Hwk \#19:

Consider the functions f and g given by $f(x, y):=x^{2} y+e^{x y}+y^{3}$ and $g(x, y):=\arctan \frac{y}{x}$.
Calculate the following:
(a) $\frac{\partial f(x, y)}{\partial x}$,
(b) $\frac{\partial f(x, y)}{\partial y}$,
(c) $\frac{\partial g(x, y)}{\partial x}$,
(d) $\frac{\partial g(x, y)}{\partial y}$,

Also calculate the following:
($\left.a^{\prime}\right) \frac{\partial}{\partial y}\left(\frac{\partial f(x, y)}{\partial x}\right)$,
($\left.b^{\prime}\right) \frac{\partial}{\partial x}\left(\frac{\partial f(x, y)}{\partial y}\right)$,
$\left(c^{\prime}\right) \frac{\partial}{\partial y}\left(\frac{\partial g(x, y)}{\partial x}\right)$,
($\left.d^{\prime}\right) \frac{\partial}{\partial x}\left(\frac{\partial g(x, y)}{\partial y}\right)$

Compare (a') with (b') and (c') with (d').

Solution:

$$
\begin{gathered}
\frac{\partial f(x, y)}{\partial x}=2 x y+y e^{x y}, \quad \frac{\partial f(x, y)}{\partial y}=x^{2}+x e^{x y}+3 y^{2} \\
\frac{\partial g(x, y)}{\partial x}=\frac{-y / x^{2}}{1+\left(\frac{y}{x}\right)^{2}}=\frac{-y}{x^{2}+y^{2}}, \quad \frac{\partial g(x, y)}{\partial y}=\frac{1 / x}{1+\left(\frac{y}{x}\right)^{2}}=\frac{x}{x^{2}+y^{2}} \\
\frac{\partial}{\partial y}\left(\frac{\partial f(x, y)}{\partial x}\right)=\frac{\partial}{\partial y}\left(2 x y+y e^{x y}\right)=2 x+e^{x y}+y x e^{x y} \\
\frac{\partial}{\partial x}\left(\frac{\partial f(x, y)}{\partial y}\right)= \\
\frac{\partial}{\partial x}\left(x^{2}+x e^{x y}+3 y^{2}\right)=2 x+e^{x y}+x y e^{x y}
\end{gathered}
$$

So the mixed partial derivatives in either order coincide.

$$
\begin{gathered}
\frac{\partial}{\partial y}\left(\frac{\partial g(x, y)}{\partial x}\right)=\frac{\partial}{\partial y}\left(\frac{-y}{x^{2}+y^{2}}\right)=\frac{-1\left(x^{2}+y^{2}\right)-(-y)(2 y)}{\left(x^{2}+y^{2}\right)^{2}}=\frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{2}} \\
\frac{\partial}{\partial x}\left(\frac{\partial g(x, y)}{\partial y}\right)=\frac{\partial}{\partial x}\left(\frac{x}{x^{2}+y^{2}}\right)=\frac{1\left(x^{2}+y^{2}\right)-(x)(2 x)}{\left(x^{2}+y^{2}\right)^{2}}=\frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{2}}
\end{gathered}
$$

Again, the mixed partial derivatives in either order coincide.

Hwk \#20:

More about the ellipse: Given the points $F_{ \pm}=(\pm e, 0)$ in the plane (where e is some positive real number, not to be confused with the Euler number $2.718 \ldots$), and a number $a>e$. Show that the set of those points $P=(x, y)$ in the plane that satisfy the condition $\left\|P \vec{F}_{+}\right\|+\left\|P \vec{F}_{-}\right\|=2 a$ is an ellipse $x^{2} / a^{2}+y^{2} / b^{2}=1$. How does b relate to e and a ? What is the eccentricity ε of the ellipse?

Solution:

The vectors $\overrightarrow{P F}+$ and $\overrightarrow{P F}-$ are $-\left[\begin{array}{c}x-e \\ y\end{array}\right]$ and $-\left[\begin{array}{c}x+e \\ y\end{array}\right]$ respectively. Therefore the condition on the norms reads as

$$
\sqrt{(x+e)^{2}+y^{2}}+\sqrt{(x-e)^{2}+y^{2}}=2 a
$$

Squaring the equation and isolating the square root that remains from the mixed term yields

$$
2 \sqrt{(x+e)^{2}+y^{2}} \sqrt{(x-e)^{2}+y^{2}}=4 a^{2}-\left((x+e)^{2}+y^{2}\right)-\left((x-e)^{2}+y^{2}\right)
$$

Simplifying and squaring again yields

$$
\left((x+e)^{2}+y^{2}\right)\left((x-e)^{2}+y^{2}\right)=\left(2 a^{2}-\left(x^{2}+e^{2}\right)-y^{2}\right)^{2}
$$

As we expand both sides, we benefit from a lot of cancellations:

$$
\begin{aligned}
\left(x^{2}-e^{2}\right)^{2}+y^{2}\left(2 x^{2}+2 e^{2}\right)+y^{4} & =4 a^{4}+\left(x^{2}+e^{2}\right)^{2}+y^{4}-4 a^{2}\left(x^{2}+e^{2}\right)-4 a^{2} y^{2}+2\left(x^{2}+e^{2}\right) y^{2} \\
\left(x^{2}-e^{2}\right)^{2}-\left(x^{2}+e^{2}\right)^{2} & =4 a^{4}-4 a^{2}\left(x^{2}+e^{2}\right)-4 a^{2} y^{2} \\
-x^{2} e^{2} & =a^{2}\left(a^{2}-x^{2}-e^{2}-y^{2}\right) \\
x^{2}\left(a^{2}-e^{2}\right)+y^{2} a^{2} & =a^{2}\left(a^{2}-e^{2}\right) \\
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{a^{2}-e^{2}} & =1
\end{aligned}
$$

