
Hwk #30:

Use the multi-variable chain rule to determine f ′(x), when f(x) :=
∫ x
0

sin(xt)
t dt.

Analogous question for g(x) :=
∫ 2x
x/2

ext

t dt.

Again, we rely on the Math 447 expert, who tells us that it is legitimate to move derivatives
past the integral sign in this example.

Solution: This time, x occurs in two places in the formula for f(x). The MV chain rule, written
in terms of partials, tells us to consider each location separately and apply a partial (single variable)
derivative (as in the single variable chain rule), and then to add the results obtained for each separate
location. More formally, we consider

F (u, v) :=

∫ u

0

sin vt

t
dt

and we substitute u = x and v = x to get f(x) = F (x, x). So we have

f ′(x) = (∂1F )(x, x)
∂u

∂x
+ (∂2F )(x, x)

∂v

∂x

For ∂1F , we use the fundamental theorem (derivative of an antiderivative) to get (∂1F )(u, v) = sin vu
u .

For ∂2F , we use differentiation under the integral sign (with permission from the M447 expert again
given specifically for the situation of this problem, not as a blank cheque!) and get (∂2F )(u, v) =
∫ u
0

t cos vt
t dt = [ 1v sin vt]

t=u
t=0 = sin vu

v . Putting it all together (with ∂u/∂x = 1 = ∂v/∂x because u = x
and v = x), we get

f ′(x) =
sin(x2)

x
+

sin(x2)

x
= 2

sin(x2)

x
.

The same works for g, in principle: We define G(u, v, w) :=
∫ u
w

evt

t dt and let w = x/2, u = 2x, and
v = x. So g(x) = G(2x, x, x2 ). Note that derivatives with respect to the lower limit of integration get

a minus sign from the fundamental theorem, and that we have inner derivatives ∂w
∂x = 1

2 and ∂u
∂x = 2

this time.

g′(x) = 2
ex·2x

2x
+

∫ 2x

x/2

text

t
dt−

1

2

ex·x/2

x/2
=

e2x
2

x
+

[

ext

x

]t=2x

t=x/2

−
ex

2/2

x
=

2e2x
2

x
−

2ex
2/2

x

Hwk #31:

A quantity w depends on the coordinates x, y, z in 3-space as follows: w = x2 + y2 + xyz
(1). We study w especially on the plane given by z = x + 2y. Then we have there
w = x2 + y2 + xy(x+ 2y) = x2 + y2 + x2y + 2xy2 (2).

Now we calculate ∂w
∂x from (1): ∂w

∂x = 2x + yz. On the plane, this simplifies to ∂w
∂x =

2x+ y(x+ 2y) = 2x+ xy + 2y2.

Calculating ∂w
∂x on the plane directly from (2), we get ∂w

∂x = 2x+y(x+2y) = 2x+2xy+2y2.
We clearly have a discrepancy by a term xy. What is wrong? Clear up the confusion. (This
requires some text as well as formulas.)
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Solution: When we calculate ∂w
∂x from (1), we are taking a partial derivative with respect to z of a

three-variable function f given by f(x, y, z) = x2 + y2 + xyz. In this partial derivative, both y and z
are treated as constant. The partial derivative ∂w

∂x is a directional derivative in direction [1 , 0 , 0]T ,
which is a direction that goes off the plane z = x + 2y, even if we later evaluate this derivative in a
point on that plane.

In contrast, when we substitute first z = x+ 2y and then take the partial derivative ∂w
∂x form (2), we

are taking a partial derivative of a two-variable function g given by g(x, y) = x2 + y2 + xy(x + 2y).
In this partial derivative, y is still constant and x still varies, as before; but z is now not constant,
but also varies because z = x+ 2y. For f , this is now a directional derivative in direction [1 , 0 , 1]T ,
which is a direction lying in the plane z = x+ 2y.

The notation ∂w
∂x is ambiguous in this context, because the variable w can refer to two different

functions f versus g. Unless the ambiguity is resolved by an explaining text or context, the notation
∂w
∂x should be avoided in such a situation. Rather the result according to part (1) should be written
as ∂1f(x, y, x+ 2y), and the result at part (2) should be written as ∂1g(x, y).

