Homework Chapter 1 UTK – M251 – Matrix Algebra Spring 2019, Jochen Denzler

- 1. Which of the following are linear equations in the unknowns x_1, x_2, x_3 , or x, y, z, as applicable:
- 2. Find the augmented matrix for the following system of linear equations:

$$5x + 3y - 2z + 11w = 9$$
$$3x - 4w = 11$$
$$x + y + z = \sqrt{5}$$

3. For which values of the constant k does the system

$$\begin{aligned} x + 2y &= 7\\ 3x + 6y &= k \end{aligned}$$

have (a) no solution (b) exactly one solution (c) infinitely many solutions?

- 4. Solve each of the following systems by Gauss–Jordan elimination:
 - $\begin{array}{rl} 3x + 2y 2z = 1\\ (a) & -x + y + 2z = 2\\ 2x 3y & = 1 \end{array} \qquad (b) \begin{array}{rrr} 3x_1 2x_2 x_3 x_4 = 0\\ 2x_1 + x_2 & + 3x_4 = 1 \end{array} \qquad \begin{array}{rrr} 2x + y + 3z w = 4\\ (c) & x 3y + 2z + 4w = 1\\ 4x + 9y + 5z 11w = 7 \end{array}$
- 5. Solve (a) in the previous problem by Gauss elimination and back substitution.
- **6.** For which values of λ does the system

$$(3 - \lambda)x + y = 0$$

$$3x + (5 - \lambda)y = 0$$

have nontrivial solutions? (Note: Later in the semester, this type of problem will become known as an "eigenvalue problem" and will be studied in more generality.)

- 7. Give an example of a linear system of equations that has more equations than unknowns, but still has infinitely many solutions.
- 8. Give an example of a linear system of equations that has more unknowns than equations, but has no solutions.
- **9.** Find numbers a, b and c such that the curve $y = ax^2 + bx + c$ passes through the points (1,3), (2,3) and (4,9). (Note that this problem leads to *linear* equations even though $f(x) = ax^2 + bx + c$ is a *non*linear function of x.)
- 10. obsolete

11. Suppose the following matrices have the sizes given:

matrix	A	В	C	D	E
size	3×7	7×2	3×7	3×2	2×3

Determine the sizes of the following matrices, or say "undefined", if this is the case. $AB, BA, A - C, A^{T}B, A^{T}C, D^{T}A, CB + D, DE, DD^{T} + E^{T}E, (A + C)BE$

12. Compute

$\left[\begin{array}{c}1\\2\\3\end{array}\right]$	$2 \\ 2 \\ -1$	$egin{array}{c} 0 \ 1 \ 7 \end{array}$	$\begin{bmatrix} -2 \\ -3 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 1\\ -2\\ -1\\ 7 \end{bmatrix}$	$\begin{bmatrix} 1\\0\\3\\-4 \end{bmatrix}$
[ə	-1	1	0]	7	-4

13. Compute *AB* and *BA* for

$$A = \begin{bmatrix} 1 & 2 \\ -2 & 3 \end{bmatrix}, \qquad B = \begin{bmatrix} 2 & -4 \\ 3 & -1 \end{bmatrix}$$

- **14.** Compute A^2 (a shorthand for AA) if $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$.
- 15. In the following matrix expression, * denotes numbers that I decline to reveal to you. Compute as many entries of the result as is possible, based on this limited information, and fill in * for the entries that cannot be determined.

16. Write the matrix equation

$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ 7 & 7 & 7 & 7 \\ -\frac{1}{5} & 0 & 0 & \sqrt{2} \end{bmatrix} \begin{bmatrix} w \\ x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 8 \\ 88 \\ 888 \end{bmatrix}$$

as a system of linear equations.

Also write the system of linear equations whose augmented matrix can be found on page 1 of the introductory notes as a matrix equation; you may invent your favorite names for the unknowns.

17. For the matrices

$$A = \begin{bmatrix} -2 & 1\\ 0 & \frac{3}{2}\\ -\frac{1}{2} & 1 \end{bmatrix}, \qquad B = \begin{bmatrix} 1 & 2 & 3\\ 1 & \frac{1}{2} & \frac{1}{3} \end{bmatrix}, \qquad C = \begin{bmatrix} 5 & -2\\ -3 & 4 \end{bmatrix},$$

calculate the following expressions. If some expression is not defined, say so and explain why it is not defined.

