
1 Imagine: Imaginary Numbers Are For Real

I assume that you have been exposed to a quantity like “i =
√
−1” before; and you know that

numbers like “i times a real number” are called “imaginary” numbers. I presume your very
first exposure to them was through the quadratic formula. When applying it to an equation
like x2 + 2x + 2 = 0, it produces something like 1

2
(−2 ±

√
−4) = −1 ±

√
−1. When graphing

x2 + 2x+ 2, you see that it does not vanish for any real number. The impression that such an
introduction would almost inavoidably have left on you is:

“Well, heck, so they have invented quantities that don’t actually exist and are thus

justly called imaginary; all for the purpose of serving as solutions to equations that

do not have solutions. Today Math has gone to become Black Magic. . . ”

The purpose of this introduction is threefold: (a) To deconstruct such a motivation, (b) to give
a more compelling motivation for the sensibility of imaginary numbers, (c) to construct complex
numbers in a mathematically sound way.

Deconstructing the poor motivation: If inventing quantities for the purpose of serving as
solutions to equations that hitherto have not had any solutions were a valid method, we could
with the same right invent an algebraic quantity ∞ as a solution to the equation 0 · x = 1. We
could then do some simple algebra like “2 = 2 · 1 = 2 · (0 · ∞) = (2 · 0) · ∞ = 0 · ∞ = 1” to
conclude that 2 = 1.

Mind you that this ‘algebraic quantity ∞’ I have invented here for the sake of showing its failure
is not the same as the symbol ∞ in calculus; the calculus symbol ∞ does not partake of the full
family of algebraic operations.

Conclusion: When we introduce new ‘numbers’ we must justify that they satisfy the rules of
calculation (specifically the field axioms outlined below).

Redeeming the algebraic motivation somehow:

The cubic formula makes a stronger case for the legitimacy of imaginary numbers than the
quadratic formula. It says:

A solution to the cubic equation x3 + px+ q = 0 is given by Cardano’s formula:
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Hwk: Use this formula to obtain the solution x1 = −2 for x3 − x + 6 = 0; then check it both
numerically (with step by step intermediate evaluation) and by explicit exact algebra, plugging
it in. Warning: If you skip the ‘step by step’ part and feed the formula into some software
package for black box numerical evaluation, something may go awry (software dependent) behind
the black box, leaving you clueless about the source of the problem.

The interesting thing happens when x3 + px+ q = 0 has three real solutions. Which one does
the formula select? The paradoxical outcome is: When x3 + px+ q = 0 has three real solutions,
then the square root inside Cardano’s formula is imaginary! Try it out:

Hwk: Find the real solutions to x3 − 7x+ 6 = 0 by guess work. Use Cardano’s formula on the
equation, but abstain from attempts to evaluate the cubic roots of complex numbers.
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Hwk: Use real variable calculus to determine a precise (necessary and sufficient) condition on
p, q for x3 + px + q to have three distinct real solutions. Namely, we need a maximum with
positive value and a minimum with negative value. (Those who had 300 and/or 341 should use
an appropriately rigorous style of exposition. Confirm that this condition is equivalent to the
term under the square root in Cardano’s formula being negative.)

Once we introduce complex numbers and give proper definitions of the roots of complex numbers,
Cardano’s formula can be expanded to give two more solutions:
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Just as in the first homework, the combination of nested roots mysteriously conspired to get a
rational number out of two irrational expressions, in the case of three real solutions, the formulas
conspire to get real numbers out of three manifestly non-real expressions.

So in this example, imaginary quantities seem to be working behind the scenery to produce
perfectly good real solutions. If you dismiss imaginary numbers and say, ‘I only care for real
solutions’, you disable the formula that produces them exactly in the case when your desire for
real solutions is met with the best possible abundance of real solutions!