So we have obtained the desired equation, with $b^{2}:=a^{2}-e^{2}$. - Comparing with Hwk \#6, we quote:

$$
a=\frac{r_{0}}{1-\varepsilon^{2}}, \quad b=\frac{r_{0}}{\sqrt{1-\varepsilon^{2}}}
$$

and therefore $b^{2} / a^{2}=1-\varepsilon^{2}$. Since $b^{2}=a^{2}-e^{2}$, we obtain $\varepsilon=e / a$. Quoting $-x_{0}=\varepsilon a$ from the solution of $\# 6$, we see that $\left|x_{0}\right|=e$. This observation identifies the coordinate origin from $\# 6$ with the focus F_{+}in the present problem.

Hwk \#21:

Reconsider the function f from Problem $\# 17: \quad f(x, y):=\frac{x^{2} y^{4}}{x^{4}+y^{8}}$ for $(x, y) \neq(0,0)$ and $f(0,0)=0$. Write it in polar coordinates: $g(r, \varphi):=f(r \cos \varphi, r \sin \varphi)$. The partial derivative $\partial g(r, \varphi) / \partial r$ at $r=0$ is a directional derivative of f (at the origin). Show that all directional derivatives at the origin vanish, so the graph has a horizontal tangent in each direction. Nevertheless, f is not even continuous at the origin.
Plot, for some choice of fixed φ (other than an integer multiple of $\pi / 2$) the graph of the single variable function $g(\cdot, \varphi): r \mapsto g(r, \varphi)$. Include information about the precise location of the maximum of this function.

Solution:

$$
g(r, \varphi)=f(r \cos \varphi, r \sin \varphi)=\frac{r^{2} \cos ^{2} \varphi \sin ^{4} \varphi}{\cos ^{4} \varphi+r^{4} \sin ^{8} \varphi}
$$

Now,

$$
\left.\frac{\partial}{\partial r} g(r, \varphi)\right|_{r=0}=\left.\frac{2 r \cos ^{2} \varphi \sin ^{4} \varphi\left(\cos ^{4} \varphi+r^{4} \sin ^{8} \varphi\right)-r^{2} \cos ^{2} \varphi \sin ^{4} \varphi 4 r^{3} \sin ^{8} \varphi}{\left(\cos ^{4} \varphi+r^{4} \sin ^{8} \varphi\right)^{2}}\right|_{r=0}=0
$$

provided $\cos \varphi \neq 0$. In the case where $\cos \varphi=0$, we have the function $r \mapsto g(r, \varphi)$ constant 0 , and the conclusion still holds.

We know from \#17 that the maximum of g is $\frac{1}{2}$, and that it occurs when $r=|\cos \varphi| / \sin ^{2} \varphi$. This can be seen by setting the r-derivative 0 .
If we let $s:=r \sin ^{2} \varphi /|\cos \varphi|$, then we see that $g(r, \varphi)=s^{2} /\left(1+s^{4}\right)$, so all radial graphs arise by stretching of the s axis from one graph: $z=s^{2} /\left(1+s^{4}\right)$:

The maximum of $g(\cdot, \varphi)$ is at $r=|\cos \varphi| / \sin ^{2} \varphi$, with value $\frac{1}{2}$. As $\varphi \rightarrow 0$, the location of this maximum moves to ∞, and near the origin, we just see the minimum. - In contrast, as $\varphi \rightarrow \pi / 2$, the maximum gets closer and closer to the origin. For $\varphi=\pi / 2$ exactly, the radial function is 0 . This function arises as a limit from the 'decaying tail' of the graph.

Hwk \#22:

Sketch level lines for the function $f(x, y):=x^{3}-3 x y^{2}$. Choose levels $4,1,0,-1,-4$. The most convenient way to do this is to use polar coordinates again. Look for a trig formula involving multiple angles that fits the situation (you'd likely not have memorized this formula to recognize it at first sight, that's why I say you should look for it).
This function is hand-picked to display a rare pattern in the level lines picture
Describe the graph of f in topographer's terms: where are the hills and the valleys? The point $(0,0)$ is said to feature a monkey saddle of this function f.

Solution:

$g(r, \varphi)=f(r \cos \varphi, r \sin \varphi)=r^{3}\left(\cos ^{3} \varphi-3 \cos \varphi \sin ^{2} \varphi\right)=r^{3} \cos 3 \varphi$
The level curves of level h can be described in polar coordinates as $r=h^{1 / 3}(\cos 3 \varphi)^{-1 / 3}$ if $h \neq 0$. The level curves for level $h=0$ are straight lines through the origin, determined by the condition $\cos 3 \varphi=0$. As $\varphi \rightarrow \pi / 6$, or any other value that makes $\cos 3 \varphi$ vanish, the r coordinate on the level line goes to infinity.
This is called a monkey saddle because the monkey can sit in it facing east, with his tail hanging down west, and the legs in southeast and northeast direction.

