
Homework
Math 247 – Honors Calculus 3

Fall 2015 – Jochen Denzler

Hwk #1:

The geometric vectors ~a and ~b are as given in the figure below. The coordinate lines drawn
are at unit distances apart. The vector ~c is given in coordinates: ~c = [−1 , 2]T .

~a

~b

(a) Draw ~a−~b and 1
2(~a+~b) into the figure.

(b) Draw ~c = [−1 , 2]T into the same figure.
(c) Find the coordinates of ~a and ~b, and calculate their dot product.
(d) Find the angle between ~a and ~b to a numerical precision of 1/100th of a degree. Since
you cannot read off the coordinates from a picture to sufficient precision, I’ll tell you that
the coordinates of ~a and ~b are indeed intended to be precise integers.

Hwk #2:

(a) Show that 2‖~a‖2 + 2‖~b‖2 = ‖~a−~b‖2 + ‖~a+~b‖2. Draw a figure for illustration, and see
why this formula is called the parallelogram identity.

(b) The dot product can be reconstructed from the norm: Indeed, show that ~x · ~y =
1
4(‖~x+ ~y‖2 − ‖~x− ~y‖2).

Hwk #3:

Let A,B,C,D be the vertices of a regular tetrahedron (a polyhedron whose four faces are
congruent equilateral triangles). Let O be the center of this tetrahedron. Find the angle
AOB. Interpretation: Chemists are interested in this angle b/c methane has a carbon atom in
the center and a hydrogen atom at each of the vertices of the tetrahedron.

Hint: Take a cube, whose center is the origin, with the axes of a coordinate system parallel
to the sides of the cube; choose four of its eight vertices in a checkerboard manner: if
one vertex of the cube is chosen, then the immediately adjacent ones are not and vice
versa. The chosen vertices form the corners of a tetrahedron. Draw a figure. It is easy to
calculate (eg) the dot product ~OA · ~OB in terms of coordinates. The formula for this same
dot product in terms of norms and angles can then be used to find the angle.
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Hwk #4:

(a) By copycating the proof for the Cauchy-Schwarz inequality for vectors in R
n, proof

that for any two continuous functions f , g on the interval [a, b], the inequality

∣

∣

∣

∣

∫ b

a
f(x)g(x)dx

∣

∣

∣

∣

≤

√

∫ b

a
f(x)2 dx

√

∫ b

a
g(x)2 dx

is true. (This inequality is called the Cauchy-Schwarz inequality for functions. It should
be viewed as analogous to the CS inequality for vectors: |~f · ~g| ≤ ‖~f‖ ‖~g‖)
(b) To begin appreciating the benefit of the inequality, find out what it tells you specifically
about the integral

∫ π
π/2

sinx
x dx, an integral you will not be able to do by means of anti-

derivatives. Use the CS inequality first for f(x) = sinx and g(x) = 1
x , then for f(x) =

√

sinx
x , g(x) =

√
x sinx to get a 2-sided estimate for the ‘difficult’ integral. (This technique

doesn’t always give numerically as good estimates as in this particular example.)

Note: The analogy between vectors and functions that is exploited here is studied more
generally and systematically in a linear algebra course under the headings ‘Abstract real
vector spaces’ and ‘Inner product spaces’

Hwk #5:

A rhombus is a quadrangle whose sides are all of the same
length. A rhombododekahedron is a polyhedron with 12
faces, all of which are congruent rhombi. At each vertex,
either four rhombi meet with their acute angles, or else, three
rhombi meet with their obtuse angles. See the figure.
This does not work with an arbitrary rhombus. If you make
the acute angle smaller (thus making the obtuse angle larger),
the ‘crown’ above the zigzag AGBHCIDJA becomes skin-
nier and taller, and the obtuse angle of the rhombus will
become too large to fit below the crown as angle AGB.

A B

C

E

F

G
H

J

K LN

D

I

M

Your job is to find the correct angle for a rhombus that is fit to build a rhombododeka-
hedron. (No calculus here; just training your vector geometry and spatial vision a bit
more.)

