
37. The parabolas y = (x−2)2 and x = (y−2)2 intersect to form a ‘quadrangle’ with
curved sides. Find the coordinates of the intersection points. (Two can be guessed,
the other two need calculation). Then calculate the area of this ‘quadrangle’. Make
sure to split the integral appropriately, depending on which formulas apply for the
‘upper’ and ‘lower’ boundary curves.

Solution: Here is a figure

1 2 4

1

2

4

x

y

A

B

C

D

To find the intersections of the curves x =
(y − 2)2 and y = (x − 2)2, we solve these
two equations simultaneously, by plugging
one into the other:

x =
(

(x− 2)2 − 2
)2

which simplifies to

x4 − 8x3 + 20x2 − 17x+ 4 = 0

Fortunately we can guess the solutions
x = 1 and x = 4 here. Factorization
(via long division of polynomials) gives
x4 − 8x3 + 20x2 − 17x + 4 = (x − 1)(x −
4)(x2−3x+1). So the other two solutions

are x = 3±
√
5

2 .

The corresponding values for y are obtained by plugging these x-values into y = (x − 2)2. We
get the coordinates of the vertices

A: (3−
√
5

2 , 3+
√
5

2 ) B: (1, 1) C: (3+
√
5

2 , 3−
√
5

2 ) D: (4, 4)

The area of the quadrangle is
∫ xB

xA

(

2 +
√
x− (x− 2)2

)

dx+

∫ xC

xB

(

2 +
√
x− (2−

√
x)
)

dx+

∫ xD

xC

(

2 +
√
x− (x− 2)2

)

dx

or equivalently
∫ xD

xA

(

2 +
√
x− (x− 2)2

)

dx−
∫ xC

xB

(

2−
√
x− (x− 2)2

)

dx

The second version is a tad quicker: it evaluates to Not obvious but
true:
3±

√
5

2 =
(√

5±1
2

)2
.

This will allow us
to avoid nested
square roots from
the (. . .)3/2 terms.

[

2x+
2

3
x3/2 − 1

3
(x− 2)3

]4

3−
√

5

2

−
[

2x− 2

3
x3/2 − 1

3
(x− 2)3

] 3+
√

5

2

1

= 8 +
16

3
− 8

3
− (3−

√
5)− 2

3

(3−
√
5

2

)3/2
+

1

3

(−1−
√
5

2

)3

− (3 +
√
5) +

2

3

(3 +
√
5

2

)3/2
+

1

3

(−1 +
√
5

2

)3
+ 2− 2

3
+

1

3

=
19

3
− 2

3

(
√
5− 1

2

)3
+

2

3

(
√
5 + 1

2

)3
− 1

3

(1 +
√
5

2

)3
+

1

3

(−1 +
√
5

2

)3

=
19

3
+

1

3

(
(
√
5 + 1

2

)3
−
(
√
5− 1

2

)3
)

=
23

3
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38. A cognac glass has the shape of a “sphere with a cap cut off”. See figure for a
cross section. If the radius of the ball is R and the glass takes up three fourths of
the vertical diameter, what is the volume? (Yes I know these glasses are not meant
to be filled to the brim, but calculate the total volume anyways.)

Solution:

2R
3
2R

If we make the z-axis vertical and put the origin in the center
of the sphere, the horizontal cross sections are circles with
radius

√
R2 − z2.

The cross section area is therefore π(R2 − z2).
The range of z is from −R to 1

2R.

Therefore the volume of the glass is

V =

∫ R/2

−R
π(R2 − z2) dz = π

[

R2z − 1

3
z3
]R/2

−R

=
9π

8
R3

39. Two cylinders, each with a circular cross section of R intersect in such a way
that their axes meet at a right angle. What is the volume of the intersection body?
I find it difficult to draw, but Rogawski (Sec 6.2, Hwk 21 of the 2008 edition) has a
figure of it, and also some hints.

Solution: Suppose the axes of the cylinders are the x– and the y–axis. We take horizontal slices
parallel to the x–y–plane. These planes (at height z, with z ranging from −R to R) intersect
each cylinder in a parallel strip. For instance, at z = 0, the strips would be −R ≤ y ≤ R for
one cylinder, and −R ≤ x ≤ R for the other. The width of the strip becomes smaller for other
values of z. Since the cross section is a circle, the width of the strip is 2

√
R2 − z2.

The intersection of the body in question with the horizontal plane at height z is therefore a
square with sidelength 2

√
R2 − z2, and therefore has area 4(R2 − z2).

The volume of the intersection body is

V =

∫ R

−R
4(R2 − z2) dz = 4

[

R2z − 1

3
z3
]R

−R

=
16

3
R3

Plausibility check: The ball of radius R, centered at the origin, is contained in each of the cylinders
and therefore in the intersection body as well. Its volume (which is known to be 4

3πR
3) must therefore

be smaller than the volume of the body that we have just calculated. Indeed 4
3π < 16

3 .

40: A glass has the shape of a circular cylinder. It is initially full with water. We
pour out some water carefully by leaning the glass sideways until the surface of the
remaining water touches the bottom of the glass along a diameter. What percentage
of the water remains in the glass?
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Assume the radius is R and the height h, but express the remaining volume as a
fraction of the total volume πR2h.

Note/Hint: There are at least three ways of doing the problem. One in which the
slices are rectangles, one in which the slices are right triangles, and one in which the
slices are segments of a circle. Set up integrals for all three of them.

Evaluate the integral obtained in at least two of the ways. [Hints abridged here]

Solution:

Version 1:

We slice perpendicular to the x–axis (parallel to the y–z–
plane). The slice at location x with thickness ∆x is drawn
(bold) in the figure.

x

z

y

y

x
R

x

z
h

footprint

vertical
cross
section
(at y = 0)

The slice is a rectangle whose basis footprint has the width 2
√
R2 − x2, and whose height is (by

proportions) h
Rx.

The slices range from x = 0 to x = R.

We conclude the volume is

V =

∫ R

0
2
h

R
x
√

R2 − x2 dx =
h

R

[

−2

3
(R2 − x2)3/2

]x=R

x=0

=
2

3
hR2
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y

x
R

x

z
h

footprint

vertical
cross
section
(at y = 0)

Version 2:

We slice perpendicular to the y-axis (i.e., parallel to the x–
z–plane. The slice at y = 0 is seen in the cross section, with
the footprint of that section a radius along the x–axis.

x

z

y

A slice for different y (say in front of the originally drawn vertical cross section – meaning
negative y) along with its footprint is also outlined in the figure on the left.

The cross sections are right triangles whose basis extends from x = 0 to some y–dependent
xmax, namely xmax =

√

R2 − y2. The slope of the hypotenuse is the same for all these triangles,
namely h/R. So the height of the triangle is (h/R)xmax. The area is therefore 1

2
h
R(R

2 − y2)
and we get

V =

∫ R

−R

h

2R
(R2 − y2) dy =

2

3
hR2

Version 3: We slice horizontally, i.e., parallel to the x–
y–plane and perpendicular to the z axis. The slices will be
segments of a disk, with the cut–off at some x = a (where a
depends on the slice, i.e., on z).

y

xa x

z

y

Specifically, at z = 0, we have a = 0; and at z = h, we have a = R; in between, the cutoff is
proportional to z. So we have a(z) = z

hR.
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In a first step we need to figure out the area of the cross section:

A(z) =

∫ R

a(z)
2
√

R2 − x2 dx =
↑

x = R sinϕ

∫ π/2

arcsin(z/h)
2R2 cos2 ϕdϕ = R2

[

ϕ+ sinϕ cosϕ
]π/2

arcsin(z/h)

= R2

(
π

2
− arcsin

z

h
− z

h

√

1− (
z

h
)2
)

The same area could also have been obtained by elementary geometry as the difference of an area
of a sector (with opening angle 2 arccos a

R ) and a triangle with basis 2
√
R2 − a2 and height a.

Namely, the area would be obtained as R2 arccos a
R − a

√
R2 − a2. This is the same, in view of

a/R = z/h and arccos t = π
2 − arcsin t.

We now can obtain the volume as an integral over all slices, with z ranging from 0 to h:

V =

∫ h

0
R2

(
π

2
− arcsin

z

h
− z

h

√

1− (
z

h
)2
)

dz =
↑

z = hu , dz = h du

R2h

∫ 1

0
(π2−arcsinu) du−R

2h

∫ 1

0
u
√

1− u2 du

Treat the 1st integral with IBP, integrating 1 and differentiating all the rest. The second integral
is a straightforward substitution (no trig sub needed).

V = R2h
[

u(π2 − arcsinu)
]1

0
−R2h

∫ 1

0

−u du√
1− u2

−R2h

[

−1

3
(1− u2)3/2

]1

0

= 0−R2h
[√

1− u2
]1

0
− R2h

3
=

2

3
R2h

Either method gives a volume of 2
3R

2h, which is a fraction of 2
3π ≈ 21.2% of the capacity πR2h

of the glass.
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41: (a) Given a torus that is obtained by rotating a circle of radius r, centered at
x = R on the x–axis, about the y–axis, use the shell method to calculate its volume.
(The answer should of course coincide with the answer V = 2π2r2R obtained by
slicing in class.)

(b) (abridged text) Now assume R < r, so the circle that rotates about the y axis
intersects the y–axis. We only cosider the part of the circle that is in x ≥ 0, let it
rotate about the y–axis. Use the shell method to find the volume of the rotation
body.