We then have

(∗)

∂

∂x
f(x, y, x+ 2y) = ∂1f(x, y, x+ 2y)

∂x

∂x
+ ∂2f(x, y, x+ 2y)

∂y

∂x
+ ∂3f(x, y, x+ 2y)

∂(x+ 2y)

∂x

= ∂1f(x, y, x+ 2y) + ∂3f(x, y, x+ 2y)

and

(∗∗)
∂

∂x
g(x, y) = ∂1g(x, y)

Both of these results are equal and correspond to calculation (2), whereas calculation (1) gave just
the first term of the sum arising in (∗).

Hwk #32:

This example is taken from I. Rosenholtz, L. Smylie: “The only Critical Point in Town”
Test, Mathematics Magazine 58(1985), 149–150.

Show that the function

g : (x, y) #→ y2 + 3(y + ex − 1)2 + 2(y + ex − 1)3 , R2 → R

has exactly one critical point, and that this point is a relative mimimum.

Furthermore explain why this point is not an absolute minimum.

Solution: It is convenient to use the abbreviation u := y + ex − 1.

∂g(x, y)

∂x
= 6uex + 6u2ex

∂g(x, y)

∂y
= 2y + 6u+ 6u2

For both to vanish we need y = 0 and u+ u2 = 0, which latter means u = 0 or u = −1. Since y = 0,
u = ex − 1, and this cannot equal −1. So u = 0, and this means x = 0.

Therefore the only critical point is (x, y) = (0, 0). Let’s calculate the Hessian:

Hg(x, y) =

[

(6u+ 6u2)ex + (6 + 12u)e2x (6 + 12u)ex

(6 + 12u)ex 8 + 12u

]
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Hg(0, 0) =

[

6 6
6 8

]

This matrix is positive definite, by the Hurwitz test: h11 = 6 > 0 and h11h22−h212 = 12 > 0. Therefore
the origin is a relative minimum of g. g(0, 0) = 0. But g(0, y) = 4y2 + 2y3 → −∞ as y → −∞. The
function is unbounded below and does not have an absolute minimum.

Comment: This example shows two things. Firstly, it does not suffice to check the values of a function at
the only candidates for a relative minimum in order to determine a global minimum, unless the existence
of an absolute minimum is established beforehand.

But there is a second lesson hidden in this example. An intuitively plausible argument would go like this:
“If I am hiking in a landskape and standing in a local minimum, but there are points out there with lower
elevation than my present location, then it must be possible, in principle, to reach them by a walk that
goes through some pass (mathematically a saddle point). So, if a local minimum is not a global minimum,
there should be another critical point, a saddle point, somewhere.” This argument does actually have some
merit. However, the saddle point could have run away to infinity. In our example the 2-variable function
(u, y) #→ y2 + 3u2 + 2u3 has a local minimum at (u, y) = (0, 0) and a saddle point at (u, y) = (−1, 0).
But u → −1 corresponds to x → −∞ when u = y + ex − 1 and y = 0.

In advanced applications, this principle ‘there should be a saddle point, if only we can make sure that it
hasn’t run off to infinity’ is a powerful tool in solving partial differential equations.

Hwk #33:

This example is taken from Marsden-Tromba: Show that the function f given by f(x, y) =
(y−3x2)(y−x2) has a critical point in the origin, which is neither a relative minimum nor
a relative maximum. What kind of ‘***’definite is the Hessian?

Show also that all single-variable radial functions t #→ f(t cosφ, t sinφ) have a relative
minimum at t = 0.

Solution: For fixed φ, let g(t) := f(t cosφ, t sinφ) = t2 sin2 φ − 4t3 sinφ cos2 φ + 3t4 cos4 φ. Then
g′(0) = 0 and g′′(0) = 2 sin2 φ. For sinφ ̸= 0, we can argue that g has a local minimum at 0 because the
first derivative vanishes and the second derivative is positive there. For sinφ = 0, we have cos2 φ = 1
and g(t) = 3t4, and we again have a local minimum at 0, albeit a ‘degenerate’ one that cannot be
detected by the second derivative test. .