Hint: First choose a convenient cartesian coordinate system. Then set up equations de-
scribing that certain lengths are equal, to get coordinates of other points needed, then you
can calculate the desired angle using the dot product.
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Hwk #6:

In astronomy, it is convenient to describe an ellipse (like, e.g., the orbit of the earth around
the sun) in polar coordinates (with the sun at the origin, and the positive x axis through
the perihelion (the point on the orbit of the earth that is closest to the sun). See figure
(not to scale).

ϕ
r

x

y

In polar coordinates, the orbit is given by r = r0/(1 + ε cosϕ), where ε ∈ ]0, 1[ is called
the eccentricity (a measure how much the ellipse deviates from circular shape). Obtain
the equation in cartesian coordinates (x, y). The answer should be in the form (you fill in
the ‘?’).

(x−?)2

?2
+

y2

?2
= 1

Hwk #7:

The cardioid is most easily described in terms of polar coordinates: r = 2(1 − cosϕ). Its
name comes from the Greek word for ‘heart’, and you’ll see why when you graph this
curve. So graph it carefully, but don’t just steal the graph from a Valentine’s card, that
would be too corn(er)y!

A circle C1 of radius 1 sits stationary with center (−1, 0).
Another circle C2 of radius 1 touches it from the right, in
the origin. This circle is soon to roll along the fixed circle
C1 without sliding. A point P is marked on the circle C2.
Initially it is the point where both circles touch. As C2 rolls
along C1, the point P traces out a curve in the stationary
plane. Use t for the angle (measured on C1) of the point
of contact of both circles. Give a vector valued function
t 7→

[

x(t)
y(t)

]

that describes the position of P as a function

of t.

t

t

P

C1

C2

Show that the curve traced out by P is a cardioid.
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Hwk #8:

Given a curve described in parametric form t 7→ ~x(t), in the plane or in space, we may
pretend that the parameter t represents a time and that ~x(t) is the position vector at ‘time’
t. Then the velocity is ~x′(t), and the speed is ‖~x′(t)‖. The length of the curve between
parameters t0 and t1 is

∫ t1
t0

‖~x′(t)‖ dt.
Using this insight, calculate the length (perimeter) of the cardioid.

Hwk #9:

I love to collect airline miles. Let’s assume I fly from Atlanta (ATL) to Frankfurt, Germany
(FRA). How many miles is the shortest distance? I look up the following info on a map:
ATL is at 84.4◦ western longitude and 33.65◦ northern latitude. FRA is at 8.6◦ eastern
longitude and 50.1◦ northern latitude. The radius of the earth is 3975 mi.

Transforming from spherical to cartesian coordinates (the equator plane is the xy plane,
with the Greenwich meridian going through the x axis); and using the dot product again,
I can calculate the number of miles for this trip (along the shortest route, which is the arc
of a circle centered at the center of the earth and connecting from ATL to FRA).

(Note: It is of course more expedient to use symbols λ1,2 and ϕ1,2 for the coordinates first,
and postpone plugging in numbers until the end.)

Hwk #10:

Calculate the curvature of the helix (spiral staircase) given by ~x(t) = [r cos t , r sin t , ht]T .

Hwk #11:

Let ~u = [2, 1, 3]T , ~v = [−1, 0, 4]T , ~w = [2,−1,−3]T . Calculate ~v × ~w, ~u × (~v × ~w), ~u × ~v,
(~u× ~v)× ~w.

With these same vectors from the previous problem, calculate ~u · (~v × ~w) and ~w · (~u× ~v).

Hwk #12:

Find the area of the triangle whose vertices are the pointsA(1, 1, 3), B(−2, 3, 0), C(1, 1,−2).

Hwk #13:

Given the vectors ~u = [u1, u2, u3]
T and ~v = [v1, v2, v3]

T in space, I have defined their cross
product ~u× ~v to be the vector ~w = [u2v3 − u3v2 , u3v1 − u1v3 , u1v2 − u2v1]

T . Show that
indeed, ‖~w‖2 = ‖~u‖2‖~v‖2(1− cos2 ϕ), where ϕ is the angle between ~u and ~v.
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Hwk #14:

Draw level curves of the function f given by f(x, y) := |x| + |y|, and describe the graph
z = f(x, y).

Same question for g(x, y) =
√

x2 + y2.

