
37. The parabolas y = (x− 2)2 and x = (y − 2)2 intersect to form a ‘quadrangle’ with curved
sides. Find the coordinates of the intersection points. (Two can be guessed, the other
two need calculation). Then calculate the area of this ‘quadrangle’. Make sure to split
the integral appropriately, depending on which formulas apply for the ‘upper’ and ‘lower’
boundary curves.

38. A cognac glass has the shape of a “sphere with a cap cut off”. See figure for a cross section.
If the radius of the ball is R and the glass takes up three fourths of the vertical diameter,
what is the volume? (Yes I know these glasses are not meant to be filled to the brim, but
calculate the total volume anyways.)

2R
3
2R

Fig. for #38

y

x
R

x

z
h

footprint

vertical
cross
section
(at y = 0)

Fig. for #40

39. Two cylinders, each with a circular cross section of R intersect in such a way that their
axes meet at a right angle. What is the volume of the intersection body? I find it difficult
to draw, but Rogawski (Sec 6.2, Hwk 21 of the 2008 edition) has a figure of it, and also
some hints.

40. A glass has the shape of a circular cylinder. It is initially full with water. We pour out
some water carefully by leaning the glass sideways until the surface of the remaining water
touches the bottom of the glass along a diameter. What percentage of the water remains
in the glass?

Assume the radius is R and the height h, but express the remaining volume as a fraction
of the total volume πR2h.

Note/Hint: There are at least three ways of doing the problem. One in which the slices
are rectangles, one in which the slices are right triangles, and one in which the slices are
segments of a circle. Set up integrals for all three of them.

Evaluate the integral obtained in at least two of the ways.

The figure above shows various sections of the glass, which is standing, with the water
(grey) ‘frozen’ in place, centered at the origin of the x–y–plane. The vertical axes is the z
axis.

Rectangles: slices parallel to the y–z–plane, different slices have different x.
Triangles: slices parallel to the x–z–plane, different slices have different y
Circular segments: slices parallel to the x–z–plane, different slices have different z
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41. (a) Given a torus that is obtained by rotating a circle of radius r, centered at x = R on
the x–axis, about the y–axis, use the shell method to calculate its volume. (The answer
should of course coincide with the answer V = 2π2r2R obtained by slicing in class.)

(b) Now assume R < r, so the circle that rotates about the y axis intersects the y–axis.
We only cosider the part of the circle that is in x ≥ 0, let it rotate about the y–axis. Use
the shell method to find the volume of the rotation body. [Note that in this case, the
slicing method from class would be more cumbersome, since we would have washers for
some y and disks for other y.]

42. The area below the curve z = e−x2

and above z = 0 rotates about the z–axis. Calculate
its volume by means of shells. Note: You can expect to get a finite volume, even though the
body extends all the way to ∞. The volume is to be understood here as an improper integral,
i.e., you first consider only the area from x = 0 to x = R rotating, and the volume you obtain
this way. Then you let R → ∞.

43. Let’s go back to volume by slicing and do the previous problem that way. We have the

body above the x–y–plane and below the rotated version of the curve z = e−x2

, which is
the surface z = e−r2 , where r2 = x2 + y2. Slice the body by planes perpendicular to the
y–axis. You will run into the difficulty that you cannot evaluate

∫

∞

−∞
e−x2

dx. Just call
this unknown number I. Its numerical value is I ≈ 1.8.

Now express the volume of the said body as a simple expression involving the quantity I.

Compare your result with the previous problem. From this comparison, conclude the exact
value of I =

∫

∞

−∞
e−x2

dx.

[So here you have an example where you find the value of a definite integral without going
through the process of finding an antiderivative, where an antiderivative is actually not available
to you in this example. — There are some advanced methods to find definite integrals without
antiderivatives, like such as are based on complex-variable techniques (Math 443); but apart
from those advanced methods, available examples are unique and based on individual ad-hoc
tricks.]

Knowledge of the value of this integral is desired, due to its frequent occurrence in probability
(‘bell curve’) and sometimes physics.

44. Calculate the perimeter of the ellipse x2

a2
+ y2

b2
= 1 as an integral 2

∫ a
−a . . . dx. (You will

not be able to evaluate this integral, so leave it alone, except for algebraic simplification
of the expression under the integral.)

