
A Glossary for Elementary Linear Algebra

NOTE: Text that is wrapped in /* . . . */ refers to facts that you will

not understand until after you encounter the listed concept the first

time. I want you to keep the glossary and so I make it useful for later

back reference and repetition. I don’t use /* . . . */ for material that

is only a week ahead.

Example: /* some wisdom about eigenvalues */end of M251

Linear Equation: An equation of the form a1x1 + a2x2 + . . . + anxn = b where
the aj and b stand for given quantities (e.g., numbers) and the xj are variables
(unknowns). Occurrence of terms like x2i , x1x2, cos xj , 1/xj would make the equation
nonlinear.

Matrix: A rectangular array of numbers (or symbols standing for numbers). An
m× n matrix is a matrix with m rows and n columns. We usually denote matrices
with capital letters like A, and their entries with the corresponding lowercase letters:
aij is the entry in the ith row and jth column of matrix A. Synonym: aij = (A)ij .
The fiRst index refers to the Row, the secoNd index refers to the columN.

Row and column vectors: A row vector is a 1 × n matrix (a matrix with only
one row), a column vector is a m× 1 matrix (a matrix with only one column).

Square Matrix: A matrix with as many rows as columns. The (main) diagonal
of a square matrix A (size n×n) consists of the elements a11, a22, . . . , ann; i.e., those:
[

❅❅

]

. The other ‘diagonal’
[

��
]

plays no role in matrix theory and doesn’t deserve

a name of its own. So diagonal always refers to main diagonal, unless specified
otherwise explicitly.

Trace of a square matrix: The sum of its diagonal entries. The trace becomes
more important in more advanced treatments of Lin’Alg’. In M251, it justly looks
a bit boring. The following facts are relevant about the trace:
tr(A+B) = trA+ trB.
tr(cA) = c trA.
tr(AB) = tr(BA) (even though AB my not be equal to BA).
/* Important fact: The trace of a matrix equals the sum of the eigenvalues of this
matrix (counting multiplicities, and accepting complex eigenvalues) */end of M251.

Augmented matrix of a system of linear equations: For the system

a11x1 + a12x2 + . . .+ a1nxn = b1
a21x1 + a22x2 + . . .+ a2nxn = b2

...
...

...
...

am1x1 + am2x2 + . . .+ amnxn = bm

the augmented matrix is










a11 a12 . . . a1n b1
a21 a22 . . . a2n b2
...

...
...

...
am1 am2 . . . amn bm










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Why ‘augmented’? Without the word ‘augmented’, the coefficient matrix of a
system of linear equations would only denote the matrix (aij) containing only the
coefficients from the left hand side. ‘Augmented’ refers to the fact that the bi have
been joined to the coefficient matrix.

Elementary row operations: These are the following:
(1) multiply a row by a non-zero number,
(2) add some multiple of one row to any other row,
(3) exchange rows.
Their main uses:
• Solving systems of linear equations by Gauss or Gauss Jordan elimination, applied
to the augmented matrix of the system
• /* Manipulating square matrices to calculate their determinant */Ch. 2

Gauss(ian) elimination: achieves row echelon form of the augmented matrix of
a system of linear equations by means of elementary row operations. The system so
obtained can then be solved by back substitution.
See book how it works in detail; no point copying it here

Gauss-Jordan elimination: goes beyond Gauss elimination, and it achieves
reduced row echelon form of the augmented matrix of a system of linear equations
by means of elementary row operations. The system so obtained is is in a form
where the solutions can be read off immediately.
See book how it works in detail; no point copying it here

Row echelon form: A matrix is in row echelon form, if
• The first nonzero entry in each row is 1 (if there is a nonzero entry in this row at
all). This entry is called a leading 1.
• Rows further down have their leading 1’s further right, and rows that are all 0’s
are at the bottom.

Example:

















0 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 1 ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 0 0 1 ∗ ∗ ∗
0 0 0 0 0 0 1 ∗ ∗
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

















where ∗ may represent any number.

Reduced row echelon form: Row echelon form, and also satisfying:
• In a column containing a leading 1, all other entries are 0.

Example:

















0 1 0 ∗ ∗ 0 0 ∗ ∗
0 0 1 ∗ ∗ 0 0 ∗ ∗
0 0 0 0 0 1 0 ∗ ∗
0 0 0 0 0 0 1 ∗ ∗
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

















where ∗ may represent any number.
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Transpose of a matrix: If A is an m × n matrix then its transpose, denoted
by AT , is the n×m matrix arising from A by changing columns into rows and vice
versa: (AT )ij = (A)ji; example:

If A =





1 2 3 4
0 7 9 2

−1 8 π 5



 then AT =









1 0 −1
2 7 8
3 9 π
4 2 5









What is the transpose of a matrix good for? The deeper reason cannot become trans-
parent until later: /* It has something to do with dual spaces */400 level linear algebra

But you get good glimpses earlier: /* The gradient of a function R
n → R can be de-

fined as the transpose of the Jacobi matrix of this function */M241. /* Transposing
a column vector to a row vector and vice versa is a way to relate the standard scalar
product between vectors to the matrix product */Ch. 4. /* Matrices that represent
rotations have the property that their transpose equals their inverse. */Ch. 6

Symmetric matrices: A matrix A is called symmetric, if AT = A. In particular,
symmetric matrices are square. /* The tensor of inertia in physics is a symmet-
ric matrix */theoretical mechanics course. /* Symmetric matrices have real eigenvalues
*/Ch. 7. /* In vector calculus, the Hessian of a (C2) function (matrix of its second
derivatives) is symmetric */M241.

Matrix algebra: Matrices of equal size can be added or subtracted by adding
or subtracting corresponding entries. Matrices can be multiplied by a number by
multiplying each of their entry with that number. In formulas: (A+B)ij = (A)ij +
(B)ij , (A − B)ij = (A)ij − (B)ij , (c · A)ij = c · (A)ij . These operations obey
the same rules as the corresponding operations on numbers, eg., A + B = B + A,
(A + B) + C = A + (B + C), c(A + B) = cA + cB. Addition and subtraction of
matrices of different size is NOT defined.
/* Matrices of given size form a commutative group under addition */advanced algebra

The multiplication of two matrices is defined if and only if the first factor has as
many columns as the second factor has rows. If A is an m × r matrix and B an
r×n matrix, then AB is an m×n matrix, with the entries: (AB)ij = (A)i1(B)1j +
(A)i2(B)2j + . . .+(A)ir(B)rj. The following rules hold, whenever the operations are
defined:

(A+B)C = AC+BC , C(A+B) = CA+CB , (AB)C = A(BC) , (AB)T = BTAT

In general, it is NOT true that AB equals BA. If AB is defined, then BA may or
may not be defined. If BA is also defined, it may or may not be equal to AB. In
the (exceptional) case when AB happens to be equal to BA, we say that A and B
commute. See the introductory notes for the geometrical interpretation of matrix
multiplication.

Zero matrices: A zero matrix is one whose entries are all zero. It plays the
same role with respect to matrix addition as the number 0 plays with respect to the
addition of numbers. We denote it by 0, or if the size of the zero matrix is relevant,
0m×n.
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Identity matrices: An identity matrix (aka unit matrix) is a square matrix whose
diagonal entries are all 1, and whose off-diagonal entries are all 0. We denote the
n× n identity matrix by In. Ex:

I3 =





1 0 0
0 1 0
0 0 1





The identity matrix plays the same role for matrix multiplication as the number 1
plays in the multiplication of numbers: AIn = ImA = A for any m× n matrix A.

Diagonal matrix: A square matrix that has non-zero entries only on the diagonal.
Nothing subtle about the concept. — If the coefficient matrix of a system of linear
equations is diagonal, the equations are uncoupled. /* The eigenvalue problem is
equivalent to finding a digaonal matrix similar to a given matrix */Ch. 7.

Triangular matrix: A square matrix A is called upper triangular, if aij = 0 for
i > j; it is called lower triangular, if aij = 0 for i < j. Triangular refers to either
upper or lower triangular. Ex:

An upper triangular
3× 3 matrix:





∗ ∗ ∗
0 ∗ ∗
0 0 ∗





A lower triangular
4× 4 matrix:









∗ 0 0 0
∗ ∗ 0 0
∗ ∗ ∗ 0
∗ ∗ ∗ ∗









The ∗ may represent any numbers (zero or non-zero). How do you call a matrix that
is upper triangular and lower triangular at the same time?

Linear homogeneous equation: If in a linear equation a1x1+a2x2+. . .+anxn =
b, the given b is 0, the equation is called homogeneous. A system of homogeneous
linear equation always has x1 = . . . = xn = 0 as a solution (there may be other
solutions as well). The solution x1 = . . . = 0 is called the trivial solution.

The word “homogeneous” comes from the Greek and means terms of the same kind.
Here, the same kind is “coefficient times variable”. A nonvanishing term on the
right hand side would be of a different kind, since it doesn’t contain a variable.
(This reasoning doesn’t apply to a zero on the rhs, because 0 = 0 · x, if you like.)
The word “trivial” is of Latin origin. trivium referred to a fork in the road. So,
“trivial” originally means “so common you can pick it up at every street corner”.
The zero solution is called trivial because you don’t need to work to find it; you just
pick it up for free.

/* In ODEs, a homogeneous linear ODE is also a linear ODE where the term that
doesn’t get multiplied with the unknown function or a derivative thereof vanishes;
the same usage of the word applies in this context as well. */M231

Inverse matrix: An inverse of a square matrix A is a matrix B satisfying AB =
BA = I. Basic facts: Not every square matrix has an inverse, but if it has an
inverse, the inverse is unique (i.e., there is only one inverse), and it is then denoted
by A−1. Actually, only one of the conditions AB = I and BA = I is sufficient to
ascertain that B is A−1; you don’t need both. /* A square matrix A has an inverse
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if and only if its determinant is not 0. Except for 2× 2, and maybe 3× 3 matrices,
this result is not very useful for practical purposes. */Ch. 2

If A and B are invertible, then so is AB. It holds (AB)−1 = B−1A−1. Note that
taking the inverse requires reversing the order of the factors! – If A is invertible,
then so is AT , and (AT )−1 = (A−1)T . The shorthand A−T is occasionally used
for (AT )−1 = (A−1)T , but if you use it, make sure it doesn’t seduce into wrongly
thinking the T denoted a power.

invertible; singular: A square matrix is called invertible if it has an inverse.
Otherwise, it is called singular.

Calculating the inverse of a matrix: Generally, as follows: Given an n × n
matrix A, to solve AB = I for B means to solve simultaneously n systems Abj = ej ,
where bj and ej denote the j

th column of B and I respectively. Apply Gauss–Jordan
elimination to the “multiply augmented” matrix [A|I] to obtain reduced row echelon
form. If this form is [I|B], then B is the inverse of A. If instead the reduced row
echelon form contains a row beginning with n zeros (or as soon as a row beginning
with n zeros shows up in the algorithm), you can conclude that A is not invertible.







2 −1 3 1 0 0

1

2
1 −3 0 1 0

1 2 −5 0 0 1






>Gauss–Jordan







1 0 0 2

5

2

5
0

0 1 0 −1

5
−26

5
3

0 0 1 0 −2 1







For a 2× 2 matrix, the following formula is convenient (/* it’s related to the deter-
minant criterion */Ch. 2):

[

a b
c d

]−1

=
1

ad− bc

[

d −b
−c a

]

provided ad− bc 6= 0. If ad− bc = 0, the matrix is not invertible.

Elementary matrices: They are a theoretical device for the following purpose:
Any elementary row operation on a matrix A corresponds to multiplying A from
the left with an appropriate elementary matrix; namely (compare with the list of
elementary row operations above):

To multiply the ith row of an m × n
matrix A with a nonzero number a is
the same as calculating EA where . . . . . . . . . E =















1
1

. . .
a

1
and a is at position (i, i) . . .















To add a times the ith row of an m× n
matrix A to the jth row is the same as
calculating EA where . . . . . . . . . . . . . . . . . . . . . E =













1
1

1

a
. . .