Now clearly f(0, 0) = 0, but there are both positive and negative values in any neighbourhood of
(0, 0). For instance f(x, 2x2) = −x4 < 0. Let’s calculate the Hessian from f(x, y) = 3x4 − 4x2y + y2:

fxx(x, y) = 36x2−8y, fxy(x, y) = −8x, fyy(x, y) = 2. So Hf(0, 0) =

[

0 0
0 2

]

. This matrix is positive

semidefinite, but not positive definite.

Note: Similar as with continuity and differentiability, we learn here for the local minimu property that
the MV version cannot be captured by having the single variable version in all directions. However, a
slightly strengthened version of the single variable local minimality (namely that the sufficient condition of
having positive second derivative is satisfied) in all directions does suffice to prove local minimality in the
multi-variable context for C2 functions.

Hwk #34:

This example is geometrically appealing, but alas calculationally lengthy. This is why I
give you the intermediate steps and hints to navigate you through. Ideally, it should be
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done with the help of symbolic algebra software, and you are welcome to use this tool, if
available.

We want to find a shortest connection between two plane curves, namely y = x2 + 2 and
y = 1

2(x−1)2. A precise plot is attached. Choose points P = (a, a2+2) on the first parabola
and Q = (b, 12 (b− 1)2) on the second and minimize the square of the distance. Determine
all critical points and classify them. Does one of them probide a global minimum? Why?

Hint 1: While it is possible to take one of the equations for a critical point and solve it for
b via by means of the quadratic formula, and then plug in the result in the other equation,
this is tedious. It is more straightforward to take successively linear combinations of the
two equations with the strategy of first eliminating b3, then b2, then b, until one polynomial
equation in a remains.

Hint 2: After an obvious factorization of this polynomial equation, an easy solution a = 1
can be guessed, and when this is factored off, a 4th order polynomial remains that can be
factored into two quadratics with integer coefficients; indeed one factor is a2 + 2a+ 3.

Solution: We take the distance squared between a point P = (a, a2 + 2) on the first parabola and
a point Q = (b, 12(b− 1)2) on the second parabola and get the function

f(a, b) := (a− b)2 +
(

a2 + 2−
1

2
(b− 1)2

)2
.

We obtain

∂f(a, b)/∂a = 2(a− b) + 4a
(

a2 + 2−
1

2
(b− 1)2

)

= 0

∂f(a, b)/∂b = 2(b− a)− 2(b− 1)
(

a2 + 2−
1

2
(b− 1)2

)

= 0

So we have to solve the system of two polynomial equations

−b+ 2a3 + 4a− ab2 + 2ab = 0 (1)
2a2 − 2a+ 3− 2a2b+ b3 − 3b2 + b = 0 (2)

Following the hint, we take a times (2) plus b times (1) to get rid of b3. We obtain

2a3 − 2a2 + 3a+ 5ab− (a+ 1)b2 = 0 (3)

Now we add −(a+ 1) times (1) to a times (3) to eliminate b2. We obtain

−4a3 − a2 − 4a+ b(3a2 − a+ 1) = 0 (4)

We solve this for b and plug it back into (1):

2a3 + 4a+ (2a − 1)
4a3 + a2 + 4a

3a2 − a+ 1
− a

(

4a3 + a2 + 4a

3a2 − a+ 1

)2

= 0

Clearing denominators and expanding, we get

2a7 + 4a6 + 3a5 − 5a4 − 7a3 + 3a2 = 0 (5)

We can factor off a = 0 twice and guess the solution a = 1, thus factoring off (a − 1). After long
division of polynomials, we get

0 = 2a4 + 6a3 + 9a2 + 4a− 3 = (2a2 + 2a− 1)(a2 + 2a+ 3)
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Figure 1: Figure for Hwk # 34
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This factorization, short of the hint given, would best be found by means of a symbolic algebra
software. a2 +2a+3 = 0 doesn’t have real solutions; 2a2 +2a− 1 = 0 can be solved by the quadratic
formula. We have thus found the following solutions of (5):

a0 = 0 , a1 = 1 , a2,3 =
1

2

(

−1±
√
3
)