Use the trig substitution x = a sinu to convert the obtained integral into another integral
(which you still won’t be able to finish up, but which may turn out to be more convenient
in some cases, like for numerical purposes).

[Note: Integrals containing trigs under a square root (in not too complicated a manner), or 3rd
or 4th degree polynomials under a square root, or the ratio of two quadratics under a square
root, are known under the label ‘elliptic integrals’ for the very reason that they show up when
calculating the perimeter of an ellipse. It is good to recognize them and to know that they
will not be evaluated by Calc 2 methods at all, unless you can get rid of either the trig or
the square root by simple algebra or a simple u-substitution. These integrals do show up in
applications. If you recognize them, you save time by not trying your antiderivative prowess
on them in vain; they are well-studied, and mathematics has a plethora of wisdom about them
if you are desperate enough to ask for it.]
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45. (a) Calculate the length of the arc of the parabola y = ax2 − 1 between x = 0 and
x = b. [The ‘−1’ part is irrelevant here and just offered for convenience in part (b).] You
may borrow a good deal of work from either 27d or 29d, after doing either a trig or hyp
substitution to finish up the integral.

The ‘limit’ part of b is voluntary; but if you skip it you have to do part c instead. Part c
is much easier, but way less fun.

(b) A downsized version of a Putnam competition problem in 2001 asks whether it is
possible to choose a in such a way that the part of the parabola inside the disc x2+ y2 ≤ 1
is longer than 4. Assume a > 1

2 and find the appropriate intersection point (b, ab2 − 1).
Calling L(a) the length of that part of the parabola inside the disk, as a function of a,
calculated according to part (a), show that a(L(a) − 4) goes to ∞ as a → ∞. Conclude
the correct answer to the Putnam question.

(c) Instead of calculating the limit as a → ∞ in part (b), use a pocket calculator to evaluate
the length of the piece of the parabola inside the disk in the case a = 100. Answer the
Putnam question. FYI: there are no calculators on the Putnam competition.

46. Take the ellipse from problem 44, let it rotate about the x-axis. Find the surface area of
the body thus obtained. You may assume b < a. Note: This time, evaluation of the integral
is quite manageable.

47. For the torus from #41a, calculate its surface area.

48. The function r(ϕ) = a(1 − cosϕ) describes
a heart–shaped (or apple–shaped?) curve
called the cardioid.
(a) Calculate the area A it encloses;
(b) also calculate the length L of this curve.
(c) As a simple consistency check, confirm
the isoperimetric inequality, namely that
A/L2 < π/(2π)2.

x

y

r(ϕ)

ϕ

49. (a) That same cardioid now rotates about the x–axis. Calculate the surface area S of the
apple–shaped body thus obtained.

(b) Also calculate the enclosed volume V . Hint: Slices in the form of disks or washers
may actually be easiest. Note that x = r(ϕ) cosϕ and y = r(ϕ) sinϕ and use the formula
∫ xmax

xmin

πy2 dx +
∫ 0
xmax

πy2 dx (explain why?), with x, y, dx properly expressed in terms of
r(ϕ) and ϕ.

(c) Confirm that your results are consistent with the isoperimetric inequality V 2/S3 <
(43π)

2/(4π)3.
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50. You sip a drink from a cocktail glass with a straw. The cocktail glass is rotationally
symmetric with a vertical cross section given by y = x2 (where |x| ≤ 3). The straw
extends 6 unit lengths (meaning 6cm) above the rim of the glass. Assuming the density
to be 1.01937 (meaning 1.01937 g/cm3, as even juice is mostly water, plus a bit of sugar),
and no ice (horror, that must have happened on a study abroad, but it does simplify the I made up

the density
in such a way
that
1.01937×
9.81 = 10 for
numerical
convenience

math;-), what is the work it takes yu to empty the glass by this method, using that 1 Joule
= 1 Nm and N=mkg/sec2? Use the acceleration of gravity to be 9.81 m/sec2.

51. Here you will numerically evaluate the integral

∫ 1

0

√

(1− x2)
(

1− x2

2

)

dx. (Recall the

comment made in assignment #44 that this is an integral not amenable to the algebraic
techniques of Calc 2 — albeit well-studied in advanced mathematics).