1and a is at position (j, i)
1












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To exchange the ith and the jth row of
an m × n matrix A is the same as cal-
culating EA where . . . . . . . . . . . . . . . . . . . . . . . . E =











1
0 1

1
1

1 0and the off-diagonal ones are
at positions (j, i) and (i, j) 1











This way, if you can reduce a square matrix A to an identity matrix by means of
a sequence of elementary row operations, then A is the product of the elementary
matrices corresponding to these row operations.

Elementary matrices are invertible, and the inverse of an elementary matrix is again
an elementary matrix. (In other words: what an elementary row operation does, can
also be undone by an elementary row operation.) Samples illustrating the inverse of
elementary matrices are:





1
1

a





−1

=





1
1

a−1



 ,





1
1
a 1





−1

=





1
1

−a 1









1
0 1
1 0





−1

=





1
0 1
1 0





Properties of systems of linear equations with a square coefficient matrix:
(i.e., with as many equations as unknowns) — The following are equivalent for a
square (n× n) matrix A and linear systems Ax = b with n-vectors b:
(a) The coefficient matrix A is invertible
(b) The homogeneous equation Ax = 0 has only the trivial solution x = 0
(c) The reduced row echelon form of A is the identity matrix In
(d) A can be written as a product of elementary matrices
(e) The inhomogeneous equation Ax = b has a solution for every b

(f) For every b, the inhomogeneous equation Ax = b has exactly one solution
(g) For some b, the inhomogeneous equation Ax = b has exactly one solution.

Superposition principle: If x1 and x2 solve the homogeneous equation Ax = 0,
then so does any x = c1x1 + c2x2 with numbers c1 and c2. In particular, multiples
of solutions to a homogeneous linear equation are also solutions.
If you have some solution x∗ of the inhomogeneous equation Ax = b, and know (one
or several) solutions x1, . . . of the homogeneous equation Ax = 0, you can obtain
more solutions of the inhomogeneous equation in the form x∗ + c1x1 + . . .. In this
context the one solution x∗ you started with is called a particular solution. (There
is nothing particular about a particular solution as such; what gives it the adjective
‘particular’ is that, for whatever reason, it’s the one you encountered first.)
If you have a particular solution x∗ of the inhomogeneous equation Ax = b, and
know all solutions xh of the homogeneous equation Ax = 0, you can obtain all
solutions of the inhomogeneous equation in the form x∗ + xh. The word “general
solution” is often used to denote the set of all solutions of a linear equation (homoge-
neous or inhomogeneous). /* This principle is of particular relevance, when applied
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to linear differential equations. Be aware that it is a priciple based on linearity alone,
it has nothing to do with ODEs as such; it can be applied to linear ODEs, because
they are linear, not because they are ODEs. */M231

An immediate consequence of the superposition principle is: An linear equation
that has more than one solution, automatically has infinitely many. /* That as-
sumes that there are infinitely many scalars (which in this class are real (or if you
prefer: complex) numbers; in advanced linear algebra you may have different types
of scalars, where this assumption becomes relevant */M457 maybe, or M455-456

Linear combinations; scalars: ‘Scalar’ is another word for ‘number’; it is used
with the focus: ‘number, not vector or matrix’ in mind. A linear combination of a
(finite) set of vectors x1,x2, . . .xj, is an expression of the form c1x1+c2x2+. . . cjxj ,
with any choice of numbers (scalars) c1, c2, . . . cj . /* The words are also used in a
more general context, where vectors are abstract vectors, like, e.g., functions. The
concept of linear combination of functions (that solve a linear ODE) is the most
important instance for you */Ch. 5; M231

/* Borderline definition: the only linear combination of an empty set of vectors is
the null vector 0 */

Products and inverses of special types of matrices: (see their definitions
above) The product of upper triangular matrices (of the same size of course) is
upper triangular. The product of lower triangular matrices (of the same size of
course) is lower triangular. The inverse of an upper (lower) triangular matrix, is
upper (lower) triangular, provided it exists at all. An upper (lower) triangular
matrix is invertible, if and only if its diagonal entries are non-zero. (Don’t even
think of applying such a diagonal test to other matrices! You’re doomed if you do.)
Corresponding statements apply to diagonal matrices, which are upper and lower
triangular at the same time.

The inverse of a symmetric matrix is symmetric, provided the inverse exists. How-
ever, the product of symmetric matrices (of the same size of course) need not be
symmetric. (It is symmetric if and only if the matrices commute.) To understand
this fact, remember that (AB)T = BTAT , not ATBT .

LU decomposition: If a square matrix A can be brought into row echelon form
by means of elementary row operations excluding the interchange of rows, then it
can be written as a product of a lower triangular matrix L and an upper triangular
matrix U . This is called LU decomposition. In the LU decomposition of matrix A,
the matrix U is what you get from A by means of Gauss elimination (without row
exchanges), whereas the entries of the matrix L encode the row operations you used
during the Gauss elimination.

The method (or a slightly more elaborate version that does allow for the exchange
of rows) is the favorite general method for solving systems of linear equations with
a square coefficient matrix on a computer. To solve a system LUx = b, given L, U ,
and b, you first solve Lc = b for c (by simple forward substitution), then you solve
Ux = c, by backward substitution.

/* For large systems with a sparse coefficient matrix (i.e., one where most coefficients
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are 0, more effective methodes are favored, because L and U may have all non-zero
entries, even if A has many zero entries. — For instance if A is a 1000×1000 matrix
of whose 1 million entries only 3000 are different from zero, you’d certainly prefer
a method that only needs to calculate a few 1000 numbers, rather than the half
million of entries in each of L and U . */numerical linear algebra course

Geometric vectors in the plane and in space: These can be viewed as directed
line segments (arrows) between two points in the plane (or in space), but with the
stipulation that translating such segments (without turning) results in the same
vector. /* In a more formal and abstract way, one could define such a vector as an
equivalence class of ordered pairs of points */e.g., M300. Notations for vectors are
often boldface lowercase letters like a, or lowercase letters with arrows on top, like ~a.

If points A, B are specified:
−→
AB. The negative of a vector corresponds to the same

segment, but with opposite direction. A vector
−→
AA is called zero vector, denoted ~0

or 0.

✑
✑
✑
✑
✑✸

✑
✑
✑
✑
✑✸

A

B

C

D~a

~a

~a =
−→
AB =

−→
CD

−~a =
−→
BA =

−→
DC

Arithmetic of geometric vectors: Vectors can be added, and multiplied with
(real) numbers. Numbers are called scalars when used in the context of vectors.
Vectors are added as follows: To get ~a +~b, move the tail of ~b at the tip of ~a; then

~a + ~b goes from the tail of ~a to the tip of ~b, i.e.,
−→
AB +

−→
BC =

−→
AC. For k > 0, k

times a vector ~a, denoted k~a has the same direction as ~a, but k times its length. For
k < 0, k~a has the opposite direction as ~a, but |k| times its length.

✑
✑
✑
✑
✑
✑✸❅

❅
❅
❅❘

❅
❅
❅
❅❘✑

✑
✑
✑
✑
✑✸

~a ~b

~b ~a

✲~a+~b =
~b+ ~a

✚
✚❃
✚
✚
✚
✚
✚❃
✚

✚
✚❂~c

5

2
~c −3

2
~c

Geometric vectors expressed in (with respect to) coordinates: For points
A, B in the plane, with coordinates A(a1, a2) and B(b1, b2), the geometric vector−→
AB corresponds to the row vector (1× 2 matrix) [b1− a1, b2 − a2]. Then addition of
geometric vectors corresponds to addition of their corresponding row vectors, and
multiplication of geometric vectors with scalars (i.e., with numbers) corresponds to
the multiplication of row vectors with scalars. The same can be done for geometric
vectors in space; then the row vectors are 1× 3-matrices.

It is likewise possible to get a correspondence with column vectors
[

b1−a1
b2−a2

]

instead of

row vectors [b1−a1, b2−a2], in the very same way. As long as vectors are not brought
together with matrices, the choice between row and column vectors is arbitrary. For
mere typographical reasons, row vectors are then preferred. However, as soon as we
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will bring vectors together with matrices, a generally accepted convention requires
that geometric vectors be represented by column vectors. The best way to abide
by this convention and still harvest the typesetting convenience of rows is to write
columns as the transpose of rows: [a, b, c]T

Basic rules of vector arithmetic:

~a+~b = ~b+ ~a (k + l)~a = k~a+ l~a

(~a+~b) + ~c = ~a+ (~b+ ~c) k(~a+~b) = k~a+ k~b

~a+~0 = ~a k(l~a) = (kl)~a

~a+ (−~a) = ~0 1~a = ~a

The list is not exhaustive; another rule is for instance 0~a = ~0. You won’t have
practical difficulties handling the rules of vector arithmetic. The list given here is
sufficient in the sense that all other rules can be deduced (proved) as consequences
of the given ones. /* These same rules will define the arithmetic with abstract
vectors. Any set of objects for which an operation of addition and a multiplication
with numbers is defined such that the above rules are valid, may be called a vector
space (and the elements of that set will be called vectors). For instance, if you let
the above arrowed symbols stand for functions, or m × n matrices, the same rules
apply. The set of numbers (scalars) may then also be the set of complex, rather
than real, numbers, even though this forfeits the geometric interpretation */Ch. 5 —
Note also the expected notation ~a−~b := ~a+ (−~b).
Norm and dot product: For geometric vectors ~a and ~b in the plane or in
space, the norm is defined as the length, and denoted by ‖~a‖. In coordinates, if
~a = [a1, a2, a3]

T , then ‖~a‖ :=
√

a21 + a22 + a23 (for spatial vectors; in the plane, it’s of

course
√

a2
1
+ a2

2
). The dot product ~a ·~b is defined as the scalar ‖~a‖ ‖~b‖ cosϕ, where

ϕ is the angle between the vectors ~a and ~b. If one of the vectors is ~0, the scalar
product is defined to be 0, even though an angle ϕ between 0 and another vector
is not meaningful. In coordinates, if ~a = [a1, a2, a3]

T and ~b = [b1, b2, b3]
T , the dot

product can be calculated as ~a ·~b = a1b1 + a2b2 + a3b3 (for spatial vectors; only two
terms occur for planar vectors). The dot product may also be called scalar product .
The rules for the dot product are:

~a ·~b = ~b · ~a

~a · (~b+ ~c) = ~a ·
~b+ ~a · ~c

~a · (k~b) = k(~a ·
~b)

~a · ~a > 0 unless ~a = ~0 (in which case it is 0)

The norm can be calculated from the dot product: ‖~a‖ =
√
~a · ~a. It is also possible

to obtain the dot product in terms of the norm: ~a ·~b = 1

4
(‖~a +~b‖2 − ‖~a−~b‖2).

Vectors, scalars, and the scalar product in physics: In Newton’s times,
equations for forces, velocities and accelerations would still have been written in
terms of coordinate components, for lack of an appropriate vector notation. For in-
stance the gravitation force by the sun (assumed to sit in the origin of the coordinate
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system) on a planet is:

Fx = −GmMx/(x2 + y2 + z2)3/2

Fy = −GmMy/(x2 + y2 + z2)3/2

Fz = −GmMz/(x2 + y2 + z2)3/2

This is not only a lot to write, but it has certain disadvantages: The fact that the
direction of the force goes towards the sun could be more succinctly visible than it is
in these formulas. The coordinate system we are using has not been specified. It is
a fiction of our mind for the purpose of doing calculation, but has no physical reality
of its own. In spite of the fact that the position (represented by the triple of numbers
(x, y, z)) and the force (represented by the triple of numbers (Fx, Fy , Fz)) are genuine
physical quantities, each of the six coordinate quantities x, y, z, Fx, Fy, Fz has no
physical reality, but depends on our artificial and arbitrary choice of a coordinate
system. The geometric vectors ~x (whose coordinate representation happens to be
[x, y, z]T ) and ~F (whose coordinate representation happens to be [Fx, Fy, Fz]

T ) are
the true objects of physics. Using them, you may introduce a coordinate system,
but you are not dependent on it. The equation for the force now reads

~F = −GmM

‖~x‖2
~x

‖~x‖

Physics also explains the word “scalar” for number. The idea behind the word is
that pure number quantities (which do not have a direction, unlike forces), e.g.,
temperature, or mass, can be represented on a scale, and that’s where the name
comes from.

