Homework Chapter 1
UTK - M251 - Matrix Algebra Spring 2019, Jochen Denzler

1. Which of the following are linear equations in the unknowns x_{1}, x_{2}, x_{3}, or x, y, z, as applicable:
(a) $\quad x_{1}+x_{2}^{2}+3 x_{3}=7$
(b) $\frac{x}{2}+2 y-3 z=0$
(c) $\sqrt{2} x_{1}-3 x_{2}+x_{3}=5$
(d) $2 \sqrt{x_{1}}-x_{2}+8 x_{3}=2$
(e) $\quad x+y z=2$
(f) $\quad \frac{2}{x}+2 y-3 z=0$
2. Find the augmented matrix for the following system of linear equations:

$$
\begin{aligned}
& 5 x+3 y-2 z+11 w=9 \\
& 3 x-4 w=11 \\
& x+y+z=\sqrt{5}
\end{aligned}
$$

3. For which values of the constant k does the system

$$
\begin{array}{r}
x+2 y=7 \\
3 x+6 y=k
\end{array}
$$

have (a) no solution (b) exactly one solution (c) infinitely many solutions?
4. Solve each of the following systems by Gauss-Jordan elimination:
$3 x+2 y-2 z=1$
(a) $\begin{aligned}-x+y+2 z & =2 \\ 2 x-3 y & =1\end{aligned}$
(b) $\begin{aligned} & 3 x_{1}-2 x_{2}-x_{3}-x_{4}=0 \\ & 2 x_{1}+x_{2} \quad+3 x_{4}=1\end{aligned}$
$2 x+y+3 z-w=4$
(c) $x-3 y+2 z+4 w=1$
$4 x+9 y+5 z-11 w=7$
5. Solve (a) in the previous problem by Gauss elimination and back substitution.
6. For which values of λ does the system

$$
\begin{array}{r}
(3-\lambda) x+y=0 \\
3 x+(5-\lambda) y=0
\end{array}
$$

have nontrivial solutions? (Note: Later in the semester, this type of problem will become known as an "eigenvalue problem" and will be studied in more generality.)
7. Give an example of a linear system of equations that has more equations than unknowns, but still has infinitely many solutions.
8. Give an example of a linear system of equations that has more unknowns than equations, but has no solutions.
9. Find numbers a, b and c such that the curve $y=a x^{2}+b x+c$ passes through the points $(1,3),(2,3)$ and $(4,9)$. (Note that this problem leads to linear equations even though $f(x)=a x^{2}+b x+c$ is a nonlinear function of x.)
10. obsolete
11. Suppose the following matrices have the sizes given:

matrix	A	B	C	D	E
size	3×7	7×2	3×7	3×2	2×3

Determine the sizes of the following matrices, or say "undefined", if this is the case. $A B, B A, A-C, A^{T} B, A^{T} C, D^{T} A, C B+D, D E, D D^{T}+E^{T} E,(A+C) B E$
12. Compute

$$
\left[\begin{array}{rrrr}
1 & 2 & 0 & -2 \\
2 & 2 & 1 & -3 \\
3 & -1 & 7 & 0
\end{array}\right]\left[\begin{array}{rr}
1 & 1 \\
-2 & 0 \\
-1 & 3 \\
7 & -4
\end{array}\right]
$$

13. Compute $A B$ and $B A$ for

$$
A=\left[\begin{array}{rr}
1 & 2 \\
-2 & 3
\end{array}\right], \quad B=\left[\begin{array}{ll}
2 & -4 \\
3 & -1
\end{array}\right]
$$

14. Compute A^{2} (a shorthand for $\left.A A\right)$ if $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$.
15. In the following matrix expression, * denotes numbers that I decline to reveal to you. Compute as many entries of the result as is possible, based on this limited information, and fill in $*$ for the entries that cannot be determined.

$$
\left[\begin{array}{lllll}
* & * & * & 0 & * \\
1 & 2 & 3 & 4 & 5
\end{array}\right]\left[\begin{array}{rrr}
1 & * & 0 \\
-1 & * & 0 \\
2 & * & 0 \\
4 & 0 & 0 \\
-1 & * & 0
\end{array}\right]
$$

16. Write the matrix equation

$$
\left[\begin{array}{rccc}
1 & 2 & 3 & 4 \\
7 & 7 & 7 & 7 \\
-\frac{1}{5} & 0 & 0 & \sqrt{2}
\end{array}\right]\left[\begin{array}{l}
w \\
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{r}
8 \\
88 \\
888
\end{array}\right]
$$

as a system of linear equations.
Also write the system of linear equations whose augmented matrix can be found on page 1 of the introductory notes as a matrix equation; you may invent your favorite names for the unknowns.
17. For the matrices

$$
A=\left[\begin{array}{rr}
-2 & 1 \\
0 & \frac{3}{2} \\
-\frac{1}{2} & 1
\end{array}\right], \quad B=\left[\begin{array}{lll}
1 & 2 & 3 \\
1 & \frac{1}{2} & \frac{1}{3}
\end{array}\right], \quad C=\left[\begin{array}{rr}
5 & -2 \\
-3 & 4
\end{array}\right],
$$

calculate the following expressions. If some expression is not defined, say so and explain why it is not defined.
(a) $\left(A+B^{T}\right) C$,
(b) $A^{T} A+C$,
(c) $B+C A$,
(d) $A^{T}-2 C B$
18. For the matrix $A=\left[\begin{array}{lll}a & b & c \\ d & e & f\end{array}\right]$ calculate $\operatorname{tr} A^{T} A$ and $\operatorname{tr} A A^{T}$. (If you are efficient, you need to calculate only part of $A^{T} A$ and of $A A^{T}$.)
19. Find a square matrix A such that $\operatorname{tr}\left(A^{2}\right) \neq(\operatorname{tr} A)^{2}$. (Unless it's your really unlucky day, your first best random choice of a 2×2 matrix should do the trick.)
20. Suppose that a square matrix A satisfies $A^{2}-3 A+2 I=0$. Show that A is invertible, and that $A^{-1}=\frac{3}{2} I-\frac{1}{2} A$.
21. Let

$$
A=\left[\begin{array}{rr}
1 & 2 \\
-1 & 3
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{rr}
3 & 1 \\
-2 & 4
\end{array}\right]
$$