We can get b form a by means of (4), but initially, all of these are mere consequences of (1),(2); they
are not equivalent to (1),(2). We must plug them back into the original equations. Clearly a0 = 0
violates (2). For a ̸= 0, (1),(2) ⇐⇒ (1),(3) ⇐⇒ (1),(4) ⇐⇒ (4),(5). The last equivalence uses
3a2 − a+ 1 ̸= 0. So we have found

(a1, b1) = (1, 3) P1 = (1, 3) Q1 = (3, 2)

(a2, b2) =

(

1

2

(

−1 +
√
3
)

,
√
3

)

P2 =

(

1

2

(

−1 +
√
3
)

, 3−
1

2

√
3

)

Q2 =
(

−
√
3, 2−

√
3
)

(a3, b3) =

(

1

2

(

−1−
√
3
)

,−
√
3

)

P3 =

(

1

2

(

−1−
√
3
)

, 3 +
1

2

√
3

)

Q3 =
(√

3, 2 +
√
3
)

Numerical values are:

P1 = (1, 3) Q1 = (3, 2) |P1Q1| = 2.236

P2 = (0.366, 2.134) Q2 = (1.732, 0.268) |P2Q2| = 2.313

P3 = (−1.366, 3.866) Q3 = (−1.732, 3.732) |P3Q3| = 0.390

The Hessian of f is

Hf(a, b) =

[

8 + 12a2 + 4b− 2b2 −2 + 4a− 4ab
−2 + 4a− 4ab 1− 2a2 − 6b+ 3b2

]

Hf(a1, b1) =

[

14 −10
−10 8

]

pos def

Hf(a2, b2) =

[

14− 2
√
3 −10 + 4

√
3

−10 + 4
√
3 8− 5

√
3

]

≈
[

10.536 −3.072
−3.072 −0.660

]

indefinite

Hf(a3, b3) =

[

14 + 2
√
3 −10− 4

√
3

−10− 4
√
3 8 + 5

√
3

]

≈
[

17.464 −16.928
−16.928 16.660

]

pos def

So (a2, b2) is a saddle point, the other two are local minima. The one with the smaller distance, namely
(a3, b3) can be accepted as a global minimum, provided we know apriori that a global minimum
exists.

We cannot argue directly, because R × R ∋ (a, b) is not bounded. However, we have the additional
feature that f(a, b) → ∞ as either a or b goes to infinity. For instance, when asking whether a
global minimum exists, we can a-priori neglect all (a, b) for which f(a, b) > 100, because at some
points f has smaller values, e.g., f(0, 1) = 5 ≪ 100. So we only need to consider those (a, b) where
|a − b| ≤ 10, because otherwise f(a, b) > 102 + 0. But if |a − b| ≤ 10, we have a2 + 2 − 1

2 (b − 1)2 =
1
2a

2+ 1
2 [a

2− (b−1)2]+2 ≥ 1
2a

2+2− 1
2 |a−b+1| |a+b−1| ≥ 1

2a
2+2− 11

2 (2|a|+11). For |a| sufficiently
large, this will again be > 10, making f(a, b) > 0 + 102. So we need to consider only the absolute
minimum on some closed and bounded set {(a, b) : |a − b| ≤ 10 , |a| ≤ C}, and an abolute minimum
exists on this set. Outside ths set, the values of f are larger, so we do have an absolute minimum on
R2.
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Hwk #35:

Suppose in the following matrices, the starred entries are not known. Which of the five
possibilities ‘positive definite’, ‘positive semidefinite (but not definite)’, ‘negative definite’,
‘negative semidefinite (but not definite)’, ‘indefinite’ remains a possibility, based on knowl-
edge only of the known entries?

(a)

[

3 ∗
∗ ∗

]

(b)

[

∗ ∗
∗ −5

]

(c)

[

∗ 6
6 ∗

]

(d)

[

3 ∗
∗ −1

]

(e)

⎡

⎣

0 1 ∗
1 ∗ ∗
∗ ∗ ∗

⎤

⎦

Consider the following: While the Hurwitz test was worded in a way to calculate determi-
nants starting from the top, the order in which the variables are listed (and thus determine
entries of the matrix) is not essential for definiteness of a matrix; so you could use the de-
terminants in the Hurwitz test starting at any diagonal element and then calculating 2×2,
3× 3, etc. determinants, adding any one variable (row and column) at a time.