The most relevant example for a scalar product in physics is work. Lifting a heavy
object qualifies as work in physics, but moving it horizontally, does not (assuming
there is no friction); nor does merely holding the object.

✻

✏✏✏✏✏✏✏✏✏✏✏✏✶

ϕ

~F
~s

. . . . . . . . . . . . . . . . . . . . . . . . . .

‖~s‖ cosϕ
work is ~F · ~s

Vectors that are orthogonal to each other: Orthogonal means perpendicular
in this context. Based on the formula ~u · ~v = ‖~u‖ ‖~v‖ cosϕ, we see that two vectors
~u and ~v are orthogonal (perpendicular), if and only if ~u · ~v = 0. Geometrically,
this makes sense if neither of ~u, ~v is the zero vector. By definition, we call ~u
and ~v orthogonal, whenever ~u · ~v = 0, even if this relation is due not to a right
angle, but to the vanishing of one of the vectors: By definition, the zero vector
is orthogonal to any vector. /* In the abstract theory of vector spaces, the same
algebraic definition will apply, even in the absence of a geometrical interpretation
as an angle */Ch. 6 — /* When in calculus, or in the theory of Fourier series,
the formula

∫ 2π
0

sinmx cosnx dx = 0 and similar formulas are called orthogonality
relations, then there is indeed a generalized version of this present definition of
orthogonality behind the name. You’ll see the analogy in chapter 6 */
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Cross product of vectors; geometric definition: The cross product ~u × ~v
(also called vector product) is defined only for geometric vectors in space, and it is
again a vector. The length of ~u × ~v is ‖~u‖ ‖~v‖ sinϕ where ϕ is the angle between
~u and ~v. This is the area of the parallelogram spanned by ~u and ~v. If ~u and ~v are
parallel (i.e., ϕ = 0 or ϕ = π), then the length of ~u× ~v is 0 by this formula, and so
~u× ~v = ~0. Otherwise, the direction of ~u× ~v is perpendicular to the plane spanned
by ~u and ~v. These two conditions (a certain length and direction perpendicular to
a certain plane) leave only two choices for ~u× ~v, one of which is the negative of the
other. The decision between the two possibilities is made as follows: Take the right
hand with the thumb in hitchhiking position. Think of turning the first vector ~u
towards the second vector ~v. The four fingers should point in the direction in which
you would turn ~u. Then the thumb gives the direction of ~u× ~v.

Rules for the cross product:

(a) ~u× ~v = −~v × ~u Order is of essence! — In particular ~u× ~u = ~0
(b) Parentheses are of essence! It is not true that “(~u× ~v)× ~w = ~u× (~v × ~w)”

Therefore “~u× ~v × ~w” without parentheses is meaningless
(c) ~u× (~v + ~w) = ~u× ~v + ~u× ~w

(~v + ~w)× ~u = ~v × ~u+ ~w × ~u
(d) ~u× (k~v) = k(~u× ~v) , (k~u)× ~v = k(~u× ~v)

(a) is clear if you look at the right hand rule. To understand (b), try a counterex-
ample: ~u = [1, 0, 0]T , ~v = ~w = [0, 1, 0]T . Rule (c) can be seen geometrically in some
special cases, but will become clearer from the component formulas below. You
should be able to see rule (d) geometrically.

The cross product in terms of components: The formula for the cross product
in a right-handed coordinate system is as follows:





u1
u2
u3



×





v1
v2
v3



 =





u2v3 − u3v2
u3v1 − u1v3
u1v2 − u2v1





A coordinate system is called right-handed, if the right-hand rule applies as follows:
you try to turn the first coordinate axis towards the second coordinate axis, and to
display the turning direction by means of the right hand in hitchhike position. If
the thumb points towards the third coordinate axis (not in the opposite direction),
the coordinate system is right-handed; otherwise left-handed. It’s not so easy to
come up with the above formula, based on the geometric definition of ~u× ~v, but it
is straightforward to check that the vector [u2v3−u3v2 , u3v1−u1v3 , u1v2−u2v1]

T

is indeed orthogonal both to ~u and ~v, and has the correct length. Note that

‖~u× ~v‖ = ‖~u‖ ‖~v‖ | sinϕ| =
√

‖~u‖2‖~v‖2 − (~u · ~v)2

The cross product in physics: /* Here are two occurrences of the cross product
in physics: if an electrical particle with charge q (a scalar) moves with velocity ~v
(a vector) through a magnetic field ~B (also a vector), it experiences a force ~F
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(called Lorentz force) that is perpendicular to the direction of motion, and also
perpendicular to the magnetic field: ~F = q~v × ~B.

If (e.g.) wind moves with velocity ~v on the earth, then due to the rotation of the earth,
the wind undergoes a sidewards acceleration ~a according to the formula ~a = 2~ω×~v.
Here ~ω is a vector pointing in the direction of the axis of rotation (namely form the
south pole towards the north pole), but with length equal the angular velocity of the
rotation (namely for the earth, 2π/24 hours). This is called the Coriolis acceleration,
caused by the Coriolis force, which applies to motion in rotating systems. You can
experience the Coriolis force if you spin around like a figure skater on ice doing
a pirouette, but with arms stretched out initially. If you then move your arms
towards your body, you feel the force on the arms. For the same reason, long range
air currents that would otherwise blow from the equator northwards, get deflected
eastward. */For math, phys’ and mech-engr majors

Relations among cross product, volume, area, and determinants: For
vectors [u1, u2]

T and [v1, v2]
T in the plane, the (oriented) area of the parallelogram

spanned by them is u1v2 − u2v1, as can be seen in the figure.

✁
✁
✁
✁
✁
✁✕

✘✘✘✘✘✘✘✘✘✘✘✘✿✁
✁
✁
✁
✁
✁✕

✘✘✘✘✘✘✘✘✘✘✘✘✿

~u

~u

~v

~v

A

B

C D

E

F

G
area AEGB = area ACB + area CFGB

− area ADE − area DFGE

=
1

2
v1v2 + u1

v2 + (u2 + v2)

2

− 1

2
u1u2 − v1

u2 + (u2 + v2)

2
= u1v2 − u2v1

This number u1v2 − u2v1 is exactly the third component of the cross product of the
spatial vectors ~u = [u1, u2, 0]

T and ~v = [v1, v2, 0]
T . The expression u1v2 − u2v1 is

also written as

u1v2 − u2v1 =:

∣

∣

∣

∣

u1 v1
u2 v2

∣

∣

∣

∣

=: det

[

u1 v1
u2 v2

]

and is called the determinant of the 2 × 2 matrix

[

u1 v1
u2 v2

]

. In other words, the

determinant of a 2 × 2 matrix represents the oriented area of the parallelogram
spanned by its column vectors.

The mixed product ~u · (~v × ~w),
often called scalar triple product ,
of three spatial vectors ~u, ~v and
~w is the oriented volume of the
parallelepiped spanned by these
three vectors. (The crazy tongue-
twister “parallelepiped” denotes
the 3-dimensional analog of a par-
allelogram.)

✏✏✏✏✏✏✏✶

✁
✁
✁
✁
✁✁✕

✄
✄
✄
✄
✄
✄
✄✗

✏✏✏✏✏
✏✏✏✏✏✏✏✏✏

✏✏✏✏✏✏✏

✁
✁
✁
✁
✁✁

✁
✁
✁
✁
✁✁

✁
✁
✁
✁
✁✁

✄
✄
✄
✄
✄
✄
✄

✄
✄

✄
✄
✄
✄✄ ✄

✄
✄
✄
✄
✄
✄

~v

~w

~u

the parallelepiped

spanned by ~u, ~v, ~w
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This is because ‖~v × ~w‖ is the base area, and ‖~u‖ cosϕ (with ϕ the angle between
~v× ~w and ~u) is just the height. We say oriented volume, because this number could
be positive or negative, depending on the order in which ~u, ~v and ~w are listed. The
(standard) volume is the absolute value of the oriented volume.

In coordinates:

~u · (~v × ~w) =





u1
u2
u3





·

(





v1
v2
v3



×





w1

w2

w3





)

=





u1
u2
u3





·





v2w3 − v3w2

v3w1 − v1w3

v1w2 − v2w1



 = u1v2w3 + u2v3w1 +

+u3v1w2 − u1v3w2 − u2v1w3 − u3v2w1 =:

∣

∣

∣

∣

∣

∣

u1 v1 w1

u2 v2 w2

u3 v3 w3

∣

∣

∣

∣

∣

∣

=: det





u1 v1 w1

u2 v2 w2

u3 v3 w3





This latter expression is called the determinant of a 3 × 3 matrix, or, in short, a
3× 3 determinant.

In general, to every n × n matrix A, we can assign a number detA , called its
determinant. For n = 2 it represents an (oriented) area, for n = 3, it represents
an (oriented) volume. Below, it will be dicussed algebraically for general n (2, 3 or
larger).

Note that the cross product can be written neatly in terms of determinants, if we
use the abbreviations ~e1, ~e2, ~e3 for the unit coordinate vectors [1, 0, 0]T , [0, 1, 0]T

and [0, 0, 1]T respectively:





u1
u2
u3



×





v1
v2
v3



 =

∣

∣

∣

∣

∣

∣

~e1 u1 v1
~e2 u2 v2
~e3 u3 v3

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

~e1 ~e2 ~e3
u1 u2 u3
v1 v2 v3

∣

∣

∣

∣

∣

∣

=



















∣

∣

∣

∣

u2 v2
u3 v3

∣

∣

∣

∣

∣

∣

∣

∣

u3 v3
u1 v1

∣

∣

∣

∣

∣

∣

∣

∣

u1 v1
u2 v2

∣

∣

∣

∣



















More formulas for cross and scalar triple products:
(not intended for memorization)

~u · (~v × ~w) = ~v · (~w × ~u) = ~w · (~u× ~v)
~u× (~v × ~w) = ~v (~u · ~w)− ~w (~u · ~v)
(~u× ~v)× ~w = ~v (~u · ~w)− ~u (~v · ~w)

The determinant of a square matrix: To every square matrix A, one can assign
a number, detA, called the determinant of A. An n×n determinant detA is a sum
of the n! terms ±a1j1a2j2 . . . anjn , where (j1, j2, . . . , jn) can be any permutation of
(1, 2, . . . , n), and the + sign is to be chosen for so-called even permutations, the
− sign for so-called odd permutations:

Even and odd permutations: A permutation is called even, if it occurs an
even number of times that a larger number precedes a smaller one. Otherwise the
permutation is called odd. There is another way to characterize even and odd
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permutations (and it gives the same result, although this is not obvious): Think
of achieving the permutation by successive swapping of pairs of numbers. The
permutation is even (resp. odd), if an even (resp. odd) number of swaps is required.
Example: The permutation (5, 3, 4, 6, 2, 1) is odd: there are 11 occurrences of a larger
number preceding a smaller one, namely: 5 > 3, 5 > 4, 5 > 2, 5 > 1; 3 > 2, 3 > 1;
4 > 2, 4 > 1; 6 > 2, 6 > 1; 2 > 1. You can obtain (534621) from (123456) by means
of (e.g.) 5 swaps, e.g., (123456) → (523416) → (532416) → (534216) → (534261) →
(534621). You may also do it with 7 or 9 swaps, but it won’t be possible with an
even number of swaps. — Calculating n × n determinants by means of adding n!
products (with + or − sign, depending on whether the permutation is even or odd),
is outrageously tedious, except for n = 2 and n = 3, or rare cases where most factors
vanish immediately.

More about determinants: The determinant satisfies the following properties,
which can be used to calculate it:
• If you exchange two rows in a matrix, the determinant changes its sign.
• If you multiply a row by a number k, the determinant gets multiplied by k. If a
row consists of zeros only, the determinant is 0.
• If you add a multiple of one row to another row, the determinant remains the
same.