Be forewarned however: Taking roots of complex numbers requires insight that you
do not have at this point. Odds are if you try it naively you run into contradictions,
due to the fact that there should be three complex solutions to the equation x3 = a
and there is no preferred way of choosing one and calling it the cube root of a. Some
essential information about the meaning of the cube root has been left unspecified
in Cardano’s formulas. When I plugged Cardano’s formula into Mathematica

(Version 5.2) for numerical evaluation of Hwk 1, I got a wrong answer! This was due
to incompatible conventions about the proper choice of cube roots. Mathematica
chooses 1

2
(−1 + i

√
3) as cube root of −1, whereas we probably prefer to choose −1,

which was the tacitly intended choice in the present exposition.

Hwk: Make a mathematically correct and useful statement out of the power law (ab)c = abc

for real numbers. By mathematically correct, I mean that quantifiers like e.g. ‘for every real
number’ or ‘for every positive number’ or ‘for every integer’ should be given with each symbol,
and that with these quantifiers a true staement must result. By useful, I mean that the desirable
cases should be covered and there is room for interpretation of what is desirable. Include at least
one example of real a, b, c for which (ab)c and abc are both defined, but are not equal.

Construction and field axioms; no roots yet:

On the set R
2, we define addition as the usual vector addition (a, b) + (c, d) := (a + c, b + d)

and multiplication by (a, b) · (c, d) := (ac − bd, ad + bc). We often use the letters z and w for
elements of R2 in the context of this algebra, and we denote the set R

2 as C. Elements of C
are called complex numbers. The first coordinate a of (a, b) is called the real part of (a, b); the
second coordinate is called the imaginary part.

One can then prove that these operations satisfy the usual rules of algebra with real numbers,
known as field axioms:
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(C+) For any z, z′ ∈ C, it holds z + z′ = z′ + z.
(A+) For any z, z′, z′′ ∈ C, it holds (z + z′) + z′′ = z + (z′ + z′′).
(N+) There exists an element 0 ∈ C such that z + 0 = z for every z ∈ C. [It is an easy
consequence of (C+) that there can be only one such element.]
(I+) For each z ∈ C there exists an element w ∈ C such that z + w = 0. [It is then an easy
consequence of the axioms so far that w is uniquely determined by z. With this being said, we
may define −z to be the unique element w satisfying z + w = 0. ]

(C·) For any z, z′ ∈ C, it holds z · z′ = z′ · z.
(A·) For any z, z′, z′′ ∈ C, it holds (z · z′) · z′′ = z · (z′ · z′′).
(N·) There exists an element 1 ∈ C such that z ·1 = z for every z ∈ C. [It is an easy consequence
of (C·) that there can be only one such element.]
(01) 0 6= 1

(I·) For each z ∈ C \ {0} there exists an element w ∈ C such that z · w = 1. [It is then an easy
consequence of the axioms so far that w is uniquely determined by z. With this being said, we
may define z−1 to be the unique element w satisfying z · w = 1. ]

(D) For each z, z′, z′′ ∈ C it holds (z + z′) · z′′ = z · z′′ + z′ · z′′.
Each of these properties can be proved in a straightforward manner from similar properties for
real numbers and the definition of the operations. Specifically, one can identify (0, 0) as the
element 0 stipulated in (N+), and (1, 0) as the element 1 stipulated in (N·).
Concerning (I·), it can be verified that (a, b)−1 is actually ( a

a2+b2
, −b
a2+b2

).

Next we observe that (a, 0) + (b, 0) = (a+ b, 0) and (a, 0) · (b, 0) = (ab, 0). In other words, if we
restrict to the elements (a, 0) ∈ C they obey exactly the same arithmetic as the corresponding
elements a ∈ R, so we identify (a, 0) with a in the notation. Algebra folks will prefer to state
this property in the words: The mapping a 7→ (a, 0) is an injective field homomorphism from R

to C. With this identification, R becomes a subset of C. We can now assign the symbol i to the
special complex number (0, 1) ∈ C. Then, for real a, b we have a+ b · i = (a, 0) + (b, 0) · (0, 1) =
(a, 0) + (0, b) = (a, b). Moreover i · i = (0, 1) · (0, 1) = (−1, 0) = −(1, 0) = −1.

