
Homework
Math 247 – Honors Calculus 3

Fall 2015 – Jochen Denzler

Hwk #1:

The geometric vectors ~a and ~b are as given in the figure below. The coordinate lines drawn
are at unit distances apart. The vector ~c is given in coordinates: ~c = [−1 , 2]T .

~a

~b

(a) Draw ~a−~b and 1

2
(~a+~b) into the figure.

(b) Draw ~c = [−1 , 2]T into the same figure.
(c) Find the coordinates of ~a and ~b, and calculate their dot product.
(d) Find the angle between ~a and ~b to a numerical precision of 1/100th of a degree. Since
you cannot read off the coordinates from a picture to sufficient precision, I’ll tell you that
the coordinates of ~a and ~b are indeed intended to be precise integers.

Solution:

~a

~b

~a−~b

1

2
(~a+~b)

also 1

2
(~a+~b)

~c

~a = [2 , 3]T

~b = [4 , 1]T

~a ·~b = 2 · 4 + 3 · 1 = 11

cos∠(~a,~b) =
~a ·~b

‖~a‖ ‖~b‖
=

11√
22 + 32

√
42 + 12

=
11√
13 · 17

Pocket calculator: ϕ = arccos 11√
221

= 0.73782rad = 42.27◦

Note that there is no origin in this figure, and none is needed. All vectors could have been placed
elsewhere, as has been done for illustration by putting a copy of 1

2
(~a+~b) in a second place.
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Hwk #2:

(a) Show that 2‖~a‖2 + 2‖~b‖2 = ‖~a−~b‖2 + ‖~a+~b‖2. Draw a figure for illustration, and see
why this formula is called the parallelogram identity.

(b) The dot product can be reconstructed from the norm: Indeed, show that ~x · ~y =
1

4
(‖~x+ ~y‖2 − ‖~x− ~y‖2).

Solution: Its easier to start evaluating these equalities from the right hand side:

‖~a−~b‖2 + ‖~a+~b‖2 = (~a−~b) · (~a−~b) + (~a+~b) · (~a+~b)

= (~a · ~a−~b · ~a− ~a ·~b+~b ·~b) + (~a · ~a+~b · ~a+ ~a ·~b+~b ·~b)
= 2~a · ~a+ 2~b ·~b
= 2(‖~a‖2 + ‖~b‖2)

‖~x+ ~y‖2 − ‖~x− ~y‖2 = (~x+ ~y) · (~x+ ~y)− (~x− ~y) · (~x− ~y)
= (~x · ~x+ ~y · ~x+ ~x · ~y + ~y · ~y)− (~x · ~x− ~y · ~x− ~x · ~y + ~y · ~y)
= 2~y · ~x+ 2~x · ~y
= 4~x · ~y

Hwk #3:

Let A,B,C,D be the vertices of a regular tetrahedron (a polyhedron whose four faces are
congruent equilateral triangles). Let O be the center of this tetrahedron. Find the angle
AOB. Interpretation: Chemists are interested in this angle b/c methane has a carbon atom in
the center and a hydrogen atom at each of the vertices of the tetrahedron.

Hint: Take a cube, whose center is the origin, with the axes of a coordinate system parallel
to the sides of the cube; choose four of its eight vertices in a checkerboard manner: if
one vertex of the cube is chosen, then the immediately adjacent ones are not and vice
versa. The chosen vertices form the corners of a tetrahedron. Draw a figure. It is easy to
calculate (eg) the dot product ~OA · ~OB in terms of coordinates. The formula for this same
dot product in terms of norms and angles can then be used to find the angle.

Solution:

A

B

C

D

Assume the sides to be of length 2 and the origin O in
the center of the cube, the x axis horizontal, the z axis
vertical in the drawing plane, and the y axis perpendic-
ular into the drawing plane. Then the coordinates are as
follows:
A = (−1,−1, 1), hence ~a := ~OA = [−1,−1, 1]T

B = (1,−1,−1), hence ~b := ~OB = [1,−1,−1]T

C = (1, 1, 1)
D = (−1,−1, 1)

Let ϕ be the angle AOB, which is the angle between ~a and ~b. Then ~a ·~b = ‖~a‖ ‖~b‖ cosϕ. Specifically,
−1 =

√
3
√
3 cosϕ, hence ϕ = arccos(−1/3) ≈ 1.9106rad ≈ 109.47◦.
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Hwk #4:

(a) By copycating the proof for the Cauchy-Schwarz inequality for vectors in R
n, proof

that for any two continuous functions f , g on the interval [a, b], the inequality

∣

∣

∣

∣

∫ b

a
f(x)g(x)dx

∣

∣

∣

∣

≤

√

∫ b

a
f(x)2 dx

√

∫ b

a
g(x)2 dx

is true. (This inequality is called the Cauchy-Schwarz inequality for functions. It should
be viewed as analogous to the CS inequality for vectors: |~f · ~g| ≤ ‖~f‖ ‖~g‖)
(b) To begin appreciating the benefit of the inequality, find out what it tells you specifically
about the integral

∫ π
π/2

sinx
x dx, an integral you will not be able to do by means of anti-

derivatives. Use the CS inequality first for f(x) = sinx and g(x) = 1

x , then for f(x) =
√

sinx
x , g(x) =

√
x sinx to get a 2-sided estimate for the ‘difficult’ integral. (This technique

doesn’t always give numerically as good estimates as in this particular example.)