The same rules apply with “columns” instead of “rows”. In principle, these rules
permit to calculate determinants by means of row operations that transform the
given matrix into reduced row echelon form. It is true, but far from obvious, that
the result of the calculation does not depend on the precise row operations nor the
order in which they are carried out.

They are geometrically intuitive if you have the area / volume interpretation for
n = 2 or n = 3 in mind.

• The determinant of a triangular matrix is the product of its diagonal entries.
• det(AT ) = detA
• det(AB) = (detA) (detB)
• det(kA) = kn detA
• A matrix is invertible, if and only if its determinant is non-zero. Then,

det(A−1) = 1/detA
• det(A+B) is not detA+ detB ; no formula available for det(A+B)
• If A, B, C differ only in a single row, say the rth row, and if furthermore

the rth row of C is the sum of the rth rows of A and B, then
detC = detA+ detB

Minors and cofactors: The minor of an entry aij of a square (n × n) matrix A
is the determinant of the (n− 1)× (n− 1) matrix obtained from A by deleting the
column and the row containing aij . Let’s call the minor as Mij. The cofactor Cij is
defined as Cij = (−1)i+jMij . The cofactors play a role in the following formula for
determinants (cofactor expansion along the ith row, or along the jth column):

detA = ai1Ci1 + ai2Ci2 + . . .+ ainCin

detA = a1jC1j + a2jC2j + . . .+ anjCnj
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/* One needs permutation groups: There is no point in trying to prove the
basic results about determinants at the level of a first course in matrix algebra. The
distinction between even and odd permutations can be naively defined by counting
inversions, but it is a more sophisticated thing to understand why such a definition
makes any sense. The key issue is that permutations form a group, as defined in
abstract algebra; in order to prove results about determinants, one must first study
this group. */Abstract algebra

Calculational effectiveness: If you calculate an n×n determinant based on the
definition, you have to add up n! terms, each of which is a product of n factors.
For n = 10, this would be 3.6 million additions and 32 million multiplications. The
very same row operations that are used for an LU decomposition (possibly together
with swapping some rows) can be achieved with roughly n3/3 additions and n3/3
multiplications (each about 330 for n = 10), so row or column operations are much
more effective. You use them in a convenient way to create many zeros with little
work.

Cofactor expansions alone would end up in the same n! terms as a calculation by the
original definition. They are useful in combination with row or column operations:
First use row or column oerations to obtain a column or row that contains many
zeros (typically only one, at most two nonzero entries), then use a cofactor expansion
on that column / row.

The adjoint matrix: Given a square matrix A, the matrix whose entries are the
cofactors Cij is called the cofactor matrix. In itself, the cofactor matrix is of little
importance; however its transpose is called the adjoint matrix of A, and written as
adj(A); and the adjoint matrix does play a role: Namely, there is a “formula” for
the inverse matrix:

A is invertible if and only if detA 6= 0, and then A−1 =
1

detA
adj(A)

This formula is not useful for practical calculation of A−1, except if n = 2 or n = 3.
Too much calculational effort. However, it serves a theoretical purpose: For instance,

it tells us, without actual calculation, that all entries of A(x) =





1 2 x

x 2 1

−1 1 4





−1

are

rational functions of x (and therefore depend continously on x as long as A(x) is
invertible).

Note however that for n = 2, the formula A−1 = adj(A)/detA is very convenient,
and it is nothing but the good old

[

a b
c d

]−1

=
1

ad− bc

[

d −b
−c a

]

for an invertible matrix.

/* Warning about the notion “adjoint matrix”: There are two different con-
cepts in mathematics that both carry the name “adjoint matrix”, but have nothing
to do with each other. In this course, we only need the one defined above. However,
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you are very likely to encounter the other notion as well some time later. If you
permit complex numbers as entries of matrices, then the conjugate transpose A∗ of
a matrix A (discussed in Ch. 10, which we will not cover) is sometimes also called
adjoint. You will most likely encounter the concept of conjugate transpose some
time, if you are a physics or math major. (Physicists have much use for A∗, but
hardly any for adjA, and are perfectly at ease with calling A∗ “adjoint” of A. So
when you encounter the notion outside this class, watch out what it means there.
*/

Cramer’s rule: If A is an invertible n×n matrix, the solution of the linear system
Ax = b is given by

x1 =
detA1

detA
, x2 =

detA2

detA
, . . . , xn =

detAn

detA
,

where you obtain the matrix Ai from the matrix A by replacing its ith column
with the right hand side b. — Cramer’s is not useful for solving linear systems
in practice, except if n = 2 or n = 3. Too much calculational effort. It serves a
theoretical purpose; similarly as for the formula A−1 = adj(A)/detA.

One other instance where Cramer’s rule may be helpful in practice is, if you only
are interested in solving for one variable in a system of equations, but do not care
about the other variables.

n-dimensional space (n-space): R
n denotes the set of ordered n-tupels (i.e.

pairs, triples, quadruples etc.) of real numbers: (x1, x2, . . . xn) where each xi is a
real number. We can think of an element of R2 as a point in the plane, and of an
element of R3 as a point in space. Equivalently, we may think of them as a vector in
the plane or in space, where a point corresponds to its position vector: the position
vector of a point is the vector pointing from the origin of the coordinate system
to that point. The zero vector 0 = (0, 0, . . . , 0) corresponds to the origin of the
coordinate system. As anticipated already previously, we will soon need to write
the vectors as column vectors (such as to multiply them with matrices); so we will
write [x1, x2, . . . xn]

T rather than (x1, x2, . . . xn).

In the absence of an immediate geometric intuition, we will still call Rn for n > 3
the n-dimensional space, or n-space, and we will refer to its elements as points, and
will use geometric notions from 2-space (the plane) or 3-space (our intuitive ambient
space) also in R

n by analogy.

Vector arithmetic in n-space: Elements of Rn can be added and can be multi-
plied with real numbers; the definition of these operations is as expected:

[u1, u2, . . . un]
T + [v1, v2, . . . vn]

T = [u1 + v1, u2 + v2, . . . un + vn]
T

c[u1, u2, . . . un]
T = [cu1, cu2, . . . cun]

T

The rules for this arithmetic are the very same we encountered in 2-space and 3-
space (see page 9), and they will be same in abstract vector spaces (to be discussed
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below), namely:

u+ v = v + u (k + l)u = ku+ lu
(u+ v) +w = u+ (v +w) k(u+ v) = ku+ kv
u+ 0 = u k(lu) = (kl)u
u+ (−u) = 0 1u = u

where −u is shorthand for (−1)u, and u− v will be shorthand for u+ (−v).

Norm and dot product in n-space: For u,v ∈ R
n, we define the (euclidean)

norm ‖u‖ :=
√

u21 + u22 + . . .+ u2n, and the dot product u·v := u1v1+u2v2+. . . unvn.
Clearly, the norm can be expressed in terms of the dot product: ‖u‖ =

√
u · u.

Conversely (but not quite so obviously), the dot product can be expressed in terms
of the norm as well:

u · v =
1

4

(

‖u+ v‖2 − ‖u− v‖2
)

This formula is sometimes known under the name of polarization identity , and you
can immediately convince yourself that it is correct by writing the right hand side
in terms of the dot product, and simplifying.

The rules for the dot product are are the same as in 2-space or 3-space (see page 9):

u · v = v · u

u · (v +w) = u · v + u ·w

u · (kv) = k(u · v)
u · u > 0 unless u = 0 (in which case the dot product equals 0)

/* The concept of a norm is amenable to vast generalization; this is why we may call
the particular norm used in this course the euclidean norm, to distinguish it from
other examples of more general norms. However, as there is no other norm but the
euclidean one in the course, we may also omit the adjective euclidean. */

Another important fact (in advanced calculus applications) is the inequality |u·v| ≤
‖u‖ ‖v‖, which is known under the name Cauchy-Schwarz inequality in the western
literature, and under the name (Cauchy-)Bunyakovsky inequality among Russian
scholars. As an aside, the Cauchy-Schwarz inequality permits you to carry over
the geometric intuition of an angle between vectors from 2-space and 3-space into

n-space, by defining the angle between u and v to be arccos
(

u · v/(‖u‖ ‖v‖)
)

.

Vectors u and v are called orthogonal , if their dot product is zero. For orthogonal
vectors, the Pythagorean theorem ‖u+ v‖2 = ‖u‖2 + ‖v‖2 applies.

Dot product and matrix product: For column vectors u and v, it holds
obviously: u · v = uTv = vTu.

Distance and norm in n-dimensional space: /* The following properties of
the norm are easy, but need to be stressed here, because they, too, will permit a
vast generalization in more advanced treatments: */Adv. calculus; functional analysis

(a) ‖u‖ ≥ 0 with ‖u‖ = 0 if and only if u = 0
(b) ‖ku‖ = |k| ‖u‖
(c) ‖u+ v‖ ≤ ‖u‖+ ‖v‖
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They spawn the concept of a distance between two points (or vectors) in n-space,
which generalizes the euclidean distance in 2-space and 3-space: The distance be-
tween u and v is denoted by d(u,v) and defined as d(u,v) := ‖u−v‖. Its properties
are:

(a) d(u,v) ≥ 0 with d(u,v) = 0 if and only if u = v

(b) d(u,v) = d(v,u)
(c) d(u,w) ≤ d(u,v) + d(v,w)

The properties (c) for norm and distance are also known under the name of triangle
inequality.

/* The distance, too, plays no big role for linear algebra proper, but is introduced
as a service for advanced calculus, for a modern language version of multivariable
calculus, and for functional analysis. */

/* In contradistinction to more general norms, our euclidean norm obeys another
formula: ‖u+v‖2+‖u−v‖2 = 2(‖u‖2+‖v‖2). As it turns out, it is this formula that
is responsible for the fact that our norm can be wedded to a dot product according
the polarization identity. */functional analysis

m × n matrices and functions (linear transformations) R
n → R

m: Every
m × n matrix A represents a linear transformation f : Rn → R

m, which is given
by the formula y = f(x) = Ax. A function from R

n to R
m assigns to every vector

x ∈ R
n (viewed as “input” of the function) an “output” y ∈ R

m. To stress this
notion that a function f converts an input from R

n into an output in R
m, we use

the arrow notation, i.e., we write f : Rn → R
m; x 7→ f(x). The standard arrow (→)

goes between the set where the function takes input from and the set in which its
output lies; the tailed arrow (7→) goes between the individual input vector and its
corresponding output.

General remarks on geometric representation of functions R
n → R

m: In
single variable calculus, we represent a function R → R by its graph, which lies in R

2.
For a function R

2 → R
2 this option is already unavailable, because the graph would

have to be in R
4, and we cannot draw R

4. However we can understand functions
R
2 → R

2 geometrically by discussing what they do to certain input sets. In linear
algebra, we restrict the discussion to linear functions x 7→ Ax, and we call them
linear transformations. There are only a few interesting special cases to be discussed,
and even the most general case can be described without too much difficulty:

Special linear transformations R
2 → R

2:

A rotation in the plane by the angle ϕ (counterclockwise) is described by the matrix

A =

[

cosϕ − sinϕ
sinϕ cosϕ

]

. For any planar vector x, you get Ax from x by rotating it

about the origin by an angle ϕ (counterclockwise).

A reflection with respect to the x1 axis is described by the matrix A =

[

1 0
0 −1

]

.

Similarly, a reflection with respect to the x2 axis is described by the matrix A =
[

−1 0
0 1

]

. Reflections with respect to other lines will be discussed more generally

below.
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A dilation (to-scale magnification) is described by a scalar multiple of the identity

matrix, like A =

[

a 0
0 a

]

, where a is the magnification factor. If a > 1, we really

have a magnification; if 0 < a < 1 we have actually a reduction.

A projection onto (e.g.) the x1 axis is described by the matrix A =

[

1 0
0 0

]

. This

projection leaves the first coordinate unchanged, but makes the second coordinate
to zero. The image of the vector x under this projection is the “shadow” it casts on
the x1 axis, if light falls in vertically. Hence the name projection. Projections onto
other lines (or planes in higher dimensions) will be discussed below.