Solution: (a) this matrix could be positive (semi-)definite or indefinite, but not negative (semi-)
definite, because the vector [1 , 0]T makes the quadratic form positive.

(b) this matrix could be negative (semi-)definite or indefinite, but not positive (semi-)definite, because
the vector [0 , −1]T makes the quadratic form negative.

(c) no conclusion can be drawn: If one diagonal element is positive and one negative, then the matrix
is indefinite. If both diagonal elements are larger than 6, the matrix is positive definite by Gershgorin’s
test. If both diagonal elements are below −6, the matrix is negative definite. If both diagonal elements
are equal 6 (or equal −6), the matrix is positive (or negative) semidefinite by explicit writing down of
the quadratic form. (This does not exhaust all possibilities that the ∗ could stand for, but it already
represents all cases for definiteness properties of the matrix.)

(d) this matrix is indefinite, regardless of the off-diagonal elements.

(e) this matrix is indefinite. The determinant of the 2 × 2 submatrix

[

0 1
1 ∗

]

is −1, so the matrix

cannot be positive definite (and the 0 in the corner also confirms this). Similarly, the negative of this
matrix cannot be positive definite either. – We do not have a Hurwitz test for semi-definiteness, so we
cannot rule this case out by determinants. But let’s just calculate the quadratic form with the vector
[1 , t , 0]T . We get 0 · 12+2 · 1 · t+ ∗ · t2 = 2t+ ∗t2. Whatever the value of ∗, this expression is positive
for t positive and sufficiently small, but is negative for t negative of sufficiently small absolute value.

Hwk #36:

Find the absolute minimum and absolute maximum of x2+(y− 1)2 + z2−xyz on the ball
x2+y2+z2 ≤ 32. Hint: For the boundary consideration, use the xz plane as equator plane
for the spherical coordinates, to benefit from the symmetry of the problem. Otherwise
formulas get obnoxiously messy.

Solution: Since this is a continuous function on a bounded and closed set, we know that an absolute
minimum and maximum exist . We do not need to calculate Hessians to check for local minima or
maxima, because they are not asked. The absolute extrema can be found by selecting from critical
points in the interior and critical points on the boundary.
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Let’s first study any interior critical points of the function f given by f(x, y, z) := x2+(y−1)2+z2−xyz:
For the gradient to vanish, we need

(∂1f)(x, y, z) = 2x− yz = 0
(∂2f)(x, y, z) = 2(y − 1)− xz = 0
(∂3f)(x, y, z) = 2z − xy = 0

Combining the first and third condition, we get 2x2 = 2z2 = xyz. So we conclude either (1) x = z,
y = 2 or (2) x = −z, y = −2, or (3) x = z = 0. Plugging each case into the 2nd equation we get: two
solutions (x, y, z) = (±

√
2, 2,±

√
2) from (1). Two solutions (x, y, z) = (±

√
6,−2,∓

√
6) from (2). One

solution (x, y, z) = (0, 1, 0) from (3). Since we have only been drawing conclusions from this system,
we need to check that all these five solutions do satisfy all three equations. They do. The solutions
from (2) are not in the ball and may therefore be discarded.

We note f(±
√
2, 2,±

√
2) = 1 and f(0, 1, 0) = 0.

We parametrize the boundary by spherical coordinates: y = 3cos ϑ, x = 3 sin ϑ cosϕ, z = 3 sinϑ sinϕ.
While this is originally meant for ϕ ∈ [0, 2π] and ϑ ∈ [0,π], we can extend the coordinates by ‘wrapping
over’ to ϕ,ϑ ∈ R. This reflects the fact that the sphere does not have a boundary. We only need to
look for interior critical points of the 2-variable function

g(ϑ,ϕ) := f(3 sinϑ cosϕ, 3 cos ϑ, 3 sin ϑ sinϕ)
= 9 sin2 ϑ+ (3 cos ϑ− 1)2 − 27 cos ϑ sin2 ϑ sinϕ cosϕ
= 10− 6 cos ϑ− 27

2 cos ϑ sin2 ϑ sin 2ϕ

The vanishing of gϕ requires cos ϑ sin2 ϑ cos(2ϕ) = 0. This means ϑ ∈ {0, π2 ,π} or ϕ ∈ {π
4 ,

3π
4 , 5π4 , 7π4 }.

