
geometric series for F and then explicitly calculate its inverse function H, and then write H
as a series:

F (z) = w0 + 2A1(z − z0)−
A1(z − z0)

1−R(z − z0)

Solving w = F (z) for z, we get a quadratic equation

2A1R(z − z0)
2 − (A1 +R(w − w0))(z − z0) + (w − w0) = 0

with the two solutions

z − z0 =
A1 +R(w − w0)

4A1R

(

1±
√

1− (w − w0)8A1R

(A1 +R(w − w0))2

)

where we use the square root function defined by the binomial series in a neighborhood of
1. We choose the minus sign in ± to get z − z0 = 0 when w − w0 = 0 and thus obtain a
convergent power series H(z) on the right hand side.

Now that we know that the series h converges, because the majorizing series H does, we
know that h represents a holomorphic function in its disk of convergence; and this function
is, by the same calculation, inverse to the function f .

Now let’s suppose f is holomorphic and injective in a domain G and f ′ does not vanish there.
Then the inverse function f−1 is defined on the set f(G). Take any w0 = f(z0) ∈ f(G).
Writing f as a power series centered at z0 (and convergent in some small disk about z0),
we can construct the inverse series h centered at w0, and we know from the above that it
converges. For w in some small disk about w0, z = h(w) is still sufficiently close to h(w0) = z0
and therefore in the domain G. So these w are in f(G), and this shows that f(G) is open.
It is easy that f(G) is also connected, hence f(G) is a domain. And h is holomorphic in a
neighborhood of any w0 ∈ f(G), hence is holomorphic in G.

This ends the proof.

Proof of the main theorem (from pg 2)

We repeat the theorem here:

Thm: If f is holomorphic and injective on a domain G, then f ′ is automatically nonzero
in G, and the image f(G) (i.e., the set of all values f(z) for z ∈ G) is itself a domain. We
can then define the inverse function f−1 on f(G), with values in G, and f−1 is automatically
holomorphic. Moreover, the formula (f−1)′(f(z)) = 1/f ′(z) holds.

We have to show that f ′(z) 6= 0 in G. Then the theorem proved in the previous paragraph
applies and gives us a holomorphic inverse function f−1 on the domain f(G). The formula
for the derivative of f−1 follows from differentiating f−1(f(z)) = z by the chain rule.
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So to show that f ′(z) 6= 0, we assume to the contrary that f ′(z0) = 0 for some z0, and we
then derive a contradiction from this assumption.

If f ′(z0) = 0, the Taylor series of f looks like

f(z) = f(z0)+ak(z−z0)
k+ak+1(z−z0)

k+1+. . . = f(z0)+ak(z−z0)
k

(

1 +
ak+1

ak
(z − z0) + . . .

)

where ak is the first nonvanishing Taylor coefficient beyond the constant term. Such an ak
must exist, because if all ak were 0, then f would be constant and hence not injective. Note
that k > 1 since we assumed f ′(z0) = 0. Choose some kth root bk of ak and some kth root
function k

√
in a neighborhood of 1 (say the one given by the binomial series. Then we can

write

f(z) = f(z0) + g(z)k where g(z) = bk(z − z0)
k

√
(

1 +
ak+1

ak
(z − z0) + . . .

)

On some small disk D given by |z− z0| < ρ, the function g has a holomorphic inverse g−1 by
the power series construction of the previous section. The image g(D) is a domain containing
0. It contains two distinct points w1 = g(z1), w2 = g(z2) (actually k of them), such that
wk
1 = wk

2 ; and z1 6= z2 because g is injective. But now f(z1) = f(z2) in contradiction to the
injectivity of f .
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