Solution:

R

r
x

y (a) The figure shows a slice of thickness dx at dis-
tance x from the y–axis. Upon rotation about the
y-axis, a cylindrical shell arises.

The circle describing the cross section itself is given
by (x−R)2 + y2 = r2, so the height of the slice is
2
√

r2 − (x−R)2. Here x ranges from R − r to
R+ r.

The volume of the torus is therefore

V =

∫ R+r

R−r
2πx 2

√

r2 − (x−R)2 dx =
↑

x−R = u

4π

∫ r

−r
(u+R)

√

r2 − u2 du =
↑

u = r sin θ

4π

∫ π/2

−π/2
(r sin θ +R)r2 cos2 θ dθ

= 4πr3
[

−cos3 θ

3

]π/2

−π/2

+ 4πRr2
∫ π/2

−π/2
cos2 θ dθ = 2π2Rr2

(b) If R < r, the formulas are the same, but the integral extends only from x = 0 to x = R+ r.

V =

∫ R+r

0
2πx 2

√

r2 − (x−R)2 dx =
↑

x−R = u

4π

∫ r

−R
(u+R)

√

r2 − u2 du =
↑

u = r sin θ

= 4π

∫ π/2

− arcsin(R/r)
(r sin θ +R)r2 cos2 θ dθ

= 4πr3
[

−cos3 θ

3

]π/2

− arcsin(R/r)

+ 4πRr2
∫ π/2

− arcsin(R/r)
cos2 θ dθ

=
4πr3

3

(

1− R2

r2

)3/2

+ 2πRr2
[

θ + sin θ cos θ
]π/2

− arcsin(R/r)

=
4π

3

(
r2 −R2

)3/2
+ π2Rr2 + 2πRr2 arcsin

R

r
+ 2πRr2

R

r

√

1−
(R

r

)2

=
4π

3

(
r2 −R2

)3/2
+ 2πR2

√

r2 −R2 + π2Rr2 + 2πRr2 arcsin
R

r

A few consistency checks: When R = r, the formula should reduce to the one in part (a) for
R = r.
When R = 0, we actually just get a ball of radius R and our formula should reduce to V = 4

3πR
3,

which it does.
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42: The area below the curve z = e−x2

and above z = 0 rotates about the z–axis.
Calculate its volume by means of shells. Note: You can expect to get a finite volume,
even though the body extends all the way to∞. The volume is to be understood here as
an improper integral, i.e., you first consider only the area from x = 0 to x = R rotating,
and the volume you obtain this way. Then you let R→∞.

Solution: The volume of the rotation body up to x = R is

V (R) = 2π

∫ R

0
xe−x2

dx = π
[

−e−x2
]R

0
= π(1− e−R2

)

The total volume is the limit as R→∞: namely V = limR→∞ V (R) = π.

43: (abridged text) Let’s go back to volume by slicing and do the previous problem
that way. We have the body above the x–y–plane and below the rotated version of
the curve z = e−x2

, which is the surface z = e−r2 , where r2 = x2 + y2. Slice the
body by planes perpendicular to the y–axis. You will run into the difficulty that you
cannot evaluate

∫∞
−∞ e−x2

dx. Just call this unknown number I. Its numerical value
is I ≈ 1.8.

Now express the volume of the said body as a simple expression involving the quan-
tity I.

Compare your result with the previous problem. From this comparison, conclude
the exact value of I =

∫∞
−∞ e−x2

dx.

Solution: Maybe, before calculating, an explanation of the geometry is at hand: The z–axis arises
vertically out of the x–y–plane. The distance r form the z–axis is given by r2 = x2 + y2, same
as the distance from the origin in the x–y–plane. Before rotating, the bell curve is simply given by
z = e−x2

, which is of course the same as e−r2 in the drawing plane, where y = 0. So the surface
obtained by rotating the bell curve is z = e−r2 = e−x2−y2 .

If we now slice this figure perpendicular to the y–axis (which is parallel to the x–z–plane, or the
drawing plane), we are talking about a slice below z = e−x2−y2 and above z = 0. What is the
area of this slice? It is simply

A(y) =

∫ ∞

−∞
e−x2−y2 dx

We are integrating over x here; in this calculation y is just a constant, as every point on that
certain slice has the same y–value. So we find A(y) = e−y2

∫∞
−∞ e−x2

dx = Ie−y2 .

Note: In this step, we have cheated a bit (with the permission of the stated question). Since we
have not evaluated

∫
e−x2

dx for lack of a formula antiderivative, we do not know whether the limit

of the definite integral
∫ a
−a e

−x2

dx as a → ∞ actually exists, i.e., whether we have a number that
we may call I. We will later learn how to see that indeed we do have such a number.

Next we have to integrate all the slice areas to get the volume. So we conclude

V =

∫ ∞

−∞
A(y) dy =

∫ ∞

−∞
I e−y2 dy == I

∫ ∞

−∞
e−y2 dy = I2

So we have expressed V in terms of the unknown integral I, whose value we don’t know yet
(but which we are promised is approximately 1.8. The slicing method was not so successful in
finding this particular volume. In contrast, the shell method was successful.
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By comparing the results, we can now use the equation I2 = π to conclude that I =
√
π. (Of

course not −√π since clearly I > 0.) So we have redeemed the unsuccessful slicing attempt at
the volume and, by reverse–engineering it, have found the integral

∫ ∞

∞
e−x2

dx =
√
π ,

a result that was otherwise not available. Yeah!

44: Calculate the perimeter of the ellipse x2

a2 + y2

b2 = 1 as an integral 2
∫ a
−a . . . dx.

(You will not be able to evaluate this integral, so leave it alone, except for algebraic
simplification of the expression under the integral.)

Use the trig substitution x = a sinu to convert the obtained integral into another
integral (which you still won’t be able to finish up, but which may turn out to be
more convenient in some cases, like for numerical purposes).

Solution: The part of the ellipse above the x–axis is given by y = b
√
1− (xa )

2 = b
a

√
a2 − x2;

the part below the x–axis by the same formula with the negative square root.

So the perimeter of the ellipse is

L = 2

∫ a

−a

√
√
√
√1 +

(
b
a(−x)√
a2 − x2

)2

dx = 2

∫ a

−a

√

a2 − x2 + b2x2/a2

a2 − x2
dx

where the factor 2 comes from having curve parts both above and below the x–axis.

With the substitution x = a sinu, hence dx = a cos u du and
√
a2 − x2 = a cos u, the integral

becomes

L = 2

∫ π/2

−π/2

√

a2 cos2 u+ b2 sin2 u du

Simple consistency check: For b = a, the ellipse becomes a circle of radius a, and our formula should
reduce to L = 2πa, which it does indeed.

45: (a) Calculate the length of the arc of the parabola y = ax2 − 1 between x = 0
and x = b. [The ‘−1’ part is irrelevant here and just offered for convenience in part
(b).] You may borrow a good deal of work from either 27d or 29d, after doing either
a trig or hyp substitution to finish up the integral.

The ‘limit’ part of b is voluntary; but if you skip it you have to do part c instead.
Part c is much easier, but way less fun.

(b) A downsized version of a Putnam competition problem in 2001 asks whether it
is possible to choose a in such a way that the part of the parabola inside the disc
x2 + y2 ≤ 1 is longer than 4. Assume a > 1

2 and find the appropriate intersection
point (b, ab2 − 1). Calling L(a) the length of that part of the parabola inside the
disk, as a function of a, calculated according to part (a), show that a(L(a)− 4) goes
to ∞ as a→∞. Conclude the correct answer to the Putnam question.

(c) Instead of calculating the limit as a→∞ in part (b), use a pocket calculator to
evaluate the length of the piece of the parabola inside the disk in the case a = 100.
Answer the Putnam question. FYI: there are no calculators on the Putnam competition.
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Solution: (a)

L =

∫ b

0

√

1 + (2ax)2 dx =
↑

x = 1

2a
sinh t

1

2a

∫ arsinh 2ab

0
cosh2 t dt =

1

8a

∫ arsinh 2ab

0
(e2t + 2 + e−2t) dt

=
1

8a

[
1

2
e2t − 1

2
e−2t + 2t

]arsinh 2ab

0

So we have to find et knowing that sinh t = u := 2ab. As in 29c, we see that t = ln(u+
√
u2 + 1).

So we find et = u+
√
u2 + 1 and e−t = −u+

√
u2 + 1. We need these to be squared and conclude

L =
1

16a

((

2ab+
√

(2ab)2 + 1
)2
−
(

−2ab+
√

(2ab)2 + 1
)2

+ 4 ln
(

2ab+
√

(2ab)2 + 1
))

=
1

4a

(

2ab
√

(2ab)2 + 1 + ln
(

2ab+
√

(2ab)2 + 1
))

(b) We need to find the appropriate value of b as value x where y = ax2−1 intersects x2+y2 = 1.
So we have to solve

x2 + (ax2 − 1)2 = 1 , equivalently a2x4 + (1− 2a)x2 = 0

The solution x = 0 can be neglected, and we find x = ±
√
2a− 1. So b =

√
2a−1
a , and the

arclength of relevance is the integral from −b to b, which is twice the integral from 0 to b. We
conclude therefore

L(a) =
1

2a

(

2
√
2a− 1

√

(2
√
2a− 1)2 + 1 + ln

(

2
√
2a− 1 +

√

(2
√
2a− 1)2 + 1

))

=

√
2a− 1

√

4(2a − 1) + 1

a
+

ln
(

2
√
2a− 1 +

√

4(2a − 1) + 1
)

2a

That’s messy, but for large a, we can do a rough estimate by neglecting all small numbers added
to or subtracted from the large quantity a. Thus we are getting the first term to be close to√
2a
√
8a/a = 4 and the second term close to ln(4

√
2a)/(2a).