(a)
$$(A + B^T)C$$
, (b) $A^T A + C$, (c) $B + CA$, (d) $A^T - 2CB$

- **18.** For the matrix $A = \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix}$ calculate tr $A^T A$ and tr AA^T . (If you are efficient, you need to calculate only part of $A^T A$ and of AA^T .)
- 19. Find a square matrix A such that $tr(A^2) \neq (tr A)^2$. (Unless it's your really unlucky day, your first best random choice of a 2×2 matrix should do the trick.)
- **20.** Suppose that a square matrix A satisfies $A^2 3A + 2I = 0$. Show that A is invertible, and that $A^{-1} = \frac{3}{2}I \frac{1}{2}A$.
- **21.** Let

$$A = \begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 3 & 1 \\ -2 & 4 \end{bmatrix}$$

Calculate $(A + B)^2$ and $A^2 + 2AB + B^2$, and explain how it comes that they are not the same. – Give the *correct* binomial formula for matrices:

$$(A+B)^2 = A^2 + B^2 + __?$$

22. Find the inverse of the matrix

$$A = \begin{bmatrix} 1 & 2 & -1 \\ 4 & 2 & 1 \\ -2 & 0 & 1 \end{bmatrix}$$

23. Find the inverses of the following matrices:

$$B = \begin{bmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{bmatrix} \quad \text{and} \quad C = \begin{bmatrix} 3 & & & \\ & \frac{4}{5} & & \\ & & 2 & \\ & & & \pi & \\ & & & -3 \end{bmatrix}$$

(Note: Vacant entries are understood to be 0. This convention is popular when dealing with large matrices that have only a comparatively small number of non-zero entries, so-called sparse matrices.)

24. Find an (the) elementary matrix E for which A = EB when

$$A = \begin{bmatrix} 8 & 3 & 3 \\ 4 & 2 & 1 \\ -5 & 2 & -3 \end{bmatrix} \text{ and } B = \begin{bmatrix} 8 & 3 & 3 \\ 4 & 2 & 1 \\ 3 & 6 & -1 \end{bmatrix}$$

25. Solve the linear system

$$-x - 2y - 3z = 2$$

$$w + x + 4y + 4z = 5$$

$$w + 3x + 7y + 9z = -1$$

$$-w - 2x - 4y - 6z = 3$$

by actually calculating the inverse of the coefficient matrix and then evaluationg the matrix product. (Remember from the lecture that this method is usually not encouraged, and not efficient for a single system of linear equations. Just once so that you see it work in practice.)

26. Which of the following matrices are invertible? (Decide by eyeballing; you are not required to find the inverse)

$$A = \begin{bmatrix} 1 & 3 & 0 & 0 \\ 0 & -2 & 1 & 9 \\ 0 & 0 & 3 & 2 \\ 0 & 0 & 0 & -1 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 0 & 0 \\ 3 & 1 & -1 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 3 \\ 0 & 5 \end{bmatrix} \cdot \begin{bmatrix} -1 & 0 \\ 7 & 5 \end{bmatrix}$$

27. I have done the following calculation for you already. You job is to determine, by eyeballing alone, if the two matrices on the left hand side commute or not; and to explain your reasoning in one or two sentences. If you find it difficult to come up with a compelling argument, you may need to study the glossary (again).

$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & -1 & 1 \\ 3 & 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 11 & 5 & -2 \\ 5 & 0 & 15 \\ -2 & 15 & -11 \end{bmatrix} = \begin{bmatrix} 15 & 50 & -5 \\ 15 & 25 & -30 \\ 38 & 15 & 9 \end{bmatrix}$$

28. In the following calculations, the * represent entries which I do not reveal to you. Carry out the evaluations to the extent possible and put * for entries that cannot be determined with the given information. Note that vacant entries are understood to be zero.

$$\begin{bmatrix} 1 & * & * \\ 2 & * \\ & 3 \end{bmatrix} \cdot \begin{bmatrix} 6 & * & * \\ 5 & * \\ & 4 \end{bmatrix} = ?, \begin{bmatrix} 1 & * & * \\ 2 & * \\ & 3 \end{bmatrix}^{-1} = ?$$

29. Find a diagonal matrix A that satisfies

$$A^{-4} = \begin{bmatrix} 16 & & \\ & 1 & \\ & & 1/9 \end{bmatrix}$$

(I didn't mention this in class, but hope you find the notation obvious: $A^{-4}:=A^{-1}\cdot A^{-1}\cdot A^{-1}\cdot A^{-1}$.)

- **30.** A and B are given square matrices of the same size (they may or may not be symmetric). Which of the following expressions will always produce a symmetric matrix, whatever matrices A and B I may have in mind?
 - (a) AB + BA, (b) A^TA , (c) AB BA, (d) ABA^TB^T
- **31.** Answer the same question as before, but this time with A and B given symmetric matrices of the same size.

32. Find lower and upper triangular matrices L and U such that A = LU, where A is the matrix

$$A = \begin{bmatrix} 2 & 8 & -2 \\ -1 & -1 & -14 \\ 2 & 11 & -19 \end{bmatrix}$$