After this boring procedure, we write complex numbers always as a + bi instead of (a, b), and
we can be assured that calculating with these expressions according to the same algebra as real
numbers, subject to the extra rule that i · i = −1, is mathematically well founded. Note that
(−i) · (−i) is also equal to −1, so it is not clear which of i,−i should be called

√
−1 and which

−
√
−1.

We introduce subtraction and division by z−w := z+(−w), z/w := z ·w−1 (the latter assuming
w 6= 0). We define zn for positive integers n inductively; for z 6= 0, we define z0 = 1 and
z−n := (z−1)n.

While in later developments, a convention will be employed that defines
√
−1 to be i rather

than −i, it is probably preferrable for now not to use the notation
√
−1 at all and stick with

i instead. So for the moment (in defiance of 1.13 in the textbook) we will consider
√
−1 as a

notation that has not been properly defined yet. Be aware that naive algebra with this symbol
may run into contradictions and should therefore be avoided:

¿ − 1 = i · i =
√
−1 ·

√
−1

?
=

√

(−1)(−1) =
√
1 = 1 ?

So
√
a is, for now, only defined when a is a nonnegative real number, and the quadratic formula

should have a footnote saying ‘read ±
√
b2 − 4ac as ±i

√
4ac− b2 when the former is undefined’.

For the same reason, we do not presently define powers za of complex z for other exponents a
than integers. We’ll come to discuss this matter further when we discuss roots in more detail.
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No Order:

We also do not (now or ever) define the relations <, >, ≤, ≥ for complex numbers. There
cannot be a field together with an order relation > satisfying the usual ordered field axioms
(that I skip here) that at the same time would contain an element x satisfying x2 + 1 = 0.

Complex conjugates, arguments, absolute values:

For a complex z = a + bi with a, b real, we call a the real part and b the imaginary part of z,
in symbols a = Re z and b = Im z. Note that the imaginary part is the real quantity b, not the
imaginary quantity ib.

The complex conjugate z̄ of z = a+ bi with real a, b is defined to be a− ib. Note the following
rules, which can be easily checked:
z + w = z̄ + w̄
z − w = z̄ − w̄
z · w = z̄ · w̄
z/w = z̄/w̄
¯̄z = z

In the language of abstract algebra, complex conjugacy is a field automorphism of C and it is
its own inverse. For this reason, in view of ī = −i, there is no way of distinguishing i and
−i merely by properties of algebra. In more elementary words, any correct algebraic formula
involving complex numbers remains true if i gets consistently replaced with −i, in all explicit as
well as implicit occurrences; here replacing i with −i in implicit occurrences means to replace
any complex number by its complex conjugate.

If we represent the complex number z = a + bi ∈ C as the point or vector (a, b) in the plane
R
2 (per our original definition of complex numbers), we can associate with z also its polar

coordinates: We denote by |z| :=
√
a2 + b2 =

√
zz̄ the absolute value of z, and if we write

a = |z| cos φ, b = |z| sin φ, we call φ ‘the’ argument of z, written arg z.

arg z is only defined for z 6= 0, and even then it is only defined up to an integer multiple of 2π.
(Algebra buffs may view arg z as an element of the quotient group (R,+)/(2πZ,+), but to the
relief of non-algebraists, we will not insist on abstract algebra terminology.)

Ok, I cannot omit this joke here: Complex numbers have arguments and absolute values, but
they are neither cantankerous, nor bigoted;-)

The following new trig function cis is useful to introduce here:

cisφ := cosφ+ i sinφ

[If all the pathetic precal and cal textbooks out there would just refrain from introducing the
utterly useless miscreant functions secant and cosecant, they could actually do some good with
the saved time by introducing cis instead.]

What makes cis useful is the simple formula (that you can check by using the addition theorems
of sin and cos)

cis(φ+ θ) = cisφ · cis θ .

So cis behaves like an exponential function. We will later see that cisφ = eiφ, once we have
defined ez for z ∈ C. You should have seen this identity in the sophomore DiffEq class. By
that time, the notation cis will then hardly be needed any more. But in the meanwhile we can
use this distinct notation to explore various approaches to this fundamental identity without
implicitly assuming it in the notation eiφ already.
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