A general linear transformation R
2 → R

2 includes all of the above as special cases.
The following pictures are representative of what it can do:

✲
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❅
❅
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✂
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✂
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✔
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✔
✔
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✔
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✔
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❅

Ax

A =

[

2 1
2 3

]

, (detA = 4)

✲

✻

�
�
��

❅
❅

❅❅
❅

❅
❅❅

�
�
��

Bx

B =

[

1 −1
1 1

]

(detB = 2)

Rotations in n-space: Intuitively, a rotation should be a transformation x 7→
Qx with the following properties: If you take the unit coordinate vectors (also
called standard basis vectors) e1 = [1, 0, 0, . . . , 0]T , e2 = [0, 1, 0, . . . , 0]T , . . . , en =
[0, 0, . . . , 0, 1]T , then the rotated vectors Qe1, Qe2,. . . , Qen should still be unit
vectors and they should still be orthogonal. But these vectors are the columns of
the matrix Q; therefore the condition for orthogonality and length one of these
vectors can be written as QTQ = I. A matrix satisfying QTQ = I is called an
orthogonal matrix.

We call a matrix Q a rotation matrix, if QTQ = I and detQ = 1. (The determinant
condition screens out reflections.)
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Reflections in n-space: In R
3, a unit vector u (‖u‖ = 1) determines a plane that

consists of those vectors (beginning in the origin) that are orthogonal to u. In R
2,

they form a line instead, in R
n some ‘dont-know-what-to-call-it’ (which is actually

called a hyperplane). Think of the plane (line, hyperplane) as a mirror.

Any vector x can be decomposed as x = x|| + x⊥, namely with a component
x|| parallel to u, and a component x⊥ orthogonal to u. These components are
x|| = (x ·u)u and x⊥ = x− (x ·u)u. The reflection in the plane (line, hyperplane)
orthogonal to u leaves the orthogonal component x⊥ unchanged, but replaces the
parallel component with its negative, i.e., it is represented by a matrix Ru such that
Rux = x⊥ − x|| = (I − 2uuT )x. An immediate consequence from Ru = I − 2uuT

is R2
u = I and RT

u = Ru.

Projections in n-space: With the same notation as before, a projection onto
the plane (line, hyperplane) orthogonal to u can be pictured as the shadow on that
plane (line, hyperplane) when the light comes from direction u). This projection
leaves the orthogonal component unchanged, but sets the parallel component to 0.
It is therefore represented by the matrix Pu = I−uuT . An immediate consequence
is P 2

u = Pu and P T
u = Pu.

A projection surface need not be orthogonal to the light rays. But the shadow of
an object lying already on the projection surface is the object itself. (The shadow
of a shadow is the shadow itself.) We generally would call a matrix P a projection
matrix, if P 2 = P ; we call it the matrix of an orthogonal projection, if P 2 = P and
P T = P . More detailed discussions why this simple definition incorporates all the
geometric ideas inherent in a projection go beyond this course.

Composition of transformations: If a transformation that maps x into Ax
(x 7→ Ax) is followed by another transformation that maps y into By (y 7→ By),
then the composition is x 7→ Ax 7→ BAx. The composition of transformations is
therefore represented by the matrix product . Note that the transformation that is
carried out first is the last (not first) factor in the matrix product. (Like functions
in calculus: To find ln cos π/6, you first calculate the cosine, then the logarithm, not
vice versa!)

Transformations and the determinant: Consider the unit coordinate vectors
(also called standard basis vectors) e1 = [1, 0, 0, . . . , 0]T , e2 = [0, 1, 0, . . . , 0]T , . . . ,
en = [0, 0, . . . , 0, 1]T . Their images Ae1, Ae2,. . . , Aen under a transformation x 7→
Ax are exactly the columns of A. These column vectors span a parallelogram (in 2-
space) or a parallelepiped (in 3-space) whose area/volume is detA, whereas the area
of the original square (in 2-space) spanned by the vectors e1,e2, or the volume of the
original cube (in 3-space) spanned by the vectors e1,e2,e3 was 1. The determinant
of A gives the volume magnification factor of the transformation x 7→ Ax.

If you compose two transformations, each with its own volume magnification factor,
then for the composite transformation, the volume magnification factors multiply.
This is the reason why the previously encountered formula det(BA) = (detB)(detA)
is true.
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One-to-one transformations: A transformation is called one-to-one, if distinct
points are mapped into distinct points. In other words, the transformation x 7→ Ax
is called one-to-one, if Au = Av implies u = v. If A is a square matrix, then the
transformation x 7→ Ax is one-to-one, if and only if A is invertible.

Eigenvectors and eigenvalues: For certain linear transformations x 7→ Ax,
there exist special vectors v 6= 0 that get mapped into a scalar multiple of itself:
Av = λv for a scalar λ. These vectors are called eigenvectors of the matrix A (or
of the linear transformation x 7→ Ax), and the corresponding numbers λ are called
eigenvalues.

The word “eigen” is German for “own” or “proper” and is one of the few instances of
German loanwords in the English language (French for instance, translates the word
completely: valeur propre = “proper value”). The choice of name indicates that
eigenvectors and eigenvalues give some characteristic information about a transfor-
mation.

Eigenvectors and eigenvalues: important examples: For a rotation x 7→ Qx

in 3-space, a vector v pointing along the axis of rotation will itself not change under
the rotation: Qv = v. Such a vector is an eigenvector of Q with eigenvalue 1.

In contrast, for a rotation x 7→ Qx in 2-space, with Q =

[

cosα − sinα
sinα cosα

]

and with

α not a multiple of π, no vector x has the property that its image Qx is a scalar
multiple of x. Therefore this matrix does not have eigenvectors nor eigenvalues.

/* When you reread this in a later semester, you may accept complex entries for
vectors and matrices and work with complex numbers. Here we insist on geometric
interpretation and therefore only accept real numbers. The claim that there are no
eigenvectors and eigenvalues for a rotation matrix in 2-space depends on our accep-
tance of real numbers only. When you accept complex numbers and vectors later,
you will find complex eigenvectors and eigenvalues for this matrix. */M431, M453

For a reflection matrix Ru = I−2uuT , the vector u gets reflected: Ruu = −u. It is
therefore an eigenvector with corresponding eigenvalue −1. So are all its multiples
(like, e.g., −7

3
u). Vectors v that are orthogonal to u are unchanged under the

reflection: Ruv = v. These are therefore eigenvectors for eigenvalue 1. Vectors that
are neither parallel nor orthogonal to u are not eigenvectors. — Remember that in
the definition of Ru, we assume u to have length one.

For a dilation kI, all vectors are eigenvectors with eigenvalue k.

For a projection matrix Pu = I−uuT , the vector u is an eigenvector with eigenvalue
0: Puu = 0 = 0u. Vectors orthogonal to u are eigenvectors with eigenvalue 1. —
Remember that in the definition of Pu, we assume u to have length one.

Calculation of eigenvectors and eigenvalues: To find solutions v 6= 0 to the
equation Av = λv (and to find numbers λ for which nontrivial solutions v exist),
you rewrite Av = λv as (A − λI)v = 0. Nontrivial solutions v exist, if and only if
det(A − λI) = 0. This leads to an nth degree polynomial equation in λ, and once
you have its solutions λi (if any), you solve the linear system (A−λiI)v = 0 to find
eigenvectors for each of the eigenvalues λi.
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Real vector spaces: A nonempty set V of objects is called a (real) vector space, if
an operation + (called addition) and a multiplication with (real) numbers is defined
for these objects in such a way that the usual rules of vector arithmetic encountered
above and specifically relisted below apply to them. Namely these rules are:
(a) For any u and v in V , the sum u+ v is a well-defined object in V .
(b) u+ v = v + u

(c) (u+ v) +w = u+ (v +w)
(d) There is an object 0 (called the zero vector) such that u+ 0 = u

(e) For each u, there is an object −u (called the negative of u) such that u+(−u) = 0
(f) For any (real) number k and any object u in V , ku is a well-defined object in V .
(g) k(u+ v) = ku+ kv
(h) (k + l)u = ku+ lu
(i) k(lu) = (kl)u
(j) 1u = u

Old example: V = R
n.

A typical (new) example is the set V = C0[0, 1] of continuous functions defined on
the interval [0, 1], with real values. In calculus, you called such functions f and
g rather than u and v. But they do satisfy the above rules: What is the sum of
the functions f : x 7→ x2 and g : x 7→ sinx (in calculus, you’d have worded it
a bit differently: “. . . sum of the functions f given by f(x) = x2 and g given by
g(x) = sinx”)? Well, it’s the function f +g : x 7→ x2+sinx, or in other words, f +g
is given by the formula (f +g)(x) := f(x)+g(x) = x2+sinx. Clearly f +g = g+f ,
and all the other rules hold as well. What should 7 times the function f : x 7→ x2

mean? It is the function called 7f : x 7→ tf(x) = 7x2. And again the rules listed
above for multiplication with scalars apply.

With functions, you can do many more things than with vectors; for instance taking
derivatives, composing them, multiplying them. When we call a collection of func-
tions a vector space, we simply stress the particular operations with functions that
are analog to operations with vectors, but at the same time show ourselves utterly
disinterested in all the other things you can do with functions. When we call a set of
functions a vector space we are essentially saying: all that we are going to do with
the functions now depends only on addition and multiplication with numbers: We
are zooming in on these features as the relevant ones. At another time, when we
need to work with compositions or multiplication of functions, we would say “Yes,
ok, this set of functions is a vector space all right, but that’s not the issue here.”

Counterexample: The set of all nonnegative continuous functions on the interval
[0, 1] is not a vector space, because for f nonnegative, there is no nonnegative (−f)
such that f + (−f) = 0.

Another example is R
m×n, the set of all m × n matrices. This set is a vector

space, because all the rules (a)-(j) apply to addition of matrices and multiplication
of matrices with numbers. Again, in calling R

m×n a vector space, we technically
stress that these rules do apply, but also pragmatically convey our disinterest (for
the moment) in doing any other operations (like multiplying or transposing) with
these matrices.

M251 p. 22 Glossary



/* Abstract vector spaces: In the definition above, you can replace “real num-
ber” with “complex number” throughout and get the definition of a complex vector
space. This is an important generalization for adv. calculus, analysis, differential
equations, physics. Even more generally, if you know abstract algebra you can take
any field instead of the set of real or complex numbers. This is relevant for abstract
algebra, but irrelevant for adv. calculus, analysis, differential equations, physics. */

Subspace: A subset W of a vector space V is called a subspace of V (sometimes
synonymously: a linear subspace of V ), if for any w1 and w2 in W , their sum
w1 + w2 is also in W , and also all multiples kw1 are in W . — In other words,
a subset W ⊂ V is a subspace, if W is a vector space in its own right, with the
operations (addition and multiplication with scalars) that are already defined in the
larger set V .

Linear combinations: Let S = {v1,v2, . . . ,vn} be a (finite) set of vectors in a
vector space. A linear combination of / from S (or: a linear combination of v1, v2,
. . . , vn) is any expression k1v1+k2v2+ . . .+knvn with scalars k1, . . . , kn. (Trivially,
this includes sums with less than n terms, because the “unused” vectors can still be
included formally with a coefficient 0.)

S need not be finite. But a linear combination from an infinite set S = {v1,v2, . . .}
is still defined as a finite sum k1v1 + k2v2 + . . . + knvn involving as many (but
only finitely many) vectors from S as you please. We don’t have much need for this
in this course, but linear combinations from infinite sets will be relevant for many
applications, and they don’t pose any extra difficulties at the level of this course.

Linear combinations from a set with only one vector, S = {v}, are clearly just the
multiples of v. Linear combinations of the empty set {} would be sums with no
terms to sum up at all, and by definition such (empty) sums are the zero vector.

Span: The span of a set S = {v1,v2, . . . ,vn} of vectors from a vector space V
is the set of all linear combinations of S. It forms a subspace of V and is denoted
as spanS = span{v1,v2, . . . ,vn}. Synonymous expressions are: the subspace (or
vector space) spanned by S. The span of S is the smallest subspace of V containing
S. In particular, span{} = {0} (even though it may look weird when you see it the
first time).