Following the hint, we calculate a(L(a)− 4):

a(L(a) − 4) =
√
2a− 1

√
8a− 3− 4a+ ln(2

√
2a− 1 +

√
8a− 3)

=
(2a− 1)(8a− 3)− (4a)2√

2a− 1
√
8a− 3 + 4a

+ ln(2
√
2a− 1 +

√
8a− 3)

=
−14a+ 3√

2a− 1
√
8a− 3 + 4a

+ ln(2
√
2a− 1 +

√
8a− 3)

The second term in the sum goes to +∞ as a → ∞. The first has limit −14
8 , as can be seen

by writing it as
−14+ 3

a
√

2− 1

a

√

8− 3

a
+4

. So the sum of both terms goes to ∞ as a → ∞; this means in

particular it will be > 0 for large a.

We can get L(a) > 4.

(c) L(100) ≈ 4.00267.
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46: Take the ellipse from problem 44, let it rotate about the x-axis. Find the surface
area of the body thus obtained. You may assume b < a. Note: This time, evaluation
of the integral is quite manageable.

Solution:

A =

∫ a

−a
2π

b

a

√

a2 − x2

√

a2 − x2 + b2x2/a2

a2 − x2
dx = 2π

b

a2

∫ a

−a

√

a4 − (a2 − b2)x2 dx

We substitute x = a2√
a2−b2

sinu and get

A =
2πb

a2

∫ arcsin(
√
a2−b2/a)

− arcsin(
√
a2−b2/a)

a2 cos u
a2√

a2 − b2
cos u du =

2πa2b√
a2 − b2

1

2
[u+ sinu cosu]

arcsin(
√
a2−b2/a)

− arcsin(
√
a2−b2/a)

=
2πa2b√
a2 − b2

arcsin

√
a2 − b2

a
+ 2πab

√

1− a2 − b2

a2
=

2πa2b√
a2 − b2

arcsin

√
a2 − b2

a
+ 2πb2

47: For the torus from #41a, calculate its surface area.

Solution:

R

r
x

y
(a) The figure shows in bold a small segment of the
circumference of the circle that rotates about the
y-axis. Its location is described by the coordinate
x, and its length is

√

1 + f ′(x)2 dx where f(x) =
√

r2 − (x−R)2 defines the function whose graph
is the circle. The radius of rotation is x, so the
distance travelled under this rotation is 2πx, and
the total area traced out by this small segment is
2πx×

√

1 + f ′(x)2 dx.

Note that f describes only the upper half of the rotating circle. A factor of 2 will take the lower
half into account as well. Therefore the surface area is

S = 2

∫ R+r

R−r
2πx

√

1 +
( −(x−R)
√

r2 − (x−R)2

)2
dx = 4π

∫ R+r

R−r
x

√

r2

r2 − (x−R)2
dx =
↑

x−R = r sin u

= 4πr

∫ π/2

−π/2

(R+ r sinu) r cos u du

r cos u
= 4πr(πR) + 4πr2

∫ π/2

−π/2
sinu du = 4π2Rr

48: The function r(ϕ) = a(1 − cosϕ) describes a heart–shaped (or apple–shaped?)
curve called the cardioid.
(a) Calculate the area A it encloses;
(b) also calculate the length L of this curve.
(c) As a simple consistency check, confirm the isoperimetric inequality, namely that
A/L2 < π/(2π)2.

Solution: (a) To trace out the entire curve, ϕ has to range from 0 to 2π (or from −π to π,
if preferred). Recalling that the area of a circular sector with radius r and opening angle ∆ϕ is
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1
2r

2∆ϕ, we get

A =
1

2

∫ 2π

0
a2(1− cosϕ)2 dϕ =

a2

2

∫ 2π

0
(1− 2 cosϕ+ cos2 ϕ) dϕ =

a2

2
(2π − 0 + π) =

3

2
πa2

(b) For the circumference, we find

L =

∫ π

−π

√

r2 + r′2 dϕ =

∫ 2π

0

√

a2(1− cosϕ)2 + a2 sin2 ϕdϕ

= a

∫ 2π

0

√

(1 + cos2 ϕ− 2 cosϕ+ sin2 ϕdϕ = a

∫ 2π

0

√

2− 2 cosϕdϕ

Short of a trig-identity identifying 2 − 2 cosϕ as a complete square, we’d be stuck herewith an
elliptic integral (see comment given with the assignment of Hwk 44). Namely 2 − 2 cosϕ =
4 sin2 1

2ϕ. So we simplify

L = 2a

∫ 2π

0
sin

ϕ

2
dφ = 2a

[

−2 cos ϕ
2

]2π

0
= 8a

(c)
A

L2
=

3π

128
≈ 0.0736 <

1

4π
≈ 0.0796

49: (a) That same cardioid now rotates about the x–axis. Calculate the surface
area S of the apple–shaped body thus obtained.

(b) Also calculate the enclosed volume V . Hint: Slices in the form of disks or
washers may actually be easiest. Note that x = r(ϕ) cosϕ and y = r(ϕ) sinϕ and
use the formula

∫ xmax

xmin
πy2 dx +

∫ 0
xmax

πy2 dx (explain why?), with x, y, dx properly
expressed in terms of r(ϕ) and ϕ.

(c) Confirm that your results are consistent with the isoperimetric inequality V 2/S3 <
(43π)

2/(4π)3.

Solution:

x

y

r(ϕ)

ϕ

(a) First note that to obtain the entire surface of the
‘apple’ by rotation about the x–axis, only the upper
half of the curve is needed, so ϕ ranges only from 0
to π here.
I have added in bold a short segment at location ϕ on
the curve. Its length is

√
r2 + r′2 dϕ, and it rotates

about the x-axis, with the radius of rotation being
y = r(ϕ) sinϕ. Therefore

S =

∫ π

0
2πr(ϕ) sinϕ

√

r2(ϕ) + r′2(ϕ) dϕ

= 2πa2
∫ π

0
(1− cosϕ) sinϕ 2 sin

ϕ

2
dϕ ,

where the evaluation of the square root is taken from the previous problem.

We use some trig-id’s to simplify the integrand:

S = 2πa2
∫ π

0
(1−cosϕ) 4 sin2 ϕ

2
cos

ϕ

2
dϕ =
↑

ϕ = 2t

16πa2
∫ π/2

0
(2 sin2 t) sin2 t cos t dt =

↑
sin t = u

16πa2
∫ 1

0
2u4 du
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We evaluate immediately S =
32

5
πa2.

(b) As ϕ ranges from π backwards to 0, the cor-
responding point on the cardioid ranges from
the leftmost point (xmin, 0) to the cusp at (0, 0)
along the upper part of the cardioid. In between,
at some value ϕ = ϕ∗, we reach the rightmost
point, with coordinate xmax = r(ϕ∗) cosϕ∗. If
we calculate
∫ xmax

xmin

πy2 dx =

=

∫ ϕ∗

π
π
(

r(ϕ) sinϕ
)2 d

dϕ

(

r(ϕ) cosϕ
)

dϕ

we obtain the volume of the ‘apple with the in-
dent filled in’ (shaded in the figure).

x

y

ϕ = π
ց

xmin xmax

← ϕ = ϕ∗

We obtain the actual volume by subtracting the volume of the filled-in part, i.e.,

∫ xmax

0
πy2 dx =

∫ ϕ∗

0
π
(

r(ϕ) sinϕ
)2 d

dϕ

(

r(ϕ) cosϕ
)

dϕ .

(Note that the ‘y’ in both formulas refers to a different function of x — namely the larger radius
in the first formula, the smaller radius in the second formula; but expressing x and y in terms
of ϕ, we have two different choices of ϕ giving the same x but different y.)

By swapping the limits of integration in the subtracted term, we obtain an addition:
∫ ϕ∗

π . . .−
∫ ϕ∗

0 . . . =
∫ ϕ∗

π . . . +
∫ 0
ϕ∗

. . . =
∫ 0
π . . .,

and thus we get

V = π

∫ 0

π
a2(1−cosϕ)2 sin2 ϕa(− sinϕ+2 sinϕ cosϕ) dϕ = πa3

∫ 0

π
sin3 ϕ (1−cosϕ)2(2 cosϕ−1) dϕ

Substituting cosϕ = t, hence sinϕdϕ = −dt, we get

V = πa3
∫ 1

−1
(1−t2)(1−t)2(1−2t) dt = πa3

∫ 1

−1
(1−4t+4t2+2t3−5t4+2t5) dt = πa3

(

2+
8

3
−10

5

)

=
8

3
πa3

Note: It is easy to determine, by maximizing x(ϕ) = a cosϕ(1− cosϕ), that ϕ∗ = π
3 and xmax = a

4 ,
but we did not need to calculate these data.