Calculate $(A+B)^{2}$ and $A^{2}+2 A B+B^{2}$, and explain how it comes that they are not the same. - Give the correct binomial formula for matrices:

$$
(A+B)^{2}=A^{2}+B^{2}+\square ?
$$

22. Find the inverse of the matrix

$$
A=\left[\begin{array}{ccc}
1 & 2 & -1 \\
4 & 2 & 1 \\
-2 & 0 & 1
\end{array}\right]
$$

23. Find the inverses of the following matrices:

$$
B=\left[\begin{array}{cc}
\cos \varphi & -\sin \varphi \\
\sin \varphi & \cos \varphi
\end{array}\right] \quad \text { and } \quad C=\left[\begin{array}{lllll}
3 & & & & \\
& \frac{4}{5} & & & \\
& & 2 & & \\
& & & \pi & \\
& & & -3
\end{array}\right]
$$

(Note: Vacant entries are understood to be 0 . This convention is popular when dealing with large matrices that have only a comparatively small number of non-zero entries, so-called sparse matrices.)
24. Find an (the) elementary matrix E for which $A=E B$ when

$$
A=\left[\begin{array}{ccc}
8 & 3 & 3 \\
4 & 2 & 1 \\
-5 & 2 & -3
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{ccc}
8 & 3 & 3 \\
4 & 2 & 1 \\
3 & 6 & -1
\end{array}\right]
$$

25. Solve the linear system

$$
\begin{aligned}
-x-2 y-3 z= & 2 \\
w+x+4 y+4 z= & 5 \\
w+3 x+7 y+9 z= & -1 \\
-w-2 x-4 y-6 z= & 3
\end{aligned}
$$

by actually calculating the inverse of the coefficient matrix and then evaluationg the matrix product. (Remember from the lecture that this method is usually not encouraged, and not efficient for a single system of linear equations. Just once so that you see it work in practice.)
26. Which of the following matrices are invertible? (Decide by eyeballing; you are not required to find the inverse)

$$
A=\left[\begin{array}{rrrr}
1 & 3 & 0 & 0 \\
0 & -2 & 1 & 9 \\
0 & 0 & 3 & 2 \\
0 & 0 & 0 & -1
\end{array}\right], \quad B=\left[\begin{array}{rrr}
1 & 0 & 0 \\
2 & 0 & 0 \\
3 & 1 & -1
\end{array}\right], \quad C=\left[\begin{array}{ll}
1 & 3 \\
0 & 5
\end{array}\right] \cdot\left[\begin{array}{rr}
-1 & 0 \\
7 & 5
\end{array}\right]
$$

27. I have done the following calculation for you already. You job is to determine, by eyeballing alone, if the two matrices on the left hand side commute or not; and to explain your reasoning in one or two sentences. If you find it difficult to come up with a compelling argument, you may need to study the glossary (again).

$$
\left[\begin{array}{rrr}
1 & 2 & 3 \\
2 & -1 & 1 \\
3 & 1 & 0
\end{array}\right] \cdot\left[\begin{array}{rrr}
11 & 5 & -2 \\
5 & 0 & 15 \\
-2 & 15 & -11
\end{array}\right]=\left[\begin{array}{rrr}
15 & 50 & -5 \\
15 & 25 & -30 \\
38 & 15 & 9
\end{array}\right]
$$

28. In the following calculations, the $*$ represent entries which I do not reveal to you. Carry out the evaluations to the extent possible and put $*$ for entries that cannot be determined with the given information. Note that vacant entries are understood to be zero.

$$
\left[\begin{array}{lll}
1 & * & * \\
& 2 & * \\
& & 3
\end{array}\right] \cdot\left[\begin{array}{lll}
6 & * & * \\
& 5 & * \\
& & 4
\end{array}\right]=?,\left[\begin{array}{lll}
1 & * & * \\
& 2 & * \\
& & 3
\end{array}\right]^{-1}=?
$$

29. Find a diagonal matrix A that satisfies

$$
A^{-4}=\left[\begin{array}{lll}
16 & & \\
& 1 & \\
& & 1 / 9
\end{array}\right]
$$

(I didn't mention this in class, but hope you find the notation obvious:
$\left.A^{-4}:=A^{-1} \cdot A^{-1} \cdot A^{-1} \cdot A^{-1}.\right)$
30. A and B are given square matrices of the same size (they may or may not be symmetric). Which of the following expressions will always produce a symmetric matrix, whatever matrices A and B I may have in mind?
(a) $A B+B A$,
(b) $A^{T} A$,
(c) $A B-B A$,
(d) $A B A^{T} B^{T}$
31. Answer the same question as before, but this time with A and B given symmetric matrices of the same size.
32. Find lower and upper triangular matrices L and U such that $A=L U$, where A is the matrix

$$
A=\left[\begin{array}{rrr}
2 & 8 & -2 \\
-1 & -1 & -14 \\
2 & 11 & -19
\end{array}\right]
$$