Again, S need not be a finite set; the linear combinations involved are still finite
sums by definition. For instance, in the vector space C0(R) of all continuous real
functions, the span of the set S = {1, x, x2, x3, . . .} is the subspace of all polynomials
(of any degree). (The notation xn for a function is sloppy, but common, and familiar
to you. To put the record straight: I should have said, e.g., “The function f3 given
by f3(x) = x3”)

Linearly dependent, linearly independent: A set S = {v1,v2, . . . ,vn} is
called linearly independent, if the only way of writing the zero vector as a lin-
ear combination from S is with all coefficients equal to 0. Otherwise, the set is
called linearly dependent. Ex: {[0, 1]T , [1, 0]T } is linearly independent, because
k1[0, 1]

T + k2[1, 0]T = [k1, k2]
T equals the zero vector only if k1 = k2 = 0. In

contrast, {[0, 1]T , [1, 0]T , [2, 3]T } is linearly dependent, because 0 can be written
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as a nontrivial linear combination. e.g.: 0 = 3 [0, 1]T + 2 [1, 0]T − [2, 3]T .

Basis: A basis of a vector space V is a linearly independent set S that spans V .

The following facts help to appreciate the meaning of a basis informally:
(1) If a set S spans V , then any larger set Ŝ ⊃ S also spans V (trivially), but a
smaller set Š ⊂ S may or may not span V .
(2) If a set S is linearly independent, then any smaller set Š ⊂ S is still linearly
independent, but a larger set Ŝ ⊃ S may or may not be linearly independent.
(3) Therefore a basis is a compromise: it must have enough vectors to span V , but
no redundant ones, which would forfeit linear independence of the set S.

The following theorem sums this up more formally:
A maximal linearly independent set S in V is a basis. By “maximal” we mean it’s
impossible to join any other vector to S without losing linear independence. — A
minimal spanning set S for V is a basis. By “minimal”, we mean that you cannot
discard any vector from the set S without losing the property that S spans V .

Dimension: A vector space is called finite dimensional , if it has a finite set as
a basis. Otherwise the vector space is called infinite dimensional. (As an extreme
example, the set {0} is a vector space, and {} is the only basis for it.)
/* Does this mean that an infinite dimensional vector space has some infinite set as
a basis? – Yes, this is indeed true. But it is not easy to understand why it is true,
and in applications outside linear algebra (like, e.g., vector spaces of functions), it
is also not a particularly useful fact, because you usually cannot get hold of one
practically */

There is (usually) a vast variety of choices of a basis for any given vector space.
But each basis of a given vector space V has the same number of elements, and this
number is called the dimension of V , in short dimV .
/* It is also true that each basis of a given infinite dimensional vector space has “the
same number” of elements, but this statement is much more subtle than it seems
already and goes beyond this class. Nevertheless, */ infinite dimensional vector
spaces are quite natural already at the level of this class; only we have no business
worrying about their bases.

Theorems about bases, spanning, and linear independence: (the numbers
refer to thm numbers in the textbook)
If S is lin. indep., and v 6∈ spanS, then S ∪ {v} is still lin. indep. (5.4.4a)
If v ∈ S and v is spanned by the remaining vectors of S (i.e., v ∈ span(S \ {v}),
then S \ {v} spans the same space as S. (S \ {v} means “S with the element v

removed”.) (5.4.4b)

For S a (finite) set of vectors in a (finite dimensional) vector space V , the following
hold:
If S is lin. indep., but does not span V (and is therefore not a basis of V ), then S
can be enlarged to a basis of V . (5.4.6b)
If S spans V , but is not lin. indep. (and is therefore not a basis of V ), then S can
be reduced to a basis of V by removing appropriate vectors from S. (5.4.6a)
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In an n-dimensional vector space,
a set with less than n vectors will never span V (a set with n or more vectors may
or may not span V ),
a set with more than n vectors will always be lin. dep. (a set with n or less vectors
may or may not be lin. dep.),
a set with exactly n vectors is either lin. indep. and spanning, or else it is neither
lin. indep. nor spanning. (5.4.5)

If W is a subspace of a finite dimensional vector space V , then dimW ≤ dimV with
equality only if W = V . (5.4.7)

Standard basis: Every vector space (except {0}) has many bases. However, in
some vector spaces, there is one basis on which everbody agrees that it is the simplest
basis and the one that comes to mind first. We call such a basis the standard basis
of that vector space. In particular, we agree that in R

n, the basis
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should be called the standard basis. In the vector space of polynomials of degree at
most n, the basis

{1, x, x2, . . . , xn}
is called the standard basis. — In contrast, in a vector space like C0[0, 1], we are (in
practice) not even able to explicitly write down a single basis, let alone identifying
a particular basis as standard basis; this in spite of the fact that advanced abstract
theory assures us that every vector space has a basis, even it eludes us to find one.

Coordinates: If V is a vector space and S = {b1, b2, . . . , bn} a basis, then every
vector u in V can be written in exactly one way as a linear combination of the
basis vectors: u = k1b1 + k2b2 + . . . + knbn. The row (k1, k2, . . . , kn) is called the
coordinate vector of u with respect to the basis S, and the numbers ki are called
the coordinates. Clearly, for the vector space R

n, if we choose the standard basis
{e1,e2, . . . ,en}, the coordinate vector of u with respect to the standard basis is u

itself. General bases correspond to oblique coordinate systems.

✏✏✏✏✏✏✏✏✏✶

❍❍❍❍❍❍❥

✄
✄
✄
✄✗

✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏

❍❍❍❍❍❍❍❍❍❍❍❍❍❍

✏✏✏✏✏✏
❍❍❍❍❍

b1

b2

v

v = 0.6 b1 − 0.73 b2

The coordinate vector of v with
respect to {b1, b2} is (0.6,−0.73).

Solution space: The set of those x ∈ R
n that solve a homogeneous linear equation

Ax = 0 (with an m×n matrix A) is a linear subspace of Rn, called the solution space
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of the homogeneous linear equation. (Synonym: the null space of the matrix A)

Solution space of a linear ODE: /* The set of those f ∈ C2(R) that solve a
homogeneous linear ordinary differential equation

y′′ + p(x)y′ + q(x)y = 0 ( y = f(x) )

is a linear subspace of C2(R). The same applies, with obvious modifications, to
linear ODEs of higher order than 2 –or of first order–, and even to systems of linear
ODEs. In this context, a basis of the solution space is often called a fundamental set
of solutions. This deviation in vocabulary is due to the simple fact that historically,
the theory of linear ODEs is older than the unifying language of modern linear
algebra. */M231

R
n as a vector space of functions: The main use of this view of Rn is so you

can better appreciate the analogy that enticed us to put R
n and C0[a, b] into the

same category “vector space”. Instead of graphing vectors in R
2 as arrows in the

plane, vectors in R
3 as arrows in space, and bailing out in despair for vectors in R

4

etc., you can graph vectors in any R
n like a function defined only for x = 1, 2, . . . , n,

as can be seen in the following example:

✲

✻

1 2 3 4 n

1

•
•

•

•

. . . •

The vector [2, 1, −1, 5

2
, . . . , 1

2
]T in R

n

graphed as a function v with v(1) = 2,

v(2) = 1, v(3) = −1, v(4) = 5

2
, . . . ,

v(n) = 1

2
(and v(x) not def’d elsewhere).

Row space of a matrix: The rows of an m× n matrix are vectors in R
n. Their

span is a subspace of Rn (possibly all of Rn), called the row space of this matrix.

Column space of a matrix: The columns of an m×n matrix are vectors in R
m.

Their span is a subspace of Rm (possibly all of Rm), called the column space of this
matrix. The column space of A is exactly the set of those b for which the linear
system Ax = b has a solution x. If this linear system has more than one solution,
say x1 and x2, then their difference x1 − x2 is in the null space of A:

Null space of a matrix: For an m × n matrix A, the solution space of the
homogeneous linear equation Ax = 0 (a subspace of Rn) is called the null space
of A.

Superposition principle: (See already p. 6) Any linear combination of solutions
of the homogeneous equation Ax = 0 is also a solution.

The difference of any two solutions x1 and x2 of an inhomogeneous equation Ax =
b solves the homogeneous equation Ax = 0. Therefore, if we know just a basis
{v1,v2,v3, . . . ,vn} of the solution space of the homogeneous equation Ax = 0
and one particular solution x0 of the inhomogeneous equation Ax = b, then we
obtain all solutions x of the inhomogeneous equation as all linear combinations
x = x0 + c1v1 + c2v2 + c3v3 + . . .+ cnvn.

M251 p. 26 Glossary



/* This principle is of course also valid for linear ordinary differential equations,
with a function f playing the role of the vector x, and an ODE like e.g. y′′ +
p(x)y′ + q(x)y = 0 , ( y = f(x) ) instead of Ax = 0, and an inhomogeneous ODE
like y′′ + p(x)y′ + q(x)y = b(x) instead of Ax = b. In ODEs, the name general
solution is used for the set of all solutions. */M231

Bases for row, null, and column space of a matrix: Elementary row opera-
tions do not change the row space of a matrix, nor its null space.

Therefore it is possible to obtain a basis of the row space of a matrix A by reducing
it to row echelon form. The non-zero rows of the row echelon form constitute a
basis of the row space of A. — It is also true that an appropriate subset of the
rows of the original matrix A can serve as a basis for the row space; but except
for cases of successful eyeballing, it is tedious to determine (without echelon form)
which selection of rows qualifies as a basis.

As the solution space of a system of linear equations can be readily read off from
the row echelon form, the same calculation determines the null space as well.

However, elementary row operations do change the column space. Nevertheless, they
preserve one crucial property of columns: If a subset of columns like e.g. {c2, c4, c5}
of a matrix A is linearly independent, then the set of new columns {c′2, c′4, c′5} arising
from them under elementary row operations is also linearly independent. And if a
subset of columns like e.g. {c2, c4, c5} of a matrix A spans the column space of A,
then corresponding set of new columns {c′2, c′4, c′5} spans the column space of the
new matrix. Therefore by selecting in the original matrix A those columns in which
the leading 1’s occur in the row echelon form, one obtains a basis of the column
space of A.

Rank: From the practical method of calculating bases for the row and column
space, it is clear that the dimension of the row space and the dimension of the
column space of a matrix A are the same; namely they are the number of leading
1’s in the row echelon form. This common number is called the rank of the matrix.
Sometimes the fact that row space and column space have the same dimension is
referred to by the phrase “row rank equals column rank”.

Since for any matrix A, the row space of A is the column space of AT (and vice
versa), A and AT have the same rank.

Nullity: The dimension of the null space of a matrix is called its nullity . Nullity
is the ugliest word in the theory of linear algebra.

Dimension theorem: For any matrix A,

rank(A) + nullity(A) = number of columns of A

This is clear, because the rank is the number of leading 1’s in row echelon form and
the nullity is the number of columns without leading 1’s in the row echelon form,
and there can be at most a single leading 1 in each column.

Inner product: An inner product on a real vector space V is a function 〈·, ·〉 that
assigns to any two vectors u and v in V a real number 〈u,v〉 in such a way that the
following rules (familiar from the dot product in R

n) hold: For all vectors u,v,w

M251 p. 27 Glossary



and all scalars k,

〈u,v〉 = 〈v,u〉
〈u+ v,w〉 = 〈u,w〉+ 〈v,w〉
〈ku,v〉 = k〈u,v〉
〈u,u〉 > 0 unless u = 0 (in which case the inner product equals 0)

A real vector space with an inner product is called a real inner product space.

/* Disclaimer: Whereas so far everything about real vector spaces could have been
done for complex vector spaces exactly alike, the definition of the inner product
requires modifications if you use complex numbers. This course does not cover the
subject of inner products in complex vector spaces, so you needn’t worry about
this now; however if you major in mathematics, you may encounter complex inner
product spaces; if you major in physics you ought to encounter them: they pervade
quantum physics */

Norm: An inner product gives rise to a norm just as the dot product in R
n did:

‖u‖ :=
√

〈u,u〉. The properties of a norm are given on page 17 already and are
just repeated here for convenience:

(a) ‖u‖ ≥ 0 with ‖u‖ = 0 if and only if u = 0
(b) ‖ku‖ = |k| ‖u‖
(c) ‖u+ v‖ ≤ ‖u‖+ ‖v‖

/* Not every norm ‖·‖, as defined by these properties, originates as ‖u‖ :=
√

〈u,u〉
from some inner product; but for those norms that do originate from an inner
product, this inner product can be reconstructed in terms of the norm only, by the
polarization formula u · v = 1

4

(

‖u+ v‖2 − ‖u− v‖2
)

*/

Distance: Every norm gives rise to a distance d(u,v) := ‖u − v‖ between two
vectors. The characteristic properties of a distance have been listed on p. 18 already
and will not be repeated here.