(c)
V 2

S3
=

64π2 · 53
9 · 323π3

=
125

9 · 16 · 32π =
125/128

36π
<

1

36π
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50: You sip a drink from a cocktail glass with a straw. The cocktail glass is rotation-
ally symmetric with a vertical cross section given by y = x2 (where |x| ≤ 3). The
straw extends 6 unit lengths (meaning 6cm) above the rim of the glass. Assuming
the density to be 1.01937 (meaning 1.01937 g/cm3, as even juice is mostly water,
plus a bit of sugar), and no ice (horror, that must have happened on a study abroad,
but it does simplify the math;-), what is the work it takes yu to empty the glass by
this method, using that 1 Joule = 1 Nm and N=mkg/sec2? Use the acceleration of
gravity to be 9.81 m/sec2.

Solution:

The figure shows the glass with some pertinent data:

There is a layer of cocktail at height y with thickness ∆y, and a
circular cross section whose radius r = x satisfies y = x2, so the
radius is

√
y. The volume of this cross section is π(

√
y)2 ∆y. This

is in units of cm3, or 10−6m3. With density ρ = 1.01937g/cm3 =
1.01937 · 103kg/m3 and acceleration of gravity g = 9.81m/sec2, this
layer has a weight of

πy∆y · 10−6 · 1.01937 · 103 · 9.81N = πy∆y · 10−2 N .

This layer is at height y and needs to be lifted to height 15 (namely
6 units above the brim, which is is 6 units above 9). So the distance
is (15 − y)cm, or (15 − y) · 10−2m. The product is the work to get
the layer lifted up (sucked up through the straw).

x

y

Adding up the layers (and taking the limit ∆y → 0) gives the total work as an integral

W =

∫ 9

0
πy(15 − y) dy · 10−4Joule

The integral is π
(
15
2 92 − 1

3 9
3
)
= 729

2 π ≈ 1145.

So the total work is 0.1145 Joule.

51: Here you will numerically evaluate the integral

∫ 1

0

√

(1− x2)
(

1− x2

2

)

dx.

(a) Use each of trapezoidal rule, midpoint rule, and Simpson’s rule while splitting the
interval of integration into four subintervals of equal length, comparing the results
with 6 digits behind the decimal point.

(b) Calculate the 2nd derivative of the integrand and show that it is negative for
all x between 0 and 1. Hint: Combining all terms, you may get a numerator −6 +
12x2 − 9x4 + 2x6. Be a bit inventive with the algebra to determine its sign when
0 < x < 1. If you don’t see a good idea use that x to power six is always less than one,

to get rid of that one term. Explain why the error estimates (relying on M2 or M4 such
that |f ′′(x)| ≤ M2 or |f ′′′′(x)| ≤ M4) for each of the three rules given in the book
are useless in this case. Also give explicit upper and lower bounds for the integral
based on your knowledge that f ′′(x) < 0.

(c) Now for comparison, substitute x = sinu and use each of trapezoidal, midpoint
and Simpson rule on the new integral, again with four subintervals of equal length,
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again giving 6 digits behind the decimal point in each case. Give error margins
for the results, based on the formulas; finding bounds M2 and M4 for the second
and fourth derivatives of the integrand is a bit clumsy: you may instead simply use
the best values found by means of symbolic algebra and graphing software, namely
M2 = 2.5 and M4 = 15.25.

(d) Observe the improvement in precision when comparing (a) and (c). Compare
the result for trapezoidal and Simpson rules with 10 equidistant intervals (and the
respective error margins obtained).

Solution: (a) We let f(x) :=
√

(1− x2)(1− x2

2 ).

Midpoint rule with N subintervals of [0, 1] of equal length 1
N :

f is to be evaluated at xj = (j + 1
2)

1
N for j = 0, 1, . . . , N − 1.

Imid,4(f) =
∑3

j=0 f(
j+1/2

4 )× 1
4 =

(

f(18) + f(38) + f(58) + f(78)
)

· 14 ≈ 0.740675.

Trapezoidal rule with N subintervals of [0, 1] of equal length 1
N :

f is to be evaluated at xj =
j
N for j = 0, 1, . . . , N .

Itra,4(f) =
∑3

j=0
1
2 [f(

j
4)+ f( (j+1)

4 )]× 1
4 =

(

f(0)+2f(14)+2f(24)+2f(34)+ f(1)
)

· 18 ≈ 0.705963.

Simpson rule with N (even!) subintervals of [0, 1] of equal length 1
N (here N = 4):

Isim,4(f) =
(

f(0) + 4f(14 ) + 2f(24 ) + 4f(34) + f(1)
)

· 1
12 ≈ 0.722935.

(b) f ′(x) =
−2x(1− x2

2 )− x(1− x2)

2
√

(1− x2)(1 − x2

2 )
=
−3x+ 2x3

2

[

(1− x2)(1− x2

2 )
]−1/2

f ′′(x) = −(−3x+ 2x3)2

4

[

(1− x2)(1− x2

2 )
]−3/2

+
−3 + 6x2

2

[

(1− x2)(1− x2

2 )
]−1/2

=
−(−3x+ 2x3)2 + 2(1− x2)(1− x2

2 )(−3 + 6x2)

4[(1 − x2)(1− x2

2 )]
3/2

=
−6 + 12x2 − 9x4 + 2x6

4[(1 − x2)(1 − x2

2 )]
3/2

To show that f ′′(x) < 0 for 0 ≤ x < 1, we have to show that the numerator is negative. One
easy way to see this is to use that x6 < 1 and therefore

−6 + 12x2 − 9x4 + 2x6 < −6 + 12x2 − 9x4 + 2 = −4 + 12x2 − 9x4 = −(2− 3x2)2 ≤ 0

Alternatively, we can abbreviate x2 as t for slight simplification and notice for g(t) = −6 +
12t − 9t2 + 2t3 that g(0) = −6 < 0 and g′(t) = 12 > 0. So g(t) starts out negative at t = 0,
and then increases. Looking if/where a maximum occurs, we look at solving g′(t) = 0, which is
12 − 18t + 6t2 = 0, i.e., t = 1 or t = 2. So in particular g(t) is increasing from t = 0 to t = 1,
where g(1) = −1 < 0.

Since we know now f ′′(x) < 0 for 0 ≤ x < 1, we know that the midpoint rule overestimates and
the trapezoidal rule underestimates the actual integral.

However |f ′′(x)| → ∞ as x → 1−, so the error estimates are useless because we do not have a
finite M2 (nor do we get a finite M4).

(c) Now we substitute sinx = u in the integral and get

∫ 1

0

√

(1− x2)
(

1− x2

2

)

dx =

∫ π/2

0
cos2 u

√

1− sin2 u

2
︸ ︷︷ ︸

=:h(u)

du
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Midpoint rule with N subintervals of [0, π2 ] of equal length
1
N · π2 :

h is to be evaluated at uj = (j + 1
2)

π
2N for j = 0, 1, . . . , N − 1.

Imid,4(h) =
∑3

j=0 h(
(j+1/2)π

8 )× π
8 =

(

h( π
16 ) + h(3π16 ) + h(5π16 ) + h(7π16 )

)

· π8 ≈ 0.732619.

Trapezoidal rule with N subintervals of [0, π2 ] of equal length
1
N · π2 :

h is to be evaluated at uj =
j
N · π2 for j = 0, 1, . . . , N .

Itra,4(h) =
∑3

j=0
1
2 [h(

jπ
8 ) + h( (j+1)π

8 )] × π
8 =

(

h(0) + 2h(π8 ) + 2h(2π8 ) + 2h(3π8 ) + h(π2 )
)

· π
16 ≈

0.732619.

Simpson rule with N (even!) subintervals of [0, π2 ] of equal length
1
N · π2 ; here N = 4:

Isim,4(h) =
(

h(0) + 4h(π8 ) + 2h(2π8 ) + 4h(3π8 ) + h(π2 )
)

· π
24 ≈ 0.732563.

This time h′′(u) may change sign. Actually it does: h′(0) = 0 and h′(π2 ) = 0, so h′′ cannot be
positive on the entire interval, because then h′ would be increasing there; nor can h′′ be negatie
on the entire interval, because then h′ would have to decrease there. So we cannot use the
trapezoid and midpoint rule to get bounds. [The fact that trapezoid and midpoint give results
that coincide with at least 6 digits in this case is likely a coincidence. The two numbers actually
differ by about 6.9 · 10−8.]

Let’s calculate the error margins, For the trapezoidal rule we get an error margin of M2(b−a)3

12N2 =
2.5(π/2)3

12·16 ≈ 0.050466. For the midpoint rule, the error margin is half as much: M2(b−a)3

24N2 =
2.5(π/2)3

24·16 ≈ 0.025233.

For Simpson, the error margin is M4(b−a)5

180N4 = 15.25(π/2)5

180·256 ≈ 0.003165.

Conclusion :
∫ 1
0 f(x) dx

∫ π/2
0 g(u) du

midpoint 0.740675 upper bd 0.732619 ± 0.025233
trapezoidal 0.705963 lower bd 0.732619 ± 0.050466
Simpson 0.722935 ±???? 0.732563 ± 0.003165

(d) Finally, if we choose N = 10, we find an error of M2(b−a)3

12N2 = 2.5(π/2)3

12·100 ≈ 0.008075 for

the trapezoidal rule. In contrast, for Simpson’s rule, we find a margin of error M4(b−a)5

180N4 =
15.25(π/2)5

180·104 ≈ 0.000081.