The vanishing of gϑ requires 6 sinϑ+ 27
2 sin3 ϑ sin 2ϕ− 27 sin ϑ cos2 ϑ sin 2ϕ = 0.

ϑ ∈ {0,π} satisfy this condition and give rise to boundary critical points f(0, 3, 0) = 4 and f(0,−3, 0) =
16.

ϑ = π
2 (and hence y = 0) still needs sin 2ϕ = −4

9 for gϑ to vanish. We do not need to pursue
these critical points further because g(π2 ,ϕ) ≡ 10, so they would be neither absolute minima nor
absolute maxima. Note: Lest this seem confusing: the function g is constant on the ‘equator’ y = 0,
x2 + z2 = 9. But not all points on the equator are critical points, because criticality also depends on
how the function changes off the equator.

ϕ ∈ {π
4 ,

5π
4 } still needs 6 sinϑ + 27

2 sin3 ϑ − 27 sin ϑ cos2 ϑ = 0 for gϑ to vanish. Apart from retrieving
ϑ ∈ {0,π}, which has been discussed already, we have to solve 6 + 27

2 (1 − cos2 ϑ) − 27 cos2 ϑ = 0, or

cos ϑ = ±(1327)
1/2. Then sin2 ϑ = 14

27 and g = 10∓ 13(1327 )
1/2.

Similarly, ϕ ∈ {3π
4 , 7π4 } still needs 6 sin ϑ− 27

2 sin3 ϑ+ 27 sin ϑ cos2 ϑ = 0 for gϑ to vanish. Apart from

retrieving old critical points, we have to solve 6− 27
2 (1− cos2 ϑ) + 27 cos2 ϑ = 0, or cos ϑ = ±( 5

27 )
1/2.

Then sin2 ϑ = 22
27 and g = 10± 5( 5

27 )
1/2, values that do not qualify for a global extremum.

Concludingly, we have found the global minimum 0 at (x, y, z) = (0, 1, 0) and the global maximum
10 + 13(1327 )

1/2 ≈ 19.0206 on the boundary at (x, y, z) = (±(73)
1/2,−(133 )

1/2,±(73 )
1/2).
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Hwk #37:

Redo the boundary part of the calculations from the previous problem using Lagrange
multipliers.

Solution: Minimizing/maximizing the expression f(x, y, z) := x2 + (y − 1)2 + z2 − xyz on the level
set h(x, y, z) = x2 + y2 + z2 − 9 = 0 leads to the following necessary conditions for a local extremum:

2x− yz = 2λx (1)
2(y − 1)− xz = 2λy (2)

2z − xy = 2λz (3)
x2 + y2 + z2 = 9 (4)

Guided by the symmetry between x and z, we seek to simplify this system by calculating x ·(1)−z ·(3).
After slight rearrangement, this gives 2(1 − λ)(x2 − z2) = 0. So either x = ±z or λ = 1. We also
subtract (1) − (3) directly and get (2 + y)(x− z) = 2λ(x− z). So if x ̸= z, we need y = 2λ− 2.

The case λ = 1 leads to yz = 0 = xy, xz = −2. So since x, z cannot vanish, we need y = 0. The
combination xz = −2, x2 + z2 = 9 gives four solutions ( the ones on the equator in the previous
problem), and for all of them, the value of f is 10. We still have to consider the cases x = z and
x = −z.

Let’s now look at the case x = z. Either x = z = 0 and hence y = ±3 with values 4 or 16 for f , or else
we can cancel x from (1) and get 2λ = 2− y. Plugging this into (2) we get 2(y − 1)− x2 = (2− y)y.
And (4) becomes 2x2 + y2 = 9. These togehter are equivalent to x2 = 7

3 , y
2 = 13

3 .