Examples of inner products:
(a) In R

n, the dot product.
(b) Weighted dot products in Rn, e.g. in R4: 〈u,v〉 := 2u1v1+5u2v2+

1

2
u3v

3+3u4v4;
any positive numbers can be chosen as coefficients.
(c) For an invertible n × n matrix A, 〈u,v〉 := (Au) · (Av) = vTATAu is an inner
product.
(d) On C0[a, b], we have the inner product 〈f, g〉 :=

∫ b
a f(x)g(x) dx

(e) On R
m×n, we use the trace to get an inner product 〈A,B〉 := tr(ATB). —

Note that tr(AB) (without the transpose) is not an inner product. If m 6= n, the
expression doesn’t even make sense; if m = n, the expression does make sense, but
tr(AA) may be negative.

The Cauchy Schwarz inequality: For any inner product, the following inequal-
ity holds (and is called the Cauchy Schwarz inequality):

|〈u,v〉| ≤ ‖u‖ ‖v‖
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It has a very simple but also quite tricky proof: Since 〈tu+ v, tu+ v〉 ≥ 0 for every
number t, and since we can calculate 〈tu+ v, tu+ v〉 = t2〈u,u〉+2t〈u,v〉+ 〈v,v〉,
we have a quadratic polynomial in t that is never negative. Therefore, if you try
to find zeros t1, t2 with the quadratic formula, the term under the square root in
the quadratic formula must be ≤ 0. This latter condition is the Cauchy Schwarz
inequality.

Orthogonality: Vectors in an inner product space are called orthogonal (to each
other), if their inner product is 0. The zero vector 0 is orthogonal to every other
vector. — Since there are many choices of an inner product on a vector space,
one needs to specify: orthogonality with respect to which inner product : [1, 2]T and
[1, −1]T are orthogonal with respect to the inner product 〈u,v〉 := 2u1v1 + u2v2,
but they are not orthogonal with respect to the dot product.

You may omit to mention the inner product explicitly, (only) if it is clear from the
context. In case of any doubt: state it.

Angles: Choosing an inner product in a vector space amounts to defining an angle
measurement. The “angle” ϕ between vectors u and v in an inner product space is
defined by the equality cosϕ = 〈u,v〉/(‖u‖ ‖v‖). The usual angle measurement in
R
2 or R3 is the one defined by the dot product.

Orthogonal complement: Given a linear subspace W in a vector space V , you
can consider the collection of all those vectors u in V that are orthogonal to each
vector in W . The collection of these vectors u forms a linear subspace of V itself;
this linear subspace is called the orthogonal complement of W , in symbols W⊥. For
instance, in R

3 (with the dot product), let W be the space spanned by [0, 1, 2]T and
[1, 1, 0]T . Then W⊥ is the vector space spanned by [−2, 2, −1]T .

A synonym for ‘orthogonal complement’ is orthocomplement.

Facts about orthogonal complements: Let V be an inner product space and
W a subspace. Then
• W ∩W⊥ = {0}
• (W⊥)⊥ = W
• Every vector u in V can be written in exactly one way as a sum u = w1 + w2

such that w1 is in W and w2 is in W⊥.
• dimW + dimW⊥ = dimV .

Fundamental spaces of a matrix, and orthogonality: The null space and
the row space of an m × n matrix A are each other’s orthogonal complement with
respect to the dot product in R

n.

The column space of an m× n matrix A and the null space of AT are each other’s
orthogonal complement with respect to the dot product in R

m.

This second statement (and its natural generalizations to other vector spaces than
R
m) is a very fundamental principle in more advanced treatments and applications

of linear algebra. /* and of functional analysis */

Orthogonal and orthonormal bases: A basis of an inner product space is called
orthogonal, if any two vectors in this bases are orthogonal to each other (i.e., have
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inner product 0). If moreover, each vector in the basis has length 1, then the basis
is called orthonormal.

The relevance of such bases lies in the simplicity of practical calculations with them,
as compared to non-orthogonal bases.

Projections: Let W be a subspace of an inner product space V , and W⊥ its
orthocomplement. How can we practically decompose a vector v into a sum of one
vector in W (we’ll call it projW v), and one vector in W⊥ (we’ll call that vector
projW⊥ v)?

IfW is given in terms of a basis {u1,u2, . . . ,um}, then projW v, being inW , must be
a linear combination k1u1 + k2u2 + . . .+ kmum of the basis vectors. The difference
projW⊥ v = v − (k1u1 + k2u2 + . . . + kmum) must be orthogonal to each of the
basis vectors ui. This gives a linear system of m equations for the m unknowns
k1, k2, . . . , km:

〈u1,u1〉k1 + 〈u1,u2〉k2 + . . .+ 〈u1,um〉km = 〈u1,v〉
〈u2,u1〉k1 + 〈u2,u2〉k2 + . . .+ 〈u2,um〉km = 〈u2,v〉
...

...
〈um,u1〉k1 + 〈um,u2〉k2 + . . .+ 〈um,um〉km = 〈um,v〉

It can be shown that the coefficient matrix will be invertible if {u1,u2, . . . ,um} is
a basis of W . Better however, if the basis is orthogonal, the coefficient matrix is
diagonal, and if the basis is orthonormal, the coefficient matrix is the identity matrix!
Therefore, if {u1,u2, . . . ,um} is an orthogonal basis (OGB) or an orthonormal basis
(ONB) of W respectively

projW v =
〈v,u1〉
〈u1,u1〉

u1 +
〈v,u2〉
〈u2,u2〉

u2 + . . . +
〈v,um〉
〈um,um〉um (OGB)

projW v = 〈v,u1〉u1 + 〈v,u2〉u2 + . . .+ 〈v,um〉um (ONB)
projW⊥ v = v − projW v

Gram–Schmidt orthogonalization procedure: This algorithm serves the pur-
pose to obtain an orthogonal, or orthonormal, basis {u1,u2, . . . ,um} from a given
basis {v1,v2, . . . ,vm}:
First let u1 := c1v1 with the number c1 chosen such that u1 has the desired length
(u1 := v1/‖v1‖, if an ONB is desired). Let W1 be the vector space spanned by
{u1}, equal the vector space spanned by {v1}.
Next decompose v2 = projW1

v2 + projW⊥
1

v2, according to the above projection
formula; let u2 = c2 projW⊥

1

v2 with the number c2 chosen such that u2 has the

desired length. Let W2 = span{u1,u2} = span{v1,v2}.
Decompose v3 = projW2

v3 + projW⊥
2

v3, and let u3 = c3 projW⊥
2

v3, etc.

This algorithm shows that we can always obtain an ONB in an inner product space.
However, the algorithm is not recommended for practical large scale implementation
on a computer, because the ever present roundoff errors in each step may accumulate
worse than to the unavoidable extent.
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QR decomposition: Every square matrix A can be written as the product
A = QR, where Q is an orthogonal matrix and R is an upper triangular matrix.
For invertible A, this can be seen as a consequence of the Gram–Schmidt algorithm:
Take the columns of A, {v1, . . . ,vm}, as the basis vectors of the column space W of
A. Let {u1, . . . ,um}, be the ONB obtained by Gram–Schmidt from {v1, . . . ,vm}.
Then the QR decomposition is explicit in components as follows:





| |
v1 · · · vm

| |



 =





| |
u1 · · · um

| |















〈v1,u1〉 〈v2,u1〉 . . . 〈vm,u1〉
0 〈v2,u2〉 . . . 〈vm,u2〉
...

. . .
...

0 0 · · · 〈vm,um〉











Practical calculation of a QR decomposition is via algorithms different from Gram–
Schmidt. /* Probably the most important usage of the QR decomposition is the so
calledQR algorithm for practical calculation of eigenvalues. */Numerics or advanced lin’ alg

Orthogonal matrices: (cf. rotations in n-space p. 19) A matrix Q is called
orthogonal, if QTQ = I. Since this implies QT = Q−1, it also follows QQT = I.
A matrix is orthogonal if and only if its columns are mutually orthogonal and have
each length 1. Equivalently: if its rows are mutually orthogonal and have each
length 1. Orthogonal matrices have determinant +1 or −1. Inverses, transposes,
and products of orthogonal matrices are orthogonal. A matrix Q is orthogonal if
and only if the linear transformation x 7→ Qx preserves the euclidean norm (i.e.,
lengths); and also if and only if this transformation preserves the dot product (i.e.,
angles): ‖Qx‖ = ‖x‖; (Qx) · (Qy) = x · y.

Eigenvectors and eigenvalues; update: see p. 21 for the basic facts. — One
modification: We will now accept complex eigenvalues, i.e., complex solutions λ to
the characteristic equation det(A−λI) = 0. If λ is a complex (but not real) number
and A is a matrix with real entries, then nontrivial solutions of the linear system
Av = λv are only possible if we also permit complex entries for v. This poses
no problem whatsoever, algebraically. To the contrary, any deeper discussion on
eigenvalues gets simplified if we admit complex numbers. The only flipside is that
the geometric intuition for vectors in R

2 or R3 is no longer available.

Survey of complex vector spaces: (FYI only; not course or exam contents; but
do read it, lest the last few sections appear half-baked and incoherent.)

When I say ‘complex number’ without extra qualification, this includes real numbers.
For instance, 1 + i, 3, −5i, 1/π, 3 −

√
2i all are complex numbers, and two among

them (3 and 1/π) happen to be real numbers as well.

We defined matrices as rectangular arrays of real numbers, and defined addition
and multiplication of matrices. Let us now accept also complex numbers as entries
of matrices, retaining the very same definitions for addition and multiplication of
matrices, the same procedures (row operations) for solving linear equations. The
same rules of matrix algebra are still valid.

Determinants of matrices with complex entries continue to obey the very same rules
as we had for real entries.
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The geometric vector spaces (arrows in the plane or in space) are models for the
real vector spaces R

2 and R
3 respectively. We don’t have such models for C

2, C3,
or any C

n, which are the sets of column vectors with complex entries. But we can
do without these geometric examples.

The transpose of a matrix with complex entries is still defined as it was in the case
of real entries, and obeys the same rules; however it will be a much less significant
concept, in contrast to its importance for matrices with real entries. — For a matrix
A with complex entries, A∗ is defined as the complex conjugate of AT ; i.e., in
AT replace every entry with its complex conjugate. In case you forgot, the complex
conjugate of a+bi is a−bi: change all the i’s into −i’s to get the complex conjugate.
The complex conjugate of a real number is that same real number, because there are
no i’s to change into −i. Therefore, for matrices with real entries A∗ and AT is the
same. — A∗ obeys similar calculational rules as AT ; for instance (AB)∗ = B∗A∗.
All the useful services of AT will be performed by A∗, when entries are permitted
to be complex.

Complex vector spaces function with the same rules as real vector spaces; only the
scalars are now complex numbers. — However, norms and inner products must be
defined differently, and we will not discuss here, how.

When admitting complex entries, symmetric matrices (those that satisfy AT = A)
and orthogonal matrices (those that satisfy ATA = I) suffer the same fate of in-
significance as the transpose does; however matrices satisfying A∗ = A or A∗A = I
respectively take over their role, and I refrain from introducing the names for them.

In conclusion, the only reason we have omitted complex numbers all the way till
now is that we cater for students who are uneasy with them: Think you take a
crash course in practical arithmetic with complex numbers until you feel perfectly
comfortable with them, then I can fill all the hwk and exam problems (with the
above-mentioned exceptions) with complex numbers instead of real numbers, and
you’ll do them with just as much ease or difficulty as you did them with real numbers.