(a) Use each of trapezoidal rule, midpoint rule, and Simpson’s rule while splitting the
interval of integration into four subintervals of equal length, comparing the results with 6
digits behind the decimal point.

(b) Calculate the 2nd derivative of the integrand and show that it is negative for all x be-
tween 0 and 1. Hint: Combining all terms, you may get a numerator −6+12x2−9x4+2x6.
Be a bit inventive with the algebra to determine its sign when 0 < x < 1. If you don’t see a
good idea use that xtopowersixisalwayslessthanone,togetridofthatoneterm . Ex-
plain why the error estimates (relying on M2 or M4 such that |f ′′(x)| ≤ M2 or |f ′′′′(x)| ≤
M4) for each of the three rules given in the book are useless in this case. Also give explicit
upper and lower bounds for the integral based on your knowledge that f ′′(x) < 0.

(c) Now for comparison, substitute x = sinu and use each of trapezoidal, midpoint and
Simpson rule on the new integral, again with four subintervals of equal length, again giving
6 digits behind the decimal point in each case. Give error margins for the results, based
on the formulas; finding bounds M2 and M4 for the second and fourth derivatives of the
integrand is a bit clumsy: you may instead simply use the best values found by means of
symbolic algebra and graphing software, namely M2 = 2.5 and M4 = 15.25.

(d) Observe the improvement in precision when comparing (a) and (c). Compare the result
for trapezoidal and Simpson rules with 10 equidistant intervals (and the respective error
margins obtained). [Just to save labor, I am skipping midpoint in this part.]

52. “How large is the number ‘1000!’ ?” Can we get a simple formula that allows
us to give a good approximation for n! for large n that does not require to go
through all the multiplications one by one?

Integrals can help in this task. We can compare lnn! = ln 1 + ln 2 + ln 3 + ln 4 + . . .+ lnn
with an integral that we can actually calculate. So, just for a change, in this problem we
will use (easy) integrals to give a good approximation for (messy) finite sums, rather than
using easy finite sums to find an approximation for messy integrals!

Task 1: Use the midpoint rule with ∆x = 1 on the integral
∫ n+1/2
3/2 lnx dx to show that

lnn! ≥ (n + 1
2 ) ln(n+ 1

2)− (n+ 1
2)− some number

(of course you want to calculate this “some number” precisely!) Sketch a graph and observe
that the correct sign of the 2nd derivative of the logarithm function tells you why you have
‘≥’ and not ‘≤’.

Task 2: Use the trapezoidal rule (with ∆x = 1) on the interval from 2 to n to show that

lnn! ≤ 1
2 ln(2n) + n lnn− n+ some number
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(again you want to calculate this number exactly...) Sketch a graph and observe, from the
sign of the second derivative of the logarithm function, why you get ‘≤’, not ‘≥’.

Task 3: The ln(n+ 1
2 ) in the result of task 1 is just a bit un-beautiful, we’ll prefer lnn:

Explain with a 1-term Riemann-sum why b
∫ b
a

dx
x > (b − a) when b > a > 0. Use this to

show (by convenient choice of a, b) that (n+ 1
2) ln(n + 1

2 ) > (n+ 1
2)(ln n) +

1
2 .

Combine this result with your result from Task 1 to show

lnn! ≥ (n+
1

2
) ln n− n+ some number

where again you want that number precisely.

Task 4: Combine your results and apply the exponential function to them to find that

C1
√
n
nn

en
≤ n! ≤ C2

√
n
nn

en

where we want the C1 and the C2 both as exact numbers and numerically with 3 decimals.

Task 5 for you is only to watch in amazement, you don’t have work of your own here:
Advanced Calculus methods that go beyond what we can do here improve on the result
from Task 4; they actually show that

n!√
nnn/en

→
√
2π as n → ∞

The numerical value of
√
2π with 3 decimals is 2.507, which should be neatly between the

C1 and C2 obtained above.

Yet another occurrence of π in a context that has nothing to do with circles!

53. (a) Determine, possibly depending on x, whether the series

∞
∑

n=0

x2n

(2n)!
converges or diverges.

(b) For which x does the series
∞
∑

n=0

xn
2

n!
converge? (While we are discussing only series

with positive terms, you may pretend x > 0.)