In the case x = −z we may assume x ̸= z (hence x, z ̸= 0), b/c x = z has been studied already. So we
have then 2λ = y + 2 and this case leads to −2 + x2 = y2 from (2) and 2x2 + y2 = 9 from (4). Hence
x2 = 11

3 and y2 = 5
3 . The values of f corresponding to this case are 10± 5

3(
5
3 )

1/2.

Hwk #38:

This problem gives you the most celebrated use of Lagrange multipliers, but it requires some
intrduction to appreciate it. (The calculations aren’t bad at all.)

A famous task in linear algebra and matrix theory is to find eigenvalues of a given matrix. If
A is a square matrix and you can find a non-zero vector v such that Av is actually a multiple
of v, i.e., λv where λ is a number, then we call λ an eigenvalue of the matrix A (and v an

eigenvector). For instance, the matrix A =

[

3 2
−3 −4

]

has 2 as an eigenvalue and

[

2
−1

]

as a corresponding eigenvector, because

[

3 2
−3 −4

] [

2
−1

]

= 2

[

2
−1

]

It also has −3 as an eigenvalue with

[

1
−3

]

as an eigenvector. Of course multiples of eign-

evectors are again eigenvectors, e.g., if Av = 2v then also A(7v) = 2(7v). — In the example,
there are only these two numbers λ1 = 2 and λ2 = −3 that are eigenvalues. If you try to find

v =

[

v1
v2

]

solving Av = λv for any other λ you will only get the solution v1 = v2 = 0, i.e.,

only the zero vector. (Try it, just to gain familiarity with the notions.)
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This problem is about eigenvalues of symmetric matrices. They play a role in studying definite-
ness of symmetric matrices. In physics, they are key concepts in describing rotating motions
of rigid bodies. To every body, there is associated a symmetric 3× 3 matrix called its ‘tensor
of inertia’, whose eigenvectors point in the directions of such axes about which the body can
rotate without wobbling (i.e., in a balanced way). The eigenvalues are called the moments of
inertia about these axes.

To every symmetric n × n matrix A we associate the quadratic function f(x) := xTAx
where x = [x1, . . . , xn]T ∈ Rn. We try to minimize or maximize f(x) under the constraint
xTx = 1 (i.e., for x on the unit sphere).

(a) Write out f(x) in components xi for a 3 × 3 matrix A whose entries are called aij.
Explain why a global maximum and a lobal minimum of f(x) on the sphere are a-priori
guaranteed to exist.

(b) Use the Lagrange multiplier method to set up equations satisfied by the x providing a
minimum or a maximum. (You may have written all these in components; but now make
sure to rewrite the whole stuff again in matrix and vector form.) While you are not asked
to actually solve for x (that would be very tedious, involving a cubic equation for λ), I
ask you to express the value of f at the minimum and maximum in terms of the Lagrange
multiplier. [Be aware that when finding the max vs the min, x and λ will typically refer
to numerically different quantities in these two cases.]

You have just proved that every symmetric 3 × 3 matrix has (at least) two real eigenvalues.
(Actually, if A is a multiple of the identity matrix, these two eigenvalues coincide.) And with
jut a bit more writing, the same can be done for symmetric n× n matrices.

The method can be cranked up a bit, by throwing in further constraints, to prove that every
symmetric n × n matrix has n real eigenvalues (some of which may coincide). This may well
be among the most important pieces of insight in undergraduate mathematics, and it’s a pity
that it often falls between the cracks of separating Calc 3 and Linear Algebra into independent
courses of the curriculum.

(c) Show, in a very brief calculation: If A is positive definite, then all its eigenvalues are
positive. If A is positve semidefinte, then all of its eigenvalues are ≥ 0. FYI: The converse
is also true; so indeed a symmetric matrix is positve definite (resp. emidefinite) if and only

if all of its eigenvalues are positive (resp. non-negative). This statement is sponsored by the
above proof (a), (b) and some extra dose of linear algebra. It is the launch pad for proving the
Hurwitz and Gershgorin tests I gave you before.