Hwk #15:

Try to understand the level sets of the function f given by f(x, y) = 2x2 − x4 − y2.
In particular use single-variable calculus and simple algebraic reasoning to find maxima
of f . Make sure to sketch at least five level sets {(x, y) | f(x, y) = c}. Namely, for
c ∈ {1, 12 , 0,−1,−4}. You may also find it useful to sketch graphs of a few single variable
functions g(x) := f(x, y0) for various y0. Try to avoid using technology that does ‘multi-
variable graphs’, but feel free to enlist the help of technology for single variable graphs if
this helps. The skill you are to train here is to piece single variable info together to get a
multi-variable picture.

Hwk #16:

Consider the function f : R2 → R given by f(x, y) = xy
x2+y2

for (x, y) 6= (0, 0) and f(0, 0) =
0. By using polar cordinates, draw the level curves of this function. As explained in class,
this function is not continuous at (0, 0). Show that nevertheless, all the single variable
functions g and h given by g(x) := f(x, y) for any choice of y, and h(y) := f(x, y) for any
choice of x, are continuous. For any fixed k, find the limit limx→0 f(x, kx).

Hwk #17:

Cranking the previous example up a notch, consider the function f given by f(x, y) :=
x2y4

x4+y8
for (x, y) 6= (0, 0) and f(0, 0) = 0.

Show that each of the radial limits limx→0 f(x, kx) and limy→0 f(0, y) equal 0 = f(0, 0),
but that, nevertheless, lim(x,y)→(0,0) f(x, y) does not exist (and hence f is not continuous
in the origin). Draw level lines of f to get insight into this function.

Can you describe a ‘curve of approach’ in the (x, y) plane along which the single vari-
able limit exists, but is different from 0? That is, can you find x(t) and y(t) such that
limt→∞ x(t) = 0 and limt→∞ y(t) = 0, but limt→∞ f(x(t), y(t)) 6= 0.

Can you also describe a curve of approach for which the limit does not exist?

Hwk #18:

Does lim(x,y)→(0,0) y sin
1
x exist, and if so, what is its value? Explain.
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Hwk #19:

Consider the functions f and g given by f(x, y) := x2y + exy + y3 and g(x, y) := arctan y
x .

Calculate the following:

(a)
∂f(x, y)

∂x
, (b)

∂f(x, y)

∂y
, (c)

∂g(x, y)

∂x
, (d)

∂g(x, y)

∂y
,

Also calculate the following:

(a′)
∂

∂y

(

∂f(x, y)

∂x

)

, (b′)
∂

∂x

(

∂f(x, y)

∂y

)

, (c′)
∂

∂y

(

∂g(x, y)

∂x

)

, (d′)
∂

∂x

(

∂g(x, y)

∂y

)

Compare (a’) with (b’) and (c’) with (d’).

Hwk #20:

More about the ellipse: Given the points F± = (±e, 0) in the plane (where e is some
positive real number, not to be confused with the Euler number 2.718 . . .), and a number
a > e. Show that the set of those points P = (x, y) in the plane that satisfy the condition
‖ ~PF+‖+‖ ~PF−‖ = 2a is an ellipse x2/a2+ y2/b2 = 1. How does b relate to e and a? What
is the eccentricity ε of the ellipse?

Hwk #21:

Reconsider the function f from Problem #8: f(x, y) := x2y4

x4+y8
for (x, y) 6= (0, 0) and

f(0, 0) = 0. Write it in polar coordinates: g(r, ϕ) := f(r cosϕ, r sinϕ). The partial
derivative ∂g(r, ϕ)/∂r at r = 0 is a directional derivative of f (at the origin). Show that
all directional derivatives at the origin vanish, so the graph has a horizontal tangent in
each direction. Nevertheless, f is not even continuous at the origin.

Plot, for some choice of fixed ϕ (other than an integer multiple of π/2) the graph of the
single variable function g(·, ϕ) : r 7→ g(r, ϕ). Include information about the precise location
of the maximum of this function.

Hwk #22:

Sketch level lines for the function f(x, y) := x3 − 3xy2. Choose levels 4, 1, 0, −1, −4.
The most convenient way to do this is to use polar coordinates again. Look for a trig
formula involving multiple angles that fits the situation (you’d likely not have memorized
this formula to recognize it at first sight, that’s why I say you should look for it).