(c) Determine, depending on x, whether the series

∞
∑

n=0

n!2xn

(2n)!
converges. (Again, you may

presume x > 0 for now. And you may leave a borderline case, where ratio or root test is
inconclusive, undecided.)

54. Apply the ratio and the root tests to the p-series

∞
∑

n=1

1

np
. Do you get a useful answer?

55. Recall from a prior problem that there are certain positive constants C1 and C2 (namely
C1 = 2.43 and C2 = 2.62 would work) such that C1

√
n (ne )

n < n! < C2
√
n (ne )

n. This will
help you, as the question here is to decide the convergence of

∑ xn

n! by means of the root

rather than the ratio test. (For the time being, as we study series with positive terms only,
you may pretend x > 0.)

56. Does
∞
∑

n=1

n1000

3n
converge? Use ratio test, root test and limit comparison (choosing an

appropriate partner series to compare with).
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57. (a) Consider the series 1+ 2
3 +

1
32

+ 2
33

+ 1
34

+ 2
35

+ . . .. The denominators are powers of 3,
but the numerators alternate between 1 and 2. In

∑

notation, you could write this as

∞
∑

n=0

(3− (−1)n)/2

3n
or

∞
∑

n=0

(3− cos(πn))/2

3n
.

Show that the ratio test is inconclusive, but use either the root test or direct comparison
to decide on whether the series converges
(b) Nothing to do here except to read & acknowledge: Is the series 1

2 +
1
3 +

1
5 +

1
7 +

1
11 + . . .

convergent or divergent? (The terms are the reciprocals of the prime numbers.) None of
the methods seen so far or later in Calc 2 are good enough to decide this question. This
goes to showing that one can easily invent series whose convergence is difficult to decide.
But for the series that are useful in calculus, the decision can usually be made routinely.

(In case you really want to know: The sum of the reciprocals of prime numbers is known to
be a divergent series.)

58. Consider
∞
∑

n=2

1

n(lnn)
. Does this series converge or diverge? (Hint: Comparison with an

integral is the way to go.) — Next decide

∞
∑

n=2

1

n(lnn)p
where p > 0 is any given real number.

(The answer will depend on p.) Note: You learn more by simply following the method I used
in class when deciding the p-series by comparison with an integral. Explain the situation with
a figure using terms like ‘left’ or ‘right endpoint’ Riemann sum and ‘decreasing’. — Once
you have done this, reading up precisely on the highlight box about ‘integral comparison’ in
the textbook will make more sense than it would if you were to just plug quantities into the
highlight box paradigm.

59. (In continuation of #53c:) Use the result from Hwk #52 (requoted in #55), together with

an appropriate comparison, to decide whether the series
∑

∞

n=0
4n n!2

(2n)! converges or diverges.

60. We have seen how the ratio test can be used to show that 1 − x2

2! +
x4

4! − x6

6! + − . . . =
∑

∞

n=0(−1)n x2n

(2n)! converges absolutely for every x (cf. #53a), and we have seen that the
value of this series cannot be anything else but cos x because partial sums are alternatingly
above and below cosx (cf. #26).

(a) Explain why Leibniz’ alternating series test applies to this series for x = 1, but does
not apply to it for x = 2.
(b) For which x exactly does the alternating series test apply to the cosine series?

61. Based on the knowledge that ex =
∑

∞

n=0
xn

n! , write a series for e−x and then conclude that
the series in #53a converges to coshx. Hint: Write out the sums with the ‘. . . ’ notation
rather than manipulating expressions involving

∑

∞

n=0, as you may lack the experience to
do the manipulation of

∑

∞

n=0 expressions correctly/expediently.

62. (a) What is the radius of convergence of the power series
∑

∞

n=0(−1)n x2n

4n n!2
?

(b) The series defines a function J(x) :=
∑

∞

n=0(−1)n x2n

4n n!2
. Since you won’t be able to

find a formula for the value of the series, you know practically nothing about this function.
Calculate J(1) with to 3 decimals accuracy. How many terms did you need? How many
terms would you need to calculate J(2) with 3 decimals accuracy? Calculate J(0), J ′(0),
J ′′(0), J ′′′(0) and J (4)(0) exactly.
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63. Using the geometric series 1
1−t = 1 + t + t2 + t3 + . . . =

∑

∞

n=0 t
n and the substitution

t = −x2 to find a power series representation for 1
1+x2 . Integrate it to obtain a power

series representation of arctan x. What is the radius of convergence of the obtained series?
(In each step, write the power series both in a ‘. . . ’ form giving enough terms to see the
general pattern and using the

∑

notation.)