Solution: (a) Using the symmetry of the matrix already, we get

f(x1, x2, x3) =
[

x1 x2 x3
]

⎡

⎣

a11 a12 a13
a12 a22 a23
a13 a23 a33

⎤

⎦

⎡

⎣

x1
x2
x3

⎤

⎦

= a11x
2
1 + a22x

2
2 + a33x

2
3 + 2a12x1x2 + 2a13x1x3 + 2a23x2x3

Being a polynomial, this function is in particular continuous, and we constrain it to the sphere x21 +
x22 + x23 = 1, which is a closed and bounded set. Therefore a minimum and a maximum of f on the
sphere exist.

(b) The Lagrange multiplier method says that at a constrained minimum, and at a constrained max-
imum, there exists a λ ∈ R such that ∇f = λ∇g (where g(x) := xTx − 1 = 0 is the constraint),
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provided ∇g does not vanish on the set g = 0. We can easily see ∇g(x) = 2x (and this clearly does
not vanish on the constraining set xTx = 1). Let’s calculate ∇f(x):

∇f(x) =

⎡

⎣

∂1f(x)
∂2f(x)
∂3f(x)

⎤

⎦ =

⎡

⎣

2a11x1 + 2a12x2 + 2a13x3
2a12x1 + 2a22x2 + 2a23x3
2a13x1 + 2a23x2 + 2a33x3

⎤

⎦ = 2Ax

We conclude there exist λ ∈ R and a nonzero vector x ∈ R3 such that 2Ax = 2λx, hence λ i
an eigenvalue and x is an eigenvector. (We know more about x than that it is non-zero; actually
∥x∥ = 1.)

Since Ax = λx at the extremum, we conclude xTAx = λxTx = λ, so the eigenvalue is actually the
value of the constrianed maximum / minimum of f . Unless these two coincide (in which case xTAx
would have to be constant on the sphere, i.e., A would have to be a multiple of the unit matrix I), we
indeed have found two different solutions λ (one for the min and one for the max).

(c) If A has an eigenvalue λ (with eigenvector x ̸= 0), i.e., if Ax = λx, then xTAx = λ∥x∥2. For a
positive definite matrix A, this expression must be positive for all vectors x ̸= 0, in particular for the
eigenvector x Hence λ > 0. Similarly we can argue for positive semidefinite.

Hwk #39:

Think of the task of finding the absolute maximum of x2 + 1
2y

2 + y4 − xy on the set S
given by (x − 1)2 + |y + y3| ≤ 5. The purpose of this problem is not that you would
actually do calculations to find the maximum (which would require numerical methods).
Rather, in preparation for such a search. I want you to use the Hessian to conclude that
the maximum exists and is on the boundary of the set S.

The message here is: While modest problems can already lead to prohibitively complicated
calculations that may need numerical tools, simple analytic arguments may still be able
significantly to reduce the amount of labor in a numerical search.

Solution: First we note that an absolute maximum exists, b/c we have a continuous expression on
a bounded and closed set. We argue that any absolute maximum in this case cannt be in the interior
because the Hessian is not negative semidefinite anywhere. (We do not attempt to solve the equations
from vanishing of the gradient, even though we might of course have tried this, too.

The Hessian is

[

2 −1
−1 1 + 12y2

]

. It is clearly positive definite everywhere by the Hurwitz test. So

if a critical point were to be found in the interior of S, it would not be an absolute maximum (but a
relative minimum at least; possibly an absolute minimum).

Hwk #40:

You may or may not have seen the following formula (called Heron’s formula): The area of a
triangle with sides a, b, c is

√

s(s− a)(s− b)(s − c) where s is the semiperimeter 1
2(a+b+c).

Show that among all triangles with a given perimeter 2s = a + b + c, the area takes an
absolute minimum exactly for the equilateral triangle. (Explain first why an absolute
minimum exists before calclulating it.)

Solution: Since a, b, c ≥ 0 and a + b + c = 2s, clearly, the admissible choices of a, b, c lie in a
bounded set. The set is also closed (because it is given by equations and non-strict inequalities for
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