This function is hand-picked to display a rare pattern in the level lines picture

Describe the graph of f in topographer’s terms: where are the hills and the valleys? The
point (0, 0) is said to feature a monkey saddle of this function f .
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Hwk #23:

Find Df(x, y) for f(x, y) = xy, where x > 0.

Hwk #24:

Consider the following vector valued multi-variable functions:

f : (r, ϕ) 7→
[

r cosϕ

r sinϕ

]

defined for {(r, ϕ) | r > 0 , ϕ ∈ R}; and

g : (r, ϑ, φ) 7→





r sinϑ cosφ
r sinϑ sinφ
r cos ϑ





defined for r > 0, ϑ ∈ ]0, π[, φ ∈ R.

FindDf(r, ϕ) andDg(r, ϑ, φ) by calculating the necessary partial derivatives and observing
they are continuous.

Hwk #25:

Show that for f(~x) := ‖~x‖ we have ∇f(~x) = ~x/‖~x‖ at ~x 6= ~0.

Hwk #26:

Consider the vector ~e and any (non-empty) level set of the function g(~x) := ‖~x−~e‖+‖~x+~e‖.
We know from #13 that the level set is an ellipse. In this problem we show the reflection
property of the ellipse: A ray emanating from one focus ~e and reflected in the ellipse will
pass through the other focus −~e. The reflection law in physics says that the incoming ray
has the same angle with the normal to a curve as the reflected ray.

Prove the reflection property of the ellipse by checking the angle between the normal to the
ellipse and the ray or reflected ray respectively. You can do everything without coordinates
or components, just using vector notation.

Hwk #27:

The multi-variable chain rule says: D(f ◦ g)(~p) = Df(g(~p))Dg(~p). Here is one specific
example for which I ask you to caclulate all quantities involved in this equation and check
the equality, all by explicit calculation.

f(x, y, z) := xyz2 + (y − x)/(1 + z2), g(ϑ, φ) =





sinϑ cosφ
sinϑ sinφ
cosϑ



.

(Motivation for this example: think of f ◦ g as a function on the unit sphere.)
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Hwk #28:

Suppose that a piece of a level curve g(x, y) = c, near some point (x0, y0), where c is
some constant, can be written as the graph of a function f : y = f(x). Express the
slope f ′(x0) of this graph in terms of partial derivatives of g. Write your result both in
mathematical notation and in physicists’ notation with differential quotients (with z for
the output variable of g and dy/dx expressed in terms of ∂z/∂x and ∂z/∂y). If you think
a certain minus sign in your result looks weird, you’re right: it does look weird, but it’s
still correct! Or rather I hope so, I haven’t seen your solution; all I say is that the correct
solution may have some weird looking detail.

Hwk #29:

(For warmup only: this is predominantly single variable calculus)
Consider f(x) :=

∫

∞

0 e−xt sin t
t dt. You will not find an immediate antiderivative by which

to evaluate this integral. Nevertheless, calculate f ′(x). [The Math 447 expert tells you
that moving the x-derivative under the t-integral is legitimate here.] You should be able
to evaluate the integral that you obtain for f ′(x).

What do you think limx→∞ f(x) is? [The Math 447 expert tells you that in this example
it is legitimate to move limx→∞ past the integral sign.]

Finally, knowing f ′(x), limx→∞ f(x) and the fundamental theorem of calculus, find f(x).
Specifically, what is

∫

∞

0
sin t
t dt?

The late physics Nobel prize winner Richard Feynman reports in his memoirs how, as a
student, he got the reputation of being an integration wizard, because he was familiar with
this ‘differentiation under the integral sign technique’, which his peers hadn’t learned.

Hwk #30:

Use the multi-variable chain rule to determine f ′(x), when f(x) :=
∫ x
0

sin(xt)
t dt.

Analogous question for g(x) :=
∫ 2x
x/2

ext

t dt.

Again, we rely on the Math 447 expert, who tells us that it is legitimate to move derivatives
past the integral sign in this example.