So let us evaluate them:

Itra,10(h) =
(

1 · h(0) + 2h( π
20 ) + 2h(2π20 ) + 2h(3π20 ) + 2h(4π20 ) + 2h(5π20 ) + 2h(6 π

20 ) + 2h(7 π
20 ) +

+ 2h(8π20 ) + 2h(9π20 ) + h(10π20 )
)

· π
40 ≈ 0.732619

Isim,10(h) =
(

1 · h(0) + 4h( π
20 ) + 2h(2π20 ) + 4h(3π20 ) + 2h(4π20 ) + 4h(5π20 ) + 2h(6 π

20 ) + 4h(7 π
20 ) +

+ 2h(8π20 ) + 4h(9π20 ) + h(10π20 )
)

· π
60 ≈ 0.732619

Note: It transpires by use of more powerful numerics that the result from Simpson with 10 intervals is
already precise to at least 9 digits, 0.73261 89883 9 . . . with an exact value being 0.73261 89886 1 . . ..
So the actual precision is a good deal better than the precision guaranteed by the error estimate.
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52:

“How large is the number ‘1000!’ ?” Can we get a simple formula that
allows us to give a good approximation for n! for large n that does not
require to go through all the multiplications one by one?

Integrals can help in this task. We can compare lnn! = ln 1+ln 2+ln 3+ln 4+. . .+lnn
with an integral that we can actually calculate. So, just for a change, in this problem
we will use (easy) integrals to give a good approximation for (messy) finite sums,
rather than using easy finite sums to find an approximation for messy integrals!

Task 1: Use the midpoint rule with ∆x = 1 on the integral
∫ n+1/2
3/2 lnx dx to show

that
lnn! ≥ (n+ 1

2) ln(n+ 1
2 )− (n+ 1

2)− some number

(of course you want to calculate this “some number” precisely!) Sketch a graph and
observe that the correct sign of the 2nd derivative of the logarithm function tells you
why you have ‘≥’ and not ‘≤’.
Task 2: Use the trapezoidal rule (with ∆x = 1) on the interval from 2 to n to
show that

lnn! ≤ 1
2 ln(2n) + n lnn− n+ some number

(again you want to calculate this number exactly...) Sketch a graph and observe,
from the sign of the second derivative of the logarithm function, why you get ‘≤’,
not ‘≥’.
Task 3: The ln(n+ 1

2) in the result of task 1 is just a bit un-beautiful, we’ll prefer

lnn: Explain with a 1-term Riemann-sum why b
∫ b
a

dx
x > (b−a) when b > a > 0. Use

this to show (by convenient choice of a, b) that (n+ 1
2) ln(n+ 1

2) > (n+ 1
2)(lnn)+

1
2 .

Combine this result with your result from Task 1 to show

lnn! ≥ (n+
1

2
) lnn− n+ some number

where again you want that number precisely.

Task 4: Combine your results and apply the exponential function to them to find
that

C1

√
n
nn

en
≤ n! ≤ C2

√
n
nn

en

where we want the C1 and the C2 both as exact numbers and numerically with 3
decimals.

Task 5 for you is only to watch in amazement, you don’t have work of your own
here: Advanced Calculus methods that go beyond what we can do here improve on
the result from Task 4; they actually show that

n!√
nnn/en

→
√
2π as n→∞

The numerical value of
√
2π with 3 decimals is 2.507, which should be neatly between

the C1 and C2 obtained above.

Yet another occurrence of π in a context that has nothing to do with circles!
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Solution:

Task 1:

1 2 3 4 n

midpoint rule

overestimates integral

because ln′′ x < 0

Use ∆x = 1

y = lnx

x

y

ln 2 + ln 3 + . . .+ lnn >

>

∫ n+1/2

3/2
lnx dx =

=
[

x lnx− x
]n+1/2

3/2
=

= (n+ 1
2) ln(n+ 1

2)− n− 1
2

− 3
2 ln

3
2 + 3

2

Therefore lnn! > (n+
1

2
) ln(n+

1

2
)− n+ 1− 3

2
ln

3

2
.

Task 2:

1 2 3 4 n

trapezoidal rule

underestimates integral

because ln′′ x < 0

Use ∆x = 1

y = lnx

x

y

1

2
ln 2 + ln 3 + . . .+ ln(n− 1) +

1

2
lnn <

∫ n

2
lnx dx =

[

x lnx− x
]n

2
= n lnn− n− 2 ln 2 + 2

Therefore lnn! < (n+ 1
2) ln n− n+ 2− 3

2 ln 2

Task 3: Since 1
x is decreasing, any right-endpoint Riemann sum underestimates the integral.

In particular
∫ b
a

dx
x > (b − a)1b , so clearly b

∫ b
a

dx
x > b − a. Specifically for b = n+ 1

2 and a = n,
we infer that (n+ 1

2)[ln(n+ 1
2)− lnn] > 1

2 .

Therefore, (n+ 1
2) ln(n+ 1

2) > (n+ 1
2) ln n+ 1

2 . This can be combined with task 1 to conclude

lnn! > (n+ 1
2) ln(n+ 1

2)− n+ 1− 3
2 ln

3
2 > (n+ 1

2) lnn− n+ 3
2 − 3

2 ln
3
2
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Task 4: Taking the exponential function of the results in task 2 and 3, we get

(2e

3

)3/2

︸ ︷︷ ︸

≈2.4395

nn+1/2

en
< n! <

e2

2
√
2

︸︷︷︸

≈2.6124

nn+1/2

en

53: (a) Determine, possibly depending on x, whether the series

∞∑

n=0

x2n

(2n)!
converges

or diverges.

(b) For which x does the series

∞∑

n=0

xn
2

n!
converge? (While we are discussing only

series with positive terms, you may pretend x > 0.)

(c) Determine, depending on x, whether the series

∞∑

n=0

n!2xn

(2n)!
converges. (Again, you

may presume x > 0 for now. And you may leave a borderline case, where ratio or
root test is inconclusive, undecided.)

Solution: (a) The ratio test seems easiest:

|an+1

an
| = x2n+2 (2n)!

(2n + 2)!x2n
=

x2

(2n + 2)(2n + 1)
.

So lim
n→∞

|an+1

an
| = x2 lim

n→∞
1

(2n + 2)(2n + 1)
= 0 < 1. Therefore the series converges for every x.

(BTW, the ratio an+1/an makes no sense when x = 0, but in this case the series terminates and
therefore converges trivially.)

Note: We will see soon that the value of this series is coshx.

(b) Again, the ratio test is easiest (we may neglect x = 0, where we have convergence trivially,
b/c the series terminates):

an+1

an
=

x(n+1)2 n!

(n+ 1)!xn2
=

x2n+1

n+ 1
.

So clearly, if |x| ≤ 1, the limn→∞
an+1

an
= 0 < 1; so in this case the series converges. On the

other hand if |x| > 1, we have limn→∞
|x2n+1|
n+1 =∞ > 1 and the series diverges.

In case you don’t recall that any xn with x > 1 goes to ∞ faster than n (or even than any
power nk for any k), as n→∞, in other words, that limn→∞

xn

n =∞ provided x > 1, here
is how to see it. You may replace the discrete n with a continuous variable y and calculate
the limit as y →∞ with l’Hopital (remember that y, not x, it the variable here):

lim
y→∞

xy

y
=
↑

l’Hop.“∞/∞”

lim
y→∞

xy lnx

1
= +∞

provided x > 1.

Same for the limit in question here, namely

lim
n→∞

x2n+1

n+ 1
= lim

y→∞

x2y+1

y + 1
=
↑

l’Hop

lim
y→∞

x2y+1 2 lnx

1
= +∞ > 1

provided x > 1.
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Note: No nice ‘formula’ for the value of the series is available. However, foa all x up to 1, very swift
numerical evaluation giving many digits of precision out of just a few terms is feasible.

(c) The ratio test gives

|an+1

an
| = |(n+ 1)!2xn+1 (2n)!

(2n + 2)!n!2xn
| = |x| (n+ 1)2

(2n+ 2)(2n + 1)
so lim

n→∞
|an+1

an
| = |x| · 1

4

So if |x| < 4 (or, while we only consider x > 0, if 0 < x < 4), the limit in question is < 1,
and the series converges. On the other hand, if |x| > 4 (or, for now, if x > 4), the limit is > 1
and the series diverges. In the borderline case x = 4 (and later also x = −4), the ratio test is
inconclusive, and the problem allows to leave the question unanswered in this case.

Note: See Problem 59 below, where we will decide the issue by means of the result from
Hwk. 52.

Note: Mathematica figures out that the value of this series is
4(
√
4− x+

√
x arcsin(

√
x/2))

(4− x)3/2
. I could

probably write up an explanation using only material yet to be covered in class, explaining how this
formula can be obtained, but it may well be a few pages, and I sure wouldn’t want to make you
study it.

54: Apply the ratio and the root tests to the p-series

∞∑

n=1

1

np
. Do you get a useful

answer?

Solution: If an = 1/np, then an+1/an = np/(n+ 1)p = ( n
n+1)

p. So

lim
n→∞

an+1

an
= lim

n→∞

( n

n+ 1

)p
=
(

lim
n→∞

n

n+ 1

)p
= 1p = 1

and the ratio test comes out inconclusive.

For the root test,

lim
n→∞

n
√

1/np = lim
n→∞

n−p/n =
(

lim
n→∞

n1/n
)−p

= 1−p = 1

and the root test comes out inconclusive as well.