Note: The analogy between vectors and functions that is exploited here is studied more
generally and systematically in a linear algebra course under the headings ‘Abstract real
vector spaces’ and ‘Inner product spaces’

Solution: (a) If g is the constant 0 on [a, b], the inequality is obviously true. We now assume that

g is not identically 0, and therefore
∫ b
a < g(x)2 dx > 0. Consider the quantity

∫ b
a (f(x) + tg(x))2 dx,

which is ≥ 0 for any real number t. We will later choose t conveniently. Expanding the square, we
obtain

0 ≤
∫ b

a
f(x)2 dx+ 2t

∫ b

a
f(x)g(x) dx + t2

∫ b

a
g(x)2 dx

If we now let t := −
∫ b
a f(x)g(x) dx/

∫ b
a g(x)2 dx (which is possible since

∫ b
a g(x)2 dx > 0), we obtain

0 ≤
∫ b

a
f(x)2 dx− (

∫ b
a f(x)g(x) dx)2
∫ b
a g(x)2 dx

Clearing the denominator, moving the negative term over, and taking the square root proves the claim.

(b) For f(x) = sinx and g(x) = 1

x , we obtain
∣

∣

∣

∣

∣

∫ π

π/2

sinx

x
dx

∣

∣

∣

∣

∣

≤
√

∫ π

π/2
sin2 x dx

√

∫ π

π/2

dx

x2

With
∫ π

π/2
sin2 x dx =

1

2
[x− sinx cos x]ππ/2 =

π

4

and
∫ π

π/2

dx

x2
=

1

π

we conclude
∫ π
π/2

sinx
x dx ≤ 1

2
.

Next, with f(x) =
√

sinx
x and g(x) =

√
x sinx, we conclude

∣

∣

∣

∣

∣

∫ π

π/2
sinx dx

∣

∣

∣

∣

∣

≤
√

∫ π

π/2

sinx

x
dx

√

∫ π

π/2
x sinx dx
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Using
∫ π
π/2 x sinx dx = π − 1, and

∫ π
π/2 sinx dx = 1, we conclude after squaring that

∫ π
π/2

sinx
x dx ≥

1/(π − 1).

Conclusion: 0.4669 ≤
∫ π
π/2

sinx
x dx ≤ 0.5.

Hwk #5:

A rhombus is a quadrangle whose sides are all of the same
length. A rhombododekahedron is a polyhedron with 12
faces, all of which are congruent rhombi. At each vertex,
either four rhombi meet with their acute angles, or else, three
rhombi meet with their obtuse angles. See the figure.
This does not work with an arbitrary rhombus. If you make
the acute angle smaller (thus making the obtuse angle larger),
the ‘crown’ above the zigzag AGBHCIDJA becomes skin-
nier and taller, and the obtuse angle of the rhombus will
become too large to fit below the crown as angle AGB.

A B

C

E

F

G
H

J

K LN

D

I

M

Your job is to find the correct angle for a rhombus that is fit to build a rhombododeka-
hedron. (No calculus here; just training your vector geometry and spatial vision a bit
more.)

Hint: First choose a convenient cartesian coordinate system. Then set up equations de-
scribing that certain lengths are equal, to get coordinates of other points needed, then you
can calculate the desired angle using the dot product.

Solution: Put the origin in the center of the square ABCD and the x axis parallel to AB, the y
axis parallel to BC, and the z axis passing through E and F . With a convenient choice of the unit
length, we have A = (−1,−1, 0), B = (1,−1, 0), C = (1, 1, 0), D = (−1, 1, 0).

Then E = (0, 0, e) and F = (0, 0,−e) with e yet to be determined. (If you see that EBFD should
be a square as well, you know e without calculation, but I proceed to explain it assuming you don’t
see this.) The congruence of the rhombi requires that ~EB has the same length as ~AB, namely 2. So
12 + 12 + e2 = 22 + 02 + 02. Hence e =

√
2.

Next G = (0,−1, g) with g yet to be determined. Since the length of ~AG must be the same as the
length of ~EG, we conclude 12 + 02 + g2 = 02 + 12 + (g −

√
2)2, and therefore g =

√
2/2.

Now for the angle ϕ between the vectors ~AG and ~AK, we have

cosϕ = ~AG · ~AK/‖ ~AG‖ ‖ ~AK‖ =





1
0√
2/2



 ·





1
0

−
√
2/2



 /(12 + 02 + (
√
2/2)2) =

1/2

3/2
=

1

3
.

Solution 2: A different solution, choosing another coordinate system: Let’s put the origin of the
coordiante system again in the center of the square ABCD, but this time let’s have the axes diagonally:
the x-axis goes through DB, the y-axis through AC. So, with a convenient unit length (different than
the one before) we have A = (0,−1, 0), C = (0, 1, 0) and D = (−1, 0, 0), B = (1, 0, 0). Similarly, since
the z axis would now be FE, we have F = (0, 0,−1), E = (0, 0, 1). With G being verticaly above
the midpoint of AB, its coordinates are G = (1

2
,−1

2
, g). For the length of ~AG to equal the length

of ~EG, we need (1
2
)2 + (1

2
)2 + g2 = (1

2
)2 + (−1

2
)2 + (1 − g)2. This implies that g = 1

2
. Of course
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K = (1
2
,−1

2
,−g). Again, we can get for the angle ϕ between the vectors ~AG and ~AK that

cosϕ = ~AG · ~AK/‖ ~AG‖ ‖ ~AK‖ =





1/2
1/2
g



 ·





1/2
1/2
−g



 /
(

(1
2
)2+(1

2
)2+g2

)

= (1
2
−g2)/(1

2
+g2) = 1

4
/3

4
= 1

3
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