Hwk #31:

A quantity w depends on the coordinates x, y, z in 3-space as follows: w = x2 + y2 + xyz
(1). We study w especially on the plane given by z = x + 2y. Then we have there
w = x2 + y2 + xy(x+ 2y) = x2 + y2 + x2y + 2xy2 (2).

Now we calculate ∂w
∂x from (1): ∂w

∂x = 2x + yz. On the plane, this simplifies to ∂w
∂x =

2x+ y(x+ 2y) = 2x+ xy + 2y2.

Calculating ∂w
∂x on the plane directly from (2), we get ∂w

∂x = 2x+y(x+2y) = 2x+2xy+2y2.
We clearly have a discrepancy by a term xy. What is wrong? Clear up the confusion. (This
requires some text as well as formulas.)
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Hwk #32:

This example is taken from I. Rosenholtz, L. Smylie: “The only Critical Point in Town”

Test, Mathematics Magazine 58(1985), 149–150.

Show that the function

g : (x, y) 7→ y2 + 3(y + ex − 1)2 + 2(y + ex − 1)3 , R2 → R

has exactly one critical point, and that this point is a relative mimimum.

Furthermore explain why this point is not an absolute minimum.

Hwk #33:

This example is taken from Marsden-Tromba: Show that the function f given by f(x, y) =
(y−3x2)(y−x2) has a critical point in the origin, which is neither a relative minimum nor
a relative maximum. What kind of ‘***’definite is the Hessian?

Show also that all single-variable radial functions t 7→ f(t cosφ, t sinφ) have a relative
minimum at t = 0.

Hwk #34:

This example is geometrically appealing, but alas calculationally lengthy. This is why I
give you the intermediate steps and hints to navigate you through. Ideally, it should be
done with the help of symbolic algebra software, and you are welcome to use this tool, if
available.

We want to find a shortest connection between two plane curves, namely y = x2 + 2 and
y = 1

2(x−1)2. A precise plot is attached. Choose points P = (a, a2+2) on the first parabola
and Q = (b, 12 (b− 1)2) on the second and minimize the square of the distance. Determine
all critical points and classify them. Does one of them probide a global minimum? Why?

Hint 1: While it is possible to take one of the equations for a critical point and solve it for
b via by means of the quadratic formula, and then plug in the result in the other equation,
this is tedious. It is more straightforward to take successively linear combinations of the
two equations with the strategy of first eliminating b3, then b2, then b, until one polynomial
equation in a remains.

Hint 2: After an obvious factorization of this polynomial equation, an easy solution a = 1
can be guessed, and when this is factored off, a 4th order polynomial remains that can be
factored into two quadratics with integer coefficients; indeed one factor is a2 + 2a+ 3.

Hwk #35:

Suppose in the following matrices, the starred entries are not known. Which of the five
possibilities ‘positive definite’, ‘positive semidefinite (but not definite)’, ‘negative definite’,
‘negative semidefinite (but not definite)’, ‘indefinite’ remains a possibility, based on knowl-
edge only of the known entries?

(a)

[

3 ∗
∗ ∗

]

(b)

[

∗ ∗
∗ −5

]

(c)

[

∗ 6
6 ∗

]

(d)

[

3 ∗
∗ −1

]

(e)





0 1 ∗
1 ∗ ∗
∗ ∗ ∗




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Figure 1: Figure for Hwk # 34
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Consider the following: While the Hurwitz test was worded in a way to calculate determi-
nants starting from the top, the order in which the variables are listed (and thus determine
entries of the matrix) is not essential for definiteness of a matrix; so you could use the de-
terminants in the Hurwitz test starting at any diagonal element and then calculating 2×2,
3× 3, etc. determinants, adding any one variable (row and column) at a time.

Hwk #36:

Find the absolute minimum and absolute maximum of x2+(y− 1)2 + z2−xyz on the ball
x2+y2+z2 ≤ 32. Hint: For the boundary consideration, use the xz plane as equator plane
for the spherical coordinates, to benefit from the symmetry of the problem. Otherwise
formulas get obnoxiously messy.

Hwk #37:

Redo the boundary part of the calculations from the previous problem using Lagrange
multipliers.

Hwk #38:

This problem gives you the most celebrated use of Lagrange multipliers, but it requires some
intrduction to appreciate it. (The calculations aren’t bad at all.)