If you have forgotten that limn→∞ n1/n = 1, here is how to see this (even for continuous y
instead of n):

lim
y→∞

y1/y = lim
y→∞

eln y·1/y = elimy→∞(ln y)/y = e0 = 1

where we have used that the exponential function is continuous, and the limit in the exponent
could be done by l’Hopital “∞/∞”.

Lesson: p-series are all on the borderline where comparison with the geometric series, as wrapped
up in root or ratio test, is inconclusive.

55: Recall from a prior problem that there are certain positive constants C1 and
C2 (namely C1 = 2.43 and C2 = 2.62 would work) such that C1

√
n (ne )

n < n! <
C2
√
n (ne )

n. This will help you, as the question here is to decide the convergence of
∑ xn

n! by means of the root rather than the ratio test. (For the time being, as we
study series with positive terms only, you may pretend x > 0.)
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Solution: n
√

(xn/n!) = x/ n
√
n!. So can we determine limn→∞

n
√
n! ?

Since n! > C1(
n
e )

n√n, we conclude n
√
n! > n

√
C1 (

n
e )
√

n
√
n. We know that n

√
C1 → 1 as n →∞

and also n
√
n → 1 as n → ∞. But the middle term n

e goes to ∞ as n → ∞. So we conclude,
since the rhs goes to ∞, so does the (larger) lhs.

We have seen lim n
√
n! =∞, therefore limx/ n

√
n! = 0, and since this is less than 1, the root test

tells us the convergence of the series
∑

xn/n!.

Note: There is another, easier but sneaky, comparison reasoning available that does not require
to use problem #52. Here is how it goes (you weren’t expected to invent it): Let’s assume for
convenience that n is even.

n! = n(n− 1) . . . (
n

2
+ 1)

︸ ︷︷ ︸

the 1st half of the

· n

2
. . . 2 · 1

︸ ︷︷ ︸

the 2nd half
factors are all of the factors
> n

2 . are all ≥ 1.

≥ (n/2)n/2 · 1n/2

If n is odd, the first half of the factors (rounded up, i.e., n+1
2 many) are still each > n

2 , and we
can conclude similarly.

In either case we have n! > (n/2)n/2 and therefore n
√
n! > (n/2)1/2, which is still good enough

to conclude n
√
n!→∞.

56: Does

∞∑

n=1

n1000

3n
converge? Use ratio test and root test.

Solution: Ratio Test: an+1/an = (n+1
n )1000 · 3n

3n+1 . So lim an+1/an = 1
3 lim(n+1

n )1000 = 1
3 < 1.

So the series converges.

Root test: n
√
an = ( n

√
n)1000/3, so again lim n

√
an = 1

3 < 1.

Note: The value of the series is a certain rational number that we could calculate in principle with
Calc 2 methods, based on what we have yet to learn, like differentiating power series, but carrying
out the calculation would be tedious beyond measure. Mathematica gets the result in a few seconds
and it turns out to be an integer in the ball park of 5 × 102526. If you tried to decide convergence
by computer, the first 900 or so terms in the sum would be getting bigger and bigger, and it is only
after some 8000 terms, that the individual terms would fall below 1 again.

57a: Consider the series 1+ 2
3 +

1
32

+ 2
33

+ 1
34

+ 2
35
+ . . .. The denominators are powers

of 3, but the numerators alternate between 1 and 2. In
∑

notation, you could write
this as ∞∑

n=0

(3− (−1)n)/2
3n

or

∞∑

n=0

(3− cos(πn))/2

3n
.

Show that the ratio test is inconclusive, but use either the root test or direct com-
parison to decide on whether the series converges

Solution: an+1/an = (3−(−1)n+1)/2×3n

3n+1×(3−(−1)n)/2
= 1

3
3+(−1)n

3−(−1)n .

So if n is even, an+1

an
= 2

3 , whereas for n odd, an+1

an
= 1

6 . So lim an+1

an
does not exist.
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However, n
√
an = n

√

3− (−1)n/3. Since n
√
2 ≤ n

√

3− (−1)n ≤ n
√
4 and both ends have limit 1 as

n→∞, the middle term also has limit 1 by the squeeze therorem.

So we conclude limn→∞ n
√
an = 1

3 . The series converges. — Alternatively, an ≤ 2
3n =: bn. So

∑
an converges since

∑
bn does.

Note: The value of the series is easy to find in this case. Assuming that the separate grouping of even and odd

numbered terms is legit’ –it is–, we see

1 +
2

3
+

1

32
+

2

33
+

1

34
+

2

35
+ . . . =

(

1 +
1

32
+

1

34
+ . . .

)

+

(

2

3
+

2

33
+

2

35
+ . . .

)

=
1

1− 1

9

+
2

3
·

1

1− 1

9

=
15

8

where we have used our knowledge of the sum of the geometric series with x = 1/33.

58: Consider

∞∑

n=2

1

n(lnn)
. Does this series converge or diverge? (Hint: Comparison

with an integral is the way to go.) — Next decide
∞∑

n=2

1

n(lnn)p
where p > 0 is any

given real number. (The answer will depend on p.) [abridged text]

Solution: We first note that f(x) = 1
x(lnx)p is decreasing. The first series is included as a

special case p = 1 in the second series.

Using a left–endpoint Riemann sum (with ∆x = 1), the Riemann sum is larger than the integral,

so
∑N

n=2 f(n) >
∫ N+1
2 f(x) dx. This tells us if the integral

∫∞
2 f(x) dx diverges (goes to ∞),

then the (larger) sum
∑N

n=2 f(n) also goes to ∞, i.e., diverges.

On the other hand, the right–endpoint Riemann sum (with ∆x = 1) is smaller than the integral,

so
∑N

n=2 f(n) < f(1) +
∫ N
2 f(x) dx. This tells us if the integral

∫∞
2 f(x) dx converges (stays

bounded), then the (smaller) sum
∑∞

n=2 f(n) also converges (because the partial sums increase
and stay bounded).

2 3 N N+1 1 2 3 N

∑N
n=2 f(n) as left–endpoint

Riemann sum

∑N
n=2 f(n) as right–endpoint

Riemann sum

Now let’s decide when the improper integral converges, and when it diverges:

∫ ∞

2

dx

x (lnx)p
=
↑

lnx = u ; dx
x

= du

∫ ∞

ln 2

du

up

We know this integral converges if p > 1 and diverges if p ≤ 1. Therefore
∑∞

n=2
1

n(lnn)p converges
if p > 1 and diverges if p ≤ 1.
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59: (In continuation of #53c:) Use the result from Hwk #52 (requoted in #55),

together with an appropriate comparison, to decide whether the series
∑∞

n=0
4n n!2

(2n)!
converges or diverges.

Solution: We use the inequality

C1

√
n
(n

e

)n
≤ n! ≤ C2

√
n
(n

e

)n

to find bn and cn bounding an = 4nn!2

(2n)! from both sides. The bn and cn will be in simpler terms

(no factorials), so we will be able to calculate more precisely ‘how big or small’ the an actually
are. Namely

=: bn
︷ ︸︸ ︷

4n(C1

√
n)2
(n

e

)2n 1

C2

√
2n

( e

2n

)2n
≤

= an
︷ ︸︸ ︷

4nn!2

(2n)!
≤

=: cn
︷ ︸︸ ︷

4n(C2

√
n)2
(n

e

)2n 1

C1

√
2n

( e

2n

)2n

(Note that, to get a cn bigger than an, we had to use the bigger term with C2 for the factorials
in the numerator, but the smaller term with C1 for the factorial in the denominator.)

Cancelling the n2n, the e2n and 4n/22n, we have

bn =
C2
1√

2C2

√
n and cn =

C2
2√

2C1

√
n

It transpires now that it is the bn that is useful. Since bn does not have limit 0 (actually bn →∞),
we know that

∑
bn diverges. Therefore

∑
an diverges as well since an ≥ bn.

60: We have seen how the ratio test can be used to show that 1− x2

2! +
x4

4! − x6

6! +− . . . =
∑∞

n=0(−1)n x2n

(2n)! converges absolutely for every x (cf. #53a), and we have seen that
the value of this series cannot be anything else but cos x because partial sums are
alternatingly above and below cos x (cf. #26).

(a) Explain why Leibniz’ alternating series test applies to this series for x = 1, but
does not apply to it for x = 2.
(b) For which x exactly does the alternating series test apply to the cosine series?

Solution: (a) We confirm the three properties needed for the Leibniz test to apply: an =
1/(2n)! goes to 0 as n → ∞, the signs are alternating between + and −, and an is decreasing.
In contrast, for an = 2(2n)/(2n)!, the property ‘decreasing’ fails, namely a0 = 1 < 22/2! = a1.

Note however, that we can apply the Leibniz test to a ‘tail’ of the series rather than the entire
series: an+1 ≤ an means x2n+2/(2n+2)! ≤ x2n/(2n)!, or equivalently x2 ≤ (2n+2)(2n+1). This
is fulfilled, when n is large (how large depends on x; for x = 2, we can take n ≥ 1; for x = 10,
we could certainly handle n ≥ 5). So since the full series converges if some tail converges, we
can apply Leibniz’ test with this minor modification.

(b) We need x2 ≤ (2n + 2)(2n + 1) for all n, beginning at n = 0. The narrowest constraint is
given by n = 0. So we need x2 ≤ 2, or |x| ≤

√
2.