As soon as you get serious about eigenvalues and eigenvectors, you want complex
numbers; it is only because we do just a bit of eigenvalues and eigenvectors that the
complex numbers show up only briefly.

Characteristic polynomial; How many eigenvalues? Given an n × n ma-
trix A, an eigenvalue λ is a solution to the equation det(λI−A) = 0. Now det(λI−A)
is a polynomial in λ of degree n (called the characteristic polynomial) of A; therefore
the equation det(λI−A) = 0 has at most n real solutions; if n is odd, it has at least
one real solution (because of the intermediate value theorem from calculus), but if
n is even, it may not have any real solutions.

If you admit complex solutions (see next entry), there will still be at most n of them,
but always at least one. If you count solutions with their multiplicity , there will be
exactly n complex solutions (some of which may be real, and they need not all be
distinct).

Fundamental theorem of algebra: Every polynomial λn + an−1λ
n−1 + . . . +

a1λ+a0 of degree n with any choice of coefficients a0, a1, . . . , an−1 (real or complex)
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can be written as a product of n linear factors:

λn + an−1λ
n−1 + . . .+ a1λ+ a0 = (λ− λ1)(λ− λ2) · · · (λ− λn)

for appropriate complex numbers λ1, . . . , λn, which need not all be distinct. If the
coefficients a0, a1, . . . , an−1 are real numbers, then the complex conjugate of each λi

is also among the λ1, . . . , λn, and is repeated in the list just as many times as λi is.

This result is not concerned with the issue how to find the λi in practice. For
quadratic polynomials, take the quadratic formula, for degree 3 and 4, there are
similar (cubic and quartic) formulas that are however too unwieldy for practical
use. If you encounter a polynomial of degree 3 or higher and are asked to find its
zeros λ1, . . . , λn, you must resort to numerical methods, unless you can guess some
zeros by eyeballing, and then factor them off by long division of polynomials.

Algebraic multiplicity of an eigenvalue: Let

det(λI −A) = λn + an−1λ
n−1 + . . .+ a1λ+ a0

be the charactistic polynomial of the n× n matrix A. It can be factorized as given
above, using the fundamental theorem of algebra. The zeros λ1 of the characteristic
polynomial are the eigenvalues of A, and the algebraic multiplicity of an eigenvalue λi

is the number how often λi occurs in the list λ1, . . . , λn.

Eigenspaces; Geometric multiplicity of an eigenvalue: Suppose λi is an
eigenvalue of the n × n matrix A. Then the space of all vectors v satisfying the
linear system (A− λI)v = 0 is called the eigenspace of A for the eigenvalue λi. Its
dimension is called the geometric multiplicity of the eigenvalue λi.

In this course, we only discuss the geometric multiplicity of real eigenvalues (and
consequently look for eigenvectors v ∈ R

n, i.e., with real entries). If we were to
discuss the geometric multiplicity of complex eigenvalues that are not real, we would
have to admit eigenvectors v with complex entries and thus redo the whole chapter
on real vector spaces to accomodate complex vector spaces.

Geometric vs. algebraic multiplicity: The algebraic multiplicity of an eigen-
value is at least as large as the geometric multiplicity. Depending on the matrix
and on the individual eigenvalue, it may be equal or larger. Except for the knowl-
edge that the geometric multiplicity of an eigenvalue is less or equal the algebraic
multiplicity, information on the geometric multiplicity cannot be obtained from the
characteristic polynomial; the full matrix is needed for such information.

A matrix is diagonalizable (see below) if and only if the geometric multiplicity of
each eigenvalue is equal to its algebraic multiplicity.

Trace and determinant in the characteristic polynomial: Let

det(λI −A) = λn + an−1λ
n−1 + . . .+ a1λ+ a0

be the charactistic polynomial of the n × n matrix A. The coefficient a0 equals
(−1)n detA, and the coefficient an−1 equals − trA. In other words, if you include
complex eigenvalues and count them according to their algebraic multiplicity, the
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sum of all eigenvalues of a matrix is its trace, and the product of all eigenvalues is
the determinant.

In particular: for a 2×2 matrix, the characteristic polynomial is λ2−(trA)λ+(detA).

Basis of eigenvectors? — The diagonalization problem: The problem:
“Given an n × n matrix A, does there exist a basis of Rn consisting only of eigen-
vectors of A?” is of fundamental importance. We’ll see soon that for symmetric
matrices A, the answer is “yes”, but for some non-symmetric matrices A, the an-
swer can well be “no”.

Clearly, unless we are willing to modify the question such as to refer to “a basis of
C
n” (which we don’t do in this course), a positive answer requires that all eigenvalues

are real. But even if all eigenvalues are real, we still may or may not have a basis of
R
n consisting only of eigenvectors of A.

There is no answer to the above question that is both simple and complete. /* unless
go beyond this course. . . */ However, the following statement gives a complete (but
not simple) answer:

R
n has a basis consisting only of eigenvectors of a given n × n matrix A, if and

only if A is diagonalizable. To say that A is diagonalizable means that there is an
invertible matrix P such that P−1AP =: D is a diagonal matrix. In this case, the
diagonal entries of the diagonal matrix P−1AP are the eigenvalues of A (and also
the eigenvalues of P−1AP ). To understand this relation, rewrite P−1AP = D as
AP = PD and denote by p1, p2, . . . , pn the columns of P : The equation

[

A

]





| | |
p1 p2 · · · pn

| | |



 =





| | |
p1 p2 · · · pn

| | |















d1
d2

. . .

dn











amounts to the equations

Ap1 = d1p1 , Ap2 = d2p2 , . . . , Apn = dnpn

So, if you have a basis of eigenvectors, then you put them as columns in a matrix
P , and this matrix will be invertible, because its columns are linearly independent;
next you put the corresponding eigenvalues on the diagonal of a diagonal matrix D:
then it will indeed be true that AP = PD and hence P−1AP = D.

Conversely, if you have matrices P (invertible) andD (diagonal) satisfying P−1AP =
D, you can read off the eigenvalues from the diagonal of D, and the corresponding
eigenvectors will be the columns of P . They will be a basis of Rn, because they are
linearly independent (as columns of an invertible matrix always are) and there are
as many of them as the dimension of Rn (namely n).

/* Normal matrices: If you go complex all the way, a matrix A is known to be
diagonalizable, if A and A∗ commute (AA∗ = A∗A). In that case A is called a
normal matrix */M453, probably

Calculating powers of a matrix: You can always calculate A2 = AA, A3 =
AAA, etc. — That takes 2536 matrix multiplications to evaluate A2537. You can get
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along with much less if you are smart and write 2537 = 211+28+27+26+25+23+1,
and calculate A, A2, A4 = A2A2, A8 = A4A4, A16, etc. as intermediate steps.

But there is one very different method that is of theoretical interest, and sometimes
of practical interest, too; it works best for diagonalizable matrices (even though it
can be generalized to non-diagonalizable matrices, too), and it relies on the following
simple observation: For a diagonal matrix D, powers can be calculated very easily:
D2537 is obtained by taking the 2537th power of the diagonal elements.

If A is diagonalizable, we can write A = PDP−1 and conclude

A2537 = (PDP−1)(PDP−1) · · · (PDP−1) = PDD · · ·DP−1 = PD2537P−1 .

So we need to solve an eigenvalue problem, take powers of the eigenvalues and do
two matrix multiplications and one matrix inversion.

Examples:
Eigenvectors to different eigenvalues are always linearly independent. Therefore, if
an n×n matrix has n distinct (real) eigenvalues, then it is diagonalizable (in terms
of real matrices P , D).
[

3 1
0 3

]

has a double eigenvalue 3 (i.e., the algebraic multiplicity of the eigenvalue

3 is two). However, the eigenspace is span{
[

1
0

]

}, so the geometric multiplicity of

the eigenvalue 3 is one. As there are not enough linearly independent eigenvectors
to span R

2, this matrix is not diagonalizable.

A 2-dim rotation matrix

[

cosα − sinα
sinα cosα

]

has complex eigenvalues cosα + i sinα

and cosα− i sinα. The issue of diagonalizing this matrix does not arise, unless you
admit complex entries in matrices. In that case, however, the matrix is (complex)
diagonalizable:

[

cosα − sinα
sinα cosα

]

=

[

i −i
1 1

] [

cosα+ i sinα 0
0 cosα− i sinα

] [

i −i
1 1

]−1

/* Plugging a matrix into its characteristic polynomial: If you plug a
matrix into its characteristic polynomial, the expression evaluates to the zero matrix.
This is generally true (we don’t prove it), but for diagonalizable matrices you can
see why it is true, when you write the matrix powers as An = PDnP−1. – Note:
Plugging a matrix A into a polynomial like, e.g., λ3−2λ2+5λ−7 means to calculate
A3−2A2+5A−7I; you would probably have been stuck with the number 7 instead
of “7 times the identity matrix”, if I hadn’t told you this. */M453

AB and BA have the same eigenvalues: You know already that for square
matrices of the same size, tr(AB) = tr(BA) and det(AB) = det(BA), even though
AB and BA are usually not the same. However, AB and BA do have the same char-
acteristic polynomial, and therefore the same eigenvalues with the same algebraic
multiplicities.
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Eigenvectors for different eigenvalues are linearly independent: If λ1, λ2,
. . . , λk are different eigenvalues of a matrix A and v1, v2, . . . , vk are eigenvectors
for these eigenvalues respectively, then {v1,v2, . . . ,vk} is linearly independent.

The eigenvalue problem for symmetric matrices: The following theorem
holds: If A is a symmetric matrix (n × n), then all its eigenvalues are real. Their
algebraic multiplicity is equal to their geometric multiplicity. Eigenvectors to dif-
ferent eigenvalues are orthogonal to each other (with respect to the euclidean inner
product, aka dot product). It is possible to choose an orthonormal basis of R

n

consisting of eigenvectors of A.

In other words: A symmetric matrix A can be written as A = QDQ−1 = QDQT

with an orthogonal matrix Q and a real diagonal matrix D.

/* Proof of diagonalization of symmetric matrices: Is beyond this course,
but so interesting that it must be here for reference purposes: You solve the following
multivariable calculus problem for variables x1, x2, . . . , xn (entries of the vector x),
by means of Lagrange multipliers: Find the minimum of xTAx under the constraint
xTx = 1. If you do it with Lagrange multipliers, it turns out that the minimum is
an eigenvalue of A, and indeed it will turn out to be the smallest eigenvalue. And
the x∗ that yields the minimum is a corresponding eigenvector.

Next you solve the following multivariable calculus problem: Find the minimum of
xTAx under the two constraints xTx = 1 and xTx∗ = 0. If you do it with Lagrange
multipliers, it turns out that now the minimum is another eigenvalue of A, and it
will turn out to be the second smallest, and the new x that yields the minimum is
a corresponding eigenvector. Continuing with more and more constraints yields the
next eigenvalues.

This is probably the most prominent and most useful example for Lagrange multi-
pliers. If you are a strong student in M241, make sure you try this example. They
may omit to assign or to cover it, because not all of your peers in that course may
have had matrices. */M241

/* A weird theorem about eigenvalues: If all entries of a square matrix
are positive numbers, then this matrix has (at least) one positive eigenvalue. To
understand why this is the case, you need Brouwer’s fixed point theorem, which is
usually covered in topology, not before the 400 level */

/* On practical calculation of eigenvalues: For large matrices, it is not
efficient to calculate the characteristic polynomial and then find its zeros. Rather,
the basic idea for the QR algorithm is as follows: To find the eigenvalues of A,
decompose A into a product of an orthogonal and an upper triangular matrix: A =
QR. Now let A1 := RQ. A1 is different from A, but it has the same eigenvalues.
Decompose A1 similarly: A1 = Q1R1. Calculate A2 := R1Q1 and continue that
way. Amazingly, An converges to a diagonal matrix as n → ∞, and the diagonal
entries of the limit will be the eigenvalues. A number of bells and whistles needs to
be attached for speed of calculation, but basically this is the idea. For particular
types of matrices, other, yet better, algorithms exist. */Numerical linear algebra

— THE END —
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