A famous task in linear algebra and matrix theory is to find eigenvalues of a given matrix. If
A is a square matrix and you can find a non-zero vector v such that Av is actually a multiple
of v, i.e., λv where λ is a number, then we call λ an eigenvalue of the matrix A (and v an

eigenvector). For instance, the matrix A =

[

3 2
−3 −4

]

has 2 as an eigenvalue and

[

2
−1

]

as a corresponding eigenvector, because

[

3 2
−3 −4

] [

2
−1

]

= 2

[

2
−1

]

It also has −3 as an eigenvalue with

[

1
−3

]

as an eigenvector. Of course multiples of eign-

evectors are again eigenvectors, e.g., if Av = 2v then also A(7v) = 2(7v). — In the example,
there are only these two numbers λ1 = 2 and λ2 = −3 that are eigenvalues. If you try to find

v =

[

v1
v2

]

solving Av = λv for any other λ you will only get the solution v1 = v2 = 0, i.e.,

only the zero vector. (Try it, just to gain familiarity with the notions.)

This problem is about eigenvalues of symmetric matrices. They play a role in studying definite-
ness of symmetric matrices. In physics, they are key concepts in describing rotating motions
of rigid bodies. To every body, there is associated a symmetric 3× 3 matrix called its ‘tensor
of inertia’, whose eigenvectors point in the directions of such axes about which the body can
rotate without wobbling (i.e., in a balanced way). The eigenvalues are called the moments of
inertia about these axes.

To every symmetric n × n matrix A we associate the quadratic function f(x) := xTAx
where x = [x1, . . . , xn]

T ∈ R
n. We try to minimize or maximize f(x) under the constraint

xTx = 1 (i.e., for x on the unit sphere).
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(a) Write out f(x) in components xi for a 3 × 3 matrix A whose entries are called aij.
Explain why a global maximum and a lobal minimum of f(x) on the sphere are a-priori
guaranteed to exist.

(b) Use the Lagrange multiplier method to set up equations satisfied by the x providing a
minimum or a maximum. (You may have written all these in components; but now make
sure to rewrite the whole stuff again in matrix and vector form.) While you are not asked
to actually solve for x (that would be very tedious, involving a cubic equation for λ), I
ask you to express the value of f at the minimum and maximum in terms of the Lagrange
multiplier. [Be aware that when finding the max vs the min, x and λ will typically refer
to numerically different quantities in these two cases.]

You have just proved that every symmetric 3 × 3 matrix has (at least) two real eigenvalues.
(Actually, if A is a multiple of the identity matrix, these two eigenvalues coincide.) And with
jut a bit more writing, the same can be done for symmetric n× n matrices.

The method can be cranked up a bit, by throwing in further constraints, to prove that every
symmetric n × n matrix has n real eigenvalues (some of which may coincide). This may well
be among the most important pieces of insight in undergraduate mathematics, and it’s a pity
that it often falls between the cracks of separating Calc 3 and Linear Algebra into independent
courses of the curriculum.

(c) Show, in a very brief calculation: If A is positive definite, then all its eigenvalues are
positive. If A is positve semidefinte, then all of its eigenvalues are ≥ 0. FYI: The converse
is also true; so indeed a symmetric matrix is positve definite (resp. emidefinite) if and only

if all of its eigenvalues are positive (resp. non-negative). This statement is sponsored by the
above proof (a), (b) and some extra dose of linear algebra. It is the launch pad for proving the
Hurwitz and Gershgorin tests I gave you before.

Hwk #39:

Think of the task of finding the absolute maximum of x2 + 1
2y

2 + y4 − xy on the set S
given by (x − 1)2 + |y + y3| ≤ 5. The purpose of this problem is not that you would
actually do calculations to find the maximum (which would require numerical methods).
Rather, in preparation for such a search. I want you to use the Hessian to conclude that
the maximum exists and is on the boundary of the set S.

The message here is: While modest problems can already lead to prohibitively complicated
calculations that may need numerical tools, simple analytic arguments may still be able
significantly to reduce the amount of labor in a numerical search.
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Hwk #40:

You may or may not have seen the following formula (called Heron’s formula): The area of a
triangle with sides a, b, c is

√

s(s− a)(s− b)(s − c) where s is the semiperimeter 1
2(a+b+c).

