Hwk #19:

Consider the functions f and g given by f(z,y) := 2%y + ¢® + 3> and g(x,y) := arctan ¥,

T

Calculate the following:
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Also calculate the following:

Compare (a’) with (b’") and (¢’) with (d’).
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So the mixed partial derivatives in either order coincide.
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Again, the mixed partial derivatives in either order coincide.

Hwk #20:

More about the ellipse: Given the points Fy = (+e,0) in the plane (where e is some
positive real number, not to be confused with the Euler number 2.718...), and a number
a > e. Show that the set of those points P = (z,y) in the plane that satisfy the condition
|PEL||+||PF_| = 2a is an ellipse 2/a2 +y?/b* = 1. How does b relate to e and a? What
is the eccentricity € of the ellipse?

Solution:
The vectors PF and PF_ are — [x;e} and — [m;—e} respectively. Therefore the condition on the

norms reads as

ViteP+y’+ V(- +y’ =2

Squaring the equation and isolating the square root that remains from the mixed term yields

2/ e+ P+ V=7 = da? — (@ + 0P +9?) - (¢ - e +4?)
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Simplifying and squaring again yields
2
<(:1: +e)? + yz) <(m —e)? + y2> = <2a2 — (2% +€?) - y2)
As we expand both sides, we benefit from a lot of cancellations:
(22 — ) + 92(222 4 2e?) + y* = 4a* + (22 + €)% + y* — 4a?(2? + €?) — 4a®y? + 2(2? + 2)y?
(22 — €2)? — (22 + €2)? = 4a* — 4a®(2? + €?) — 4ay?
—2%? = a?(a? — 22 — € — y?)
:172(&2 _ 62) + y2a2 — a2(a2 _ 62)
2 2
T Y
T
a2 T o2

2

So we have obtained the desired equation, with b? := a? — e?. — Comparing with Hwk #6, we quote:

70 70

=0 0
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and therefore v2/a? = 1 — €2, Since b> = a® — €2, we obtain ¢ = e¢/a. Quoting —z = ca from the
solution of #6, we see that |z9| = e. This observation identifies the coordinate origin from #6 with
the focus F in the present problem.

Hwk #21:

Reconsider the function f from Problem #17: f(x,y) := mﬁj%’zg for (z,y) # (0,0) and
f£(0,0) = 0. Write it in polar coordinates: g(r,¢) = f(rcosp,rsing). The partial
derivative dg(r,¢)/0r at r = 0 is a directional derivative of f (at the origin). Show that
all directional derivatives at the origin vanish, so the graph has a horizontal tangent in

each direction. Nevertheless, f is not even continuous at the origin.

Plot, for some choice of fixed ¢ (other than an integer multiple of 7/2) the graph of the
single variable function g(-, ¢) : 7 — g(r, ¢). Include information about the precise location
of the maximum of this function.

Solution: s o 4
. 7% cos” @ sin® ¢
r,) = f(rcosp,rsinp) = -
g( QO) f( (10 QO) COS4 (,0 + 7‘4 SlnS (’D

Now,

0 (o) | 2r cos? ¢ sint o (cost o + 1t sin® @) —r2cos? sin? ¢ 473 sin® 0

—_— 7"’ —0= N =

oI\ ) Ir=0 (cos? ¢ + rtsin® )2 0

provided cos ¢ # 0. In the case where cos ¢ = 0, we have the function r — g(r, ¢) constant 0, and the
conclusion still holds.

We know from #17 that the maximum of g is %, and that it occurs when r = | cos ¢|/sin? . This can
be seen by setting the r-derivative 0.

If we let s := rsin® /| cos ¢|, then we see that g(r,) = s2/(1 4 s*), so all radial graphs arise by
stretching of the s axis from one graph: z = s2/(1 + s%):
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The maximum of g(-, ) is at 7 = | cos |/ sin? ¢, with value
%. As ¢ — 0, the location of this maximum moves to oo,
and near the origin, we just see the minimum. — In contrast,
as ¢ — m/2, the maximum gets closer and closer to the
origin. For ¢ = 7/2 exactly, the radial function is 0. This
function arises as a limit from the ‘decaying tail’ of the
graph.

Hwk #22:

Sketch level lines for the function f(z,y) := 2® — 3zy?. Choose levels 4, 1, 0, —1, —4.
The most convenient way to do this is to use polar coordinates again. Look for a trig
formula involving multiple angles that fits the situation (you’d likely not have memorized
this formula to recognize it at first sight, that’s why I say you should look for it).

This function is hand-picked to display a rare pattern in the level lines picture

Describe the graph of f in topographer’s terms: where are the hills and the valleys? The
point (0,0) is said to feature a monkey saddle of this function f.

Solution:

g(r, ) = f(rcos p,rsing) = r3(cos ¢ — 3 cos psin® p) = 13 cos 3p

The level curves of level h can be described in polar coordinates
as 7 = h'/3(cos 3p) /3 if h # 0. The level curves for level h = 0
are straight lines through the origin, determined by the condition
cos3p = 0. As ¢ — 7/6, or any other value that makes cos 3p
vanish, the r coordinate on the level line goes to infinity.

This is called a monkey saddle because the monkey can sit in
it facing east, with his tail hanging down west, and the legs in
southeast and northeast direction.
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