
K = (12 ,−
1
2 ,−g). Again, we can get for the angle ϕ between the vectors A⃗G and A⃗K that

cosϕ = A⃗G ·A⃗K/∥A⃗G∥ ∥A⃗K∥ =

⎡

⎣

1/2
1/2
g

⎤

⎦ ·

⎡

⎣

1/2
1/2
−g

⎤

⎦ /
(

(12 )
2+(12)

2+g2
)

= (12−g2)/(12 +g2) = 1
4/

3
4 = 1

3

Hwk #6:

In astronomy, it is convenient to describe an ellipse (like, e.g., the orbit of the earth around
the sun) in polar coordinates (with the sun at the origin, and the positive x axis through
the perihelion (the point on the orbit of the earth that is closest to the sun). See figure
(not to scale).

ϕ

r
x

y

In polar coordinates, the orbit is given by r = r0/(1 + ε cosϕ), where ε ∈ ]0, 1[ is called
the eccentricity (a measure how much the ellipse deviates from circular shape). Obtain
the equation in cartesian coordinates (x, y). The answer should be in the form (you fill in
the ‘?’).

(x−?)2

?2
+

y2

?2
= 1

Solution:

The connection between polar and cartesian coordinates is given by x = r cosϕ, y = r sinϕ. Therefore
cosϕ = x/r and r2 = x2 + y2.

We write r = r0/(1 + ε cosϕ) as r + rε cosϕ0 = r0, or equivalently, r = r0 − εx. Squaring produces
x2 + y2 = (r0 − εx)2. Gathering like terms gives us x2(1− ε2) + 2r0εx+ y2 = r20.

After completing the square for x, we get (1− ε2)(x+ r0ε
1−ε2 )

2 + y2 = r20 + r20
ε2

1−ε2 = r20/(1− ε2).

This can be written as

(x− x0)2

a2
+

y2

b2
= 1

where x0 = −r0ε/(1− ε2), a = r0/(1− ε2), b = r0/
√
1− ε2.

(x0, 0) is the center of the ellipse, a is the major semi-axis, and b
is the minor semi-axis.

εaa

b
r0

5



Comment: The point in the allipse that was used as origin of the polar coordinate system is called a
focus of the ellipse. The focus of the ellipse is distance εa away from the center of the ellipse. This is
why ε is called the eccentricity (or excentricity).

Hwk #7:

The cardioid is most easily described in terms of polar coordinates: r = 2(1 − cosϕ). Its
name comes from the Greek word for ‘heart’, and you’ll see why when you graph this
curve. So graph it carefully, but don’t just steal the graph from a Valentine’s card, that
would be too corn(er)y!

A circle C1 of radius 1 sits stationary with center (−1, 0).
Another circle C2 of radius 1 touches it from the right, in
the origin. This circle is soon to roll along the fixed circle
C1 without sliding. A point P is marked on the circle C2.
Initially it is the point where both circles touch. As C2 rolls
along C1, the point P traces out a curve in the stationary
plane. Use t for the angle (measured on C1) of the point
of contact of both circles. Give a vector valued function
t %→

[

x(t)
y(t)

]

that describes the position of P as a function

of t.

t

t

P

C1

C2

Show that the curve traced out by P is a cardioid.

Solution:
The figure shows a graph of the cardioid, obtained from the
formula r = 2(1− cosϕ).
Next we study the curve traced out by P : The center O1 of
circle C1 has coordinates (−1, 0). The vector from there to the
center O2 of circle C2 is [2 cos t , 2 sin t]T . Note that the an-
gle O1O2P is also t, because C2 rolls along C1 without sliding.
This is in addition to the angle t which the vector ⃗O2P sub-
tends with the horizontal. This means the vector from O2 to P
has coordinates [− cos 2t , − sin 2t]T . We obtain the following
representation of the curve traced out by P :

[

x(t)
y(t)

]

=

[

−1 + 2 cos t− cos 2t
2 sin t− sin 2t

]

In order to show that these two curves coincide, we rewrite the last formula, using the double-angle
trig formulas:

[

x(t)
y(t)

]

=

[

2 cos t (1− cos t)
2 sin t (1− cos t)

]

With these formulas, it is clear that the angle ϕ just coincides with t, since tanϕ = y/x = tan t; and
that r = 2(1− cos t).

Hwk #8:

Given a curve described in parametric form t %→ x⃗(t), in the plane or in space, we may
pretend that the parameter t represents a time and that x⃗(t) is the position vector at ‘time’
t. Then the velocity is x⃗′(t), and the speed is ∥x⃗′(t)∥. The length of the curve between
parameters t0 and t1 is

∫ t1
t0

∥x⃗′(t)∥ dt.
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Using this insight, calculate the length (perimeter) of the cardioid.

Solution: We have seen that the cardioid can be parametrized as
[

x(t)

y(t)

]

=

[

2(1 − cos t) cos t

2(1 − cos t) sin t

]

=

[

−1 + 2 cos t− cos 2t

2 sin t− sin 2t

]

.

Differentiating, we get
[

x′(t)

y′(t)

]

=

[

−2 sin t+ 2 sin 2t

2 cos t− 2 cos 2t

]

and hence
∥

∥

∥

[

x′(t)

y′(t)

]

∥

∥

∥

2
= (−2 sin t+ 2 sin 2t)2 + (2 cos t− 2 cos 2t)2

= 4 + 4− 8(cos t cos 2t+ sin t sin 2t) = 8− 8 cos t = 16 sin2(t/2)

Therefore the perimeter of the cardioid is

L =

∫ 2π

0
4| sin(t/2)| dt = 8

∫ π

0
sin s ds = 16

Hwk #9:

I love to collect airline miles. Let’s assume I fly from Atlanta (ATL) to Frankfurt, Germany
(FRA). How many miles is the shortest distance? I look up the following info on a map:
ATL is at 84.4◦ western longitude and 33.65◦ northern latitude. FRA is at 8.6◦ eastern
longitude and 50.1◦ northern latitude. The radius of the earth is 3975 mi.

Transforming from spherical to cartesian coordinates (the equator plane is the xy plane,
with the Greenwich meridian going through the x axis); and using the dot product again,
I can calculate the number of miles for this trip (along the shortest route, which is the arc
of a circle centered at the center of the earth and connecting from ATL to FRA).

(Note: It is of course more expedient to use symbols λ1,2 and ϕ1,2 for the coordinates first,
and postpone plugging in numbers until the end.)

Solution:

Location 1 (ATL) has coordinates

⎡

⎣

R cosϕ1 cos λ1

R cosϕ1 sinλ1

R sinϕ1

⎤

⎦ =: v⃗1.

Location 2 (FRA) has coordinates

⎡

⎣

R cosϕ2 cos λ2

R cosϕ2 sinλ2

R sinϕ2

⎤

⎦ =: v⃗2.

(The points are viewed as vectors from the origin to said points.)

For the angle δ between these two vectors (which determines the distance Rδ along the great circle),
it holds

cos δ =
v⃗1 · v⃗2

∥v⃗1∥ ∥v⃗2∥
= cosϕ1 cosϕ2 (cos λ1 cosλ2 + sinλ1 sinλ2) + sinϕ1 sinϕ2

= cosϕ1 cosϕ2 cos(λ1 − λ2) + sinϕ1 sinϕ2

Specifically, with λ1 = −84.4◦, λ2 = +8.6◦, ϕ1 = 33.65◦, ϕ2 = 50.1◦, and R = 3975, we obtain
Rδ = 3975 arccos(0.41578) = 4539. (δ needed in radian of course for the validity of the formula Rδ.)
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