Show that among all triangles with a given perimeter 2s = a + b + c, the area takes an
absolute maximum exactly for the equilateral triangle. (Explain first why an absolute
minimum exists before calclulating it.)

Hwk #41:

Let T be the set {(x, y) | 0 ≤ x ≤ π, 0 ≤ y ≤ x}. Draw a figure of this set. Then evaluate
the integral I :=

∫

T sinx sin y d(x, y) in two ways: as iterated integral in either order.

Hint: Make sure you get the limits of integration right. If any of your calculations leaves
a dangling x or y in the result you sure haven’t gotten the limits right. This alert applies
to all MV integral problems.

Hwk #42:

Let A be the set {(x, y) | 1 ≤ x2+y2 ≤ 4, x, y ≥ 0}. Draw a figure of this set. Then evaluate
the integral I :=

∫

A x2y d(x, y) in two ways: one version using cartesian coordinates, and
one using polar coordinates.

Using cartesian coordinates here is a bit dumb, admittedly. But I am asking that you do it
anyways, to see the comparison with polar coordinates, and as a training to deal with the
limits of integration correctly. Note that one order of integration in cartesian coordinates
is easier to calculate than the other. Can you see which, and why?
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Hwk #43:

Physicists are familiar with the following phenomenon: If you let a massive ball and a massive
cylinder roll down an incline, then the ball rolls more rapidly than the cylinder. The reason
is that part of the potential energy gained when losing height is converted into kinetic energy
for the forward movment, whereas another part is converted into ‘internal’ (rotational) kinetic
energy, because the object is rolling rather than just sliding. This rotational energy is lost to
the forward motion.

You may know the formula 1
2mv2 (half mass times velocity2) for the translation energy. There

is a similar formula 1
2Iω

2 for the rotation energy, where ω measures how many radians per
time unit an object rotates. The quantity I is called ‘moment of inertia’ and it depends on the
mass distribution in the body. Mass that is closer to the rotation axis counts less because it
does not move as fast as mass that is farther away from the rotation axis.

The formula for I is: I =
∫

body s
2ρdvol(x, y, z). Here ρ is the density (which may depend

on (x, y, z), but in this problem we assume it is constant). s denotes the distance from the
rotation axis, which you have to express in terms of x, y, z or whatever coordinates you use.

Given this wisdom, I ask you to find I for a cylinder of radius R and height h, and also for
a ball of radius R. In either case, these objects rotate about a symmetry axis. You are to
express the result in the form: number times (total mass) times R2. Remember that the
total mass is volume times density ρ.

The larger the number in front of ‘mass times R2’ is, the higher the proportion of energy that
is used for the rotation.

Hwk #44:

Now we rotate a cube −a ≤ x, y, z ≤ a about an axis through the origin. The axis goes in
the direction of a vector ~v.

First draw a generic picture of a vector ~x = [x, y, z]T and a vector ~v = [v1, v2, v3]
T (both

starting at the origin) and find a formula for the distance s of the tip of ~x (i.e., of the point
(x, y, z)) from the axis that goes along the vector ~v.

Then calculate the moment of inertia for this rotation (expressed as number times mass
times a2). Surprise: The final result will not depend on ~v — (To those who know about the
tensor of inertia and the role eigenvalues play there, this surprise will be expected; but these
wise folks, that’s not us, for the time of Calc 3.)

Hwk #45:

Find the center of mass of the ‘full’ cardioid, i.e., of the area enclosed by the curve r = a(1−
cosϕ) in polar cordinates. Is it the same as the center of mass of the curve r = a(1−cosϕ),
which we calculated to be (−4

5a, 0) ?

Hwk #46:

Find the center of mass of the semicircle
[

x
y

]

= a
[ cos t
sin t

]

where t goes from −π/2 to π/2.

Hwk # 47:

Integrate the vector field [xy, yz, xz]T over the curve γ parametrized by ~x(t) = [t, t2, t3]T

for 0 ≤ t ≤ 1. (Here of course, x, y, z are the components of the vector ~x.)
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