Comment: A nice feature of the alternating series test is that it helps us control the error when
we use the series for practical calculation. The exact value of the series is always between two
successive partial sums. For the sine and cosine series, we have this property always (because of the
way how we found the series by successively integrating inequalities), and we do not need to rely on
the alternating series test to get this property.
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61: Based on the knowledge that ex =
∑∞

n=0
xn

n! , write a series for e−x and then con-
clude that the series in #53a converges to cosh x. Hint: Write out the sums with the
‘. . . ’ notation rather than manipulating expressions involving

∑∞
n=0, as you may lack

the experience to do the manipulation of
∑∞

n=0 expressions correctly/expediently.

Solution: We start with

ex = 1 + x+
x2

2!
+

x3

3!
+

x4

4!
+

x5

5!
+

x6

6!
+

x7

7!
+ . . .

Replacing x with −x, we get also

e−x = 1− x+
x2

2!
− x3

3!
+

x4

4!
− x5

5!
+

x6

6!
− x7

7!
+− . . .

Adding the two series term by term and dividing by 2, we get

ex + e−x

2
= 1 +

x2

2!
+

x4

4!
+

x6

6!
+ . . .

The left hand side is cosh x.

Note: The reason why it is a bit more difficult to use the sum notation is that when adding
ex
∑∞

n=0
xn

n! and e−x
∑∞

n=0(−1)n xn

n! and dividing by 2, we get ex+e−x

2 =
∑∞

n=0
1+(−1)n

2
xn

n! , and all
the odd n give us explicit 0 terms, which are of course skipped in the final version, and the remaining
nonzero terms get renumbered. So the n in the exponential series is not the n in the cosh series;
it takes a bit of practice to see and do this renumbering correctly in the

∑

n notation, whereas the
same renumbering is quite obvious when the sums are written out.

62: (a) What is the radius of convergence of the power series
∑∞

n=0(−1)n x2n

4n n!2
?

(b) The series defines a function J(x) :=
∑∞

n=0(−1)n x2n

4n n!2
. Since you won’t be able

to find a formula for the value of the series, you know practically nothing about this
function. Calculate J(1) with to 3 decimals accuracy. How many terms did you
need? How many terms would you need to calculate J(2) with 3 decimals accuracy?
Calculate J(0), J ′(0), J ′′(0), J ′′′(0) and J (4)(0) exactly.

Solution: (a) Using the ratio test, with an = (−1)nx2n/(4nn!2), we have

|an+1/an| =
x2n+2 4n n!2

x2n4n+1(n+ 1)!2
=

x2

4(n + 1)2
.

So limn→∞|an+1/an| = 0 for every x; i.e., the radius of convergence is ∞.

(b) For x = 1, the alternating series test applies to the full series, and this is convenient, because
the exact value is between two successive partial sums. Taking three/four terms (n = 0, 1, 2, (3)),
we get 1 − 1

4 + 1
64 − 1

2304 < J(1) < 1 − 1
4 + 1

64 . In decimals, 0.765191 < J(1) < 0.765625. So
J(1) = 0.765 . . . from four terms. (We need to consider a 5th term, n = 4, to see that a rounding
to 3 decimals will maintain, rather than round up, the 3rd digit 5.) For x = 2 we need 6 terms
(n = 0 to n = 5) to get 3 digits, since the terms in the sum are (rounded to 6 decimals)

1− 1 + 0.25 − 0.027778 + 0.001736 − 0.000069 . . .
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Now the calculation of J and all its derivatives at 0 is a finite calculation in each case:

J(x) = 1− x2

4
+

x4

64
− x6

2306
+− . . . Therefore J(0) = 1

J ′(x) = −2x

4
+

4x3

64
− 6x5

2306
+− . . . Therefore J ′(0) = 0

J ′′(x) = −2

4
+

12x2

64
− 30x4

2306
+− . . . Therefore J ′′(0) = −1

2

J ′′′(x) =
24x

64
− 120x3

2306
+− . . . Therefore J ′′′(0) = 0

J (4)(x) =
24

64
− 360x2

2306
+− . . . Therefore J (4)(0) = 3

8

63: Using the geometric series 1
1−t = 1+t+t2+t3+. . . =

∑∞
n=0 t

n and the substitution

t = −x2 to find a power series representation for 1
1+x2 . Integrate it to obtain a power

series representation of arctan x. What is the radius of convergence of the obtained
series? (In each step, write the power series both in a ‘. . . ’ form giving enough terms
to see the general pattern and using the

∑
notation.)

Substitute x = 1 into the arctan series (believing me that doing so is permissible).
Obtain a beautiful but useless series representing π. How many terms would you
need to calculate in order to obtain π up to an accuracy of 10−4 by this series?

Calculate arctan 1
5 to 5 decimals using this series. (Of course in doing so you pretend

your pocket calculator does not know arctan.) How many terms do you need to do
this?

Also calculate arctan 1
239 to 5 decimals. How many terms do you have to use for

this purpose? [We’ll later see why, of all crazy numbers, I would specifically care for
1/239.]

Solution: We first have the series, for |x| < 1:

1

1 + x2
= 1− x2 + x4 − x6 + x8 −+ . . . =

∞∑

n=0

(−1)nx2n

Integrating from x = 0 to x = y, we get

arctan y = y − y3

3
+

y5

5
− y7

7
+

y9

9
−+ . . . =

∞∑

n=0

(−1)n y2n+1

2n + 1

which is again (initially) true for |y| < 1. As it transpires, by the alternating series test, the new
series is also convergent for y = ±1. But the series is still divergent when |y| > 1. The radius of
convergence is again 1.

Of course we can now change the variable back to x; we had just temporarily switched it to a
avoid a name conflict between the variable of integration and the upperlimit of integration.

By plugging in x = 1 (and then multiplying by 4) we get

π = 4arctan 1 = 4

(

1− 1

3
+

1

5
− 1

7
+

1

9
−+ . . .

)

=
∞∑

n=0

(−1)n 4

2n+ 1
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The series is practically useless, because we’d need some 20000 terms until the denominator
2n + 1 becomes about 40000, i.e., the terms about 104.

Calculating up to exponent 2n+1 = 5 (three terms), we get arctan 1
5 = 1

5− 1
3(

1
5 )

3+ 1
5(

1
5 )

5−+ . . . ≈
0.200000 − 0.002667 + 0.000064 = 0.197397, where the error is no bigger than the 1st skipped
term (which is less than 1/25th of the last calculated term), so the five underlined decimals are
actually valid.

To calculate arctan 1/239, note that the 2nd term (2n + 1 = 3) is already smaller than 1/(3 ·
2003) = 1/(24 · 106) < 10−7. So only the first term suffices to give us arctan 1

239 with 6 decimals
accuracy. arctan 1

239 = 0.004184.

Background: Diligent use of trig identities allows to show that arctan 1 = 4arctan 1
5 −

arctan 1
239 . So, with the few simple calculations done here, we have found π

4 ≈ 0.78538 (maybe
the last digit is not reliable any more), and conclusively getting π with 4 to 5 digits accuracy. (I
could have been a bit more detailed by giving precise error margins rather than merely counting
how many digits are reliable.) All calculations involved, including the long divisions, could have
been done by hand on one page.

64: Write down the power series representing ln(1 + x) and − ln(1− x) respectively
(obtained by integrating a geometric series.) What is the radius of convergence?

Obtain a power series for ln 1+x
1−x from the preceding two. Which is the radius of

convergence for each of these series?

Use the series for ln(1 + x) and the one for ln 1+x
1−x , each with a specific choice of x,

to obtain a series with value ln 2. [You need to take my word for it that the choice
of x in the first series is actually permissible.]

One of the two series is almost useless for practical calculation of ln 2, because it
would take way too many terms for decent precision. In the other one, roughly how
many terms do you estimate you’d have to calculate to get 5 digits precision for ln 2 ?

Solution: From
1

1− t
= 1 + t+ t2 + t3 + t4 + t5 + . . . =

∞∑

n=0

tn

we obtain by integration
∫ x
0 . . . dt that

− ln(1− x) = x+
x2

2
+

x3

3
+

x4

4
+

x5

5
+

x6

6
+ . . . =

∞∑

n=1

xn

n

where the series converges guaranteed for |x| < 1; it transpires by using the alternating series
test that the series also converges for x = −1 (but not for x = 1). Replacing x with −x, and
multiplying by −1, also obtains

ln(1 + x) = x− x2

2
+

x3

3
− x4

4
+

x5

5
− x6

6
+− . . . =

∞∑

n=1

(−1)n+1x
n

n

Adding the two series yields

ln
1 + x

1− x
= 2x+

2x3

3
+

2x5

5
+ . . . = 2

∞∑

n=0

x2n+1

2n+ 1
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Plugging x = 1 (permissible by Abel’s limit theorem mentioned in class) into the series for
ln(1 + x), we obtain

ln 2 = 1− 1

2
+

1

3
− 1

4
+

1

5
−+ . . . =

∞∑

n=1

(−1)n−1 1

n

(beautiful but useless, just like the series for π
4 in #63). To get ln 2 from the series for ln 1+x

1−x ,

we set x = 1
3 .

Let’s see: (13 )
what power? is in/below the ballpark of 10−5? With 32 a bit short of 10, we estimate

that 310 is a bit short of 105, so 1/311 should be below 10−5 already. 2n + 1 = 11 when n = 5,
so we expect six terms n = 0, 1, 2, 3, 4, 5 to be needed for the desired precision. (The extra
denominator 2n+ 1 makes reality a tad friendlier than the given estimate.)