Substitute x = 1 into the arctan series (believing me that doing so is permissible). Obtain
a beautiful but useless series representing π. How many terms would you need to calculate
in order to obtain π up to an accuracy of 10−4 by this series?

Calculate arctan 1
5 to 5 decimals using this series. (Of course in doing so you pretend your

pocket calculator does not know arctan.) How many terms do you need to do this?

Also calculate arctan 1
239 to 5 decimals. How many terms do you have to use for this

purpose? [We’ll later see why, of all crazy numbers, I would specifically care for 1/239.]

64. Write down the power series representing ln(1 + x) and − ln(1− x) respectively (obtained
by integrating a geometric series.) What is the radius of convergence?

Obtain a power series for ln 1+x
1−x from the preceding two. Which is the radius of convergence

for each of these series?

Use the series for ln(1 + x) and the one for ln 1+x
1−x , each with a specific choice of x, to

obtain a series with value ln 2. [You need to take my word for it that the choice of x in
the first series is actually permissible.]

One of the two series is almost useless for practical calculation of ln 2, because it would
take way too many terms for decent precision. In the other one, roughly how many terms
do you estimate you’d have to calculate to get 5 digits precision for ln 2 ?

65. By multiplying the corresponding power series, obtain a power series representing ex sinx.
In doing so calculate all powers up to x7; you are not expected to see a general formula
for the nth coefficient, and so you will not be able to use the

∑

notation; just calculate
the first few terms in the series as indicated.

66. Write down power series for 1 + ln(1 + 2x) and 1 + ln(1 + x) up to the x4 term. By long

division, obtain a power series for
1 + ln(1 + 2x)

1 + ln(1 + x)
, also up to the 4th term.

67. It is possible to obtain the well-known formula ex ey = ex+y directly by multiplying the
power series, without using any prior knowledge about the exponential function. By

multiplying the power series 1+x+ x2

2! +
x3

3! +
x4

4! +. . . with the series 1+y+ y2

2! +
y3

3! +
y4

4! +. . .

and applying the binomial formula, verify that the product is indeed 1+(x+ y)+ (x+y)2

2! +
(x+y)3

3! + (x+y)4

4! + . . ., at least up to power 4.

Note: If you know the general binomial theorem in the form (x+ y)n =
∑n

k=0
n!

k!(n−k)!x
kyn−k,

you can obtain the analogous calculation for all terms, not just up to the 4th power. However,
for this homework, we’ll be content with checking the result only up to power 4.

68. Recalling the power series of sinx, and of cos y, plug the series of sinx for y into the series
for cos y, calculating terms up to order x6. This way you will obtain the beginning of the
power series of cos(sinx).

69. Calculating the first five derivatives of tan x and using Taylor’s formula, find the first 3
nonvanishing terms (i.e., up to order x5) for the Taylor series of tan x, and compare it
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with the series obtained in class by long division. Hint: It’s probably more convenient for
successive derivatives if you write the derivative of tanx as 1+tan2 x rather than 1/ cos2 x.

70. The nice features of term-by-term differentiation being allowed for power series do not
carry over to other series. For instance f(x) :=

∑

∞

n=1
cosnx
n2 is a useful series that is not a

power series.

(a) Show by a direct comparison test, that this series converges absolutely for every real x.

(b) Attempt to take a second derivative via term-by-term differentiation (twice). What
series do you get as a result? Does it converge for any x ? (A somewhat heuristic answer
is acceptable here, even if it is not logically watertight.)

Note: You have no tools at this level to guess the value of this sum f(x). Senior level

mathematics would tell you that actually f(x) = π2

6 − π
2 |x| + 1

4x
2 for |x| ≤ π. — The only

reason why you see this example in Calc 2 is to convince you that some of the ‘nice’ features
of calculation with power series are not ‘automatic’ carry-overs from the rules for finite sums.
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