65: By multiplying the corresponding power series, obtain a power series representing
ex sinx. In doing so calculate all powers up to x7; you are not expected to see a
general formula for the nth coefficient, and so you will not be able to use the

∑

notation; just calculate the first few terms in the series as indicated.

Solution:

ex = 1 + x+
x2

2!
+

x3

3!
+

x4

4!
+

x5

5!
+

x6

6!
+

x7

7!
+ . . .

sinx = x − x3

3!
+

x5

5!
− x7

7!
+− . . .

Therefore

ex sinx = x+ x2 +

(

− 1

3!
+

1

2!

)

x3 +

(

− 1

3!
+

1

3!

)

x4 +

(
1

5!
− 1

2! 3!
+

1

4!

)

x5 +

+

(
1

5!
− 1

3! 3!
+

1

5!

)

x6 +

(

− 1

7!
+

1

2! 5!
− 1

4! 3!
+

1

6!

)

x7 + . . .

= x+ x2 +
1

3
x3 + 0x4 − 1

30
x5 − 1

90
x6 − 1

630
x7 + . . .

Note: It is possible to get a formula for the nth coefficient, but I wouldn’t expect you to have
seen this at this time. The reason is that ex sinx = 1

2i (e
(1+i)x − e(1−i)x). So the coefficient of xn

is ((1+i)n−(1−i)n)/(2i)
n! .

Using that 1± i =
√
2e±iπ/4, we can write the nth coefficient as 2n/2 sin(nπ/4)

n! .

66: Write down power series for 1 + ln(1 + 2x) and 1 + ln(1 + x) up to the x4 term.

By long division, obtain a power series for
1 + ln(1 + 2x)

1 + ln(1 + x)
, also up to the 4th term.

Solution:

1 + ln(1 + 2x) = 1 + 2x− (2x)2

2
+

(2x)3

3
− (2x)4

4
+− . . .

1 + ln(1 + x) = 1 + x − x2

2
+

x3

3
− x4

4
+− . . .
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Now for the long division:

1 + x− 5

2
x2 +

16

3
x3 − 32

3
x4 . . .

1 + x− x2

2
+

x3

3
− x4

4
. . .

)

1 + 2x− 2x2 +
8

3
x3 − 4x4 . . .

1 + x − x2

2
+

x3

3
− x4

4
. . .

x− 3

2
x2 +

7

3
x3 − 15

4
x4 . . .

x + x2 − x3

2
+

x4

3
. . .

−5

2
x2 +

17

6
x3 − 49

12
x4 . . .

−5

2
x2 − 5

2
x3 +

5

4
x4 . . .

16

3
x3 − 16

3
x4 . . .

16

3
x3 +

16

3
x4 . . .

−32

3
x4 . . .

67: It is possible to obtain the well-known formula ex ey = ex+y directly by multi-
plying the power series, without using any prior knowledge about the exponential
function. By multiplying the power series 1 + x+ x2

2! +
x3

3! +
x4

4! + . . . with the series

1+ y+ y2

2! +
y3

3! +
y4

4! + . . . and applying the binomial formula, verify that the product

is indeed 1 + (x+ y) + (x+y)2

2! + (x+y)3

3! + (x+y)4

4! + . . ., at least up to power 4.

Solution:

(

1 + x+
x2

2!
+

x3

3!
+

x4

4!
+ . . .

)(

1 + y +
y2

2!
+

y3

3!
+

y4

4!
+ . . .

)

=

= 1 + (x+ y) +
(x2

2!
+ xy +

y2

2!

)

+
(x3

3!
+

x2

2!
y + x

y2

2!
+

y3

3!

)

+
(x4

4!
+

x3

3!
y +

x2

2!

y2

2!
+ x

y3

3!
+

y4

4!

)

+ . . .

= 1 + (x+ y) +
x2 + 2xy + y2

2!
+

x3 + 3x2y + 3xy2 + y3

3!

+
x4 + 4x3y + 6x2y2 + 4xy3 + y4

4!
+ . . .

= 1 + (x+ y) +
(x+ y)2

2!
+

(x+ y)3

3!
+

(x+ y)4

4!
+ . . .
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Note: The general nth power term is

n∑

k=0

xn−k

(n− k)!

yk

k!
=

1

n!

n∑

k=0

n!

k! (n− k)!
xn−kyk

If you know the general binomial theorem in the form (x+ y)n =

n∑

k=0

n!

k!(n − k)!
xkyn−k (but you

weren’t expected to know it), you see that the analogous calculation applies for all terms, not
just up to the 4th power.

68: Recalling the power series of sinx, and of cos y, plug the series of sinx for y into
the series for cos y, calculating terms up to order x6. This way you will obtain the
beginning of the power series of cos(sinx).

Solution:

cos y = 1− y2

2!
+

y4

4!
− y6

6!
+ . . .

y = sinx = x− x3

3!
+

x5

5!
−+ . . .

So we conclude

cos(sinx) = 1− 1

2!

(

x− x3

3!
+

x5

5!
. . .

)2

+
1

4!

(

x− x3

3!
+

x5

5!
. . .

)4

− 1

6!

(

x− x3

3!
+

x5

5!
. . .

)6

+ . . .

Let’s look at these term before calculating: The power series to the 4th power, once expanded,
will start with x4, and the x5

5! term will not even be needed any more, because the lowest order

it contributes to will be (some number times) x3 x5

5! , but we only calculate up to order x6. The
power series to the 6th power starts with x6, and that’s already all the terms we maintain.

So we calculate

(

x− x3

3!
+

x5

5!
. . .

)2

= x2 − 2
x4

3!
+

(
2

5!
+

1

3!2

)

x6 + . . . = x2 − x4

3
+

2

45
x6 . . .

(

x− x3

3!
+

x5

5!
. . .

)4

=

(

x2 − x4

3
+

2

45
x6 . . .

)2

= x4 − 2

3
x6 + . . .

(

x− x3

3!
+

x5

5!
. . .

)6

= x6 + . . .

Therefore

cos(sinx) = 1− 1

2

(

x2 − x4

3
+

2

45
x6 . . .

)

+
1

24

(

x4 − 2

3
x6 + . . .

)

− 1

720
x6 + . . .

= 1− 1

2
x2 +

5

24
x4 − 37

720
x6 . . .
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69: Calculating the first five derivatives of tan x and using Taylor’s formula, find the
first 3 nonvanishing terms (i.e., up to order x5) for the Taylor series of tanx, and
compare it with the series obtained in class by long division. Hint: It’s probably more
convenient for successive derivatives if you write the derivative of tanx as 1+ tan2 x
rather than 1/ cos2 x.

Solution:

d
dx tanx = 1 + tan2 x

d2

dx2 tanx = 2 tan x(1 + tan2 x) = 2 tan x+ 2 tan3 x

d3

dx3 tanx = (2 + 6 tan2 x)(1 + tan2 x) = 2 + 8 tan2 x+ 6 tan4 x

d4

dx4 tanx = (16 tan x+ 24 tan3 x)(1 + tan2 x) = 16 tan x+ 40 tan3 x+ 24 tan5 x

d5

dx5 tanx = (16 + 120 tan2 x+ 120 tan4 x)(1 + tan2 x) = 16 + 136 tan2 x+ 240 tan4 x+ 120 tan6 x

Plugging in x = 0, we find:
tan x |x=0= 0

d
dx tan x |x=0= 1

d2

dx2 tanx |x=0= 0

d3

dx3 tanx |x=0= 2

d4

dx4 tanx |x=0= 0

d5

dx5 tanx |x=0= 16

The Taylor series for tanx is therefore

0 + 1 · x
1!

+ 0 · x
2

2!
+ 2 · x

3

3!
+ 0 · x

4

4!
+ 16 · x

5

5!
+ . . . = x+

x3

3
+

2x5

15
+ . . .

Without a general formula for the nth term we find it practically impossible to prove that the
series converges (and for which x), let alone to infer that its value is indeed tan x.

70: The nice features of term-by-term differentiation being allowed for power series
do not carry over to other series. For instance f(x) :=

∑∞
n=1

cosnx
n2 is a useful series

that is not a power series.

(a) Show by a direct comparison test, that this series converges absolutely for every
real x.

(b) Attempt to take a second derivative via term-by-term differentiation (twice).
What series do you get as a result? Does it converge for any x ? (A somewhat
heuristic answer is acceptable here, even if it is not logically watertight.)

Solution: (a) Since | cos nx
n2 | ≤ 1

n2 and
∑ 1

n2 converges (p-series with p > 1), we conclude that
∑ cos nx

n2 also converges.

(b) If we take two derivatives of this series term by term, we obtain formally
∑∞

n=1(− cosnx).
For typical x, we expect cosnx not to converge at all as n → ∞ (because it oscillates between
−1 and 1). In particular, cosnx does not converge to 0, as would be required for the series to
converge.

58



For some specific x (say, x = 0), the sequence cosnx does converge (namely to 1), but again
this implies divergence of the series.

So it looks like the two term-by-term differentiations have destroyed all convergence of the series,
which is what was promised not to happen for power series. Of course the series in this problem
is not a power series.

Note: Here is a logically rigorous argument that indeed there is no x for which cosnx→ 0 as
n→∞. (You were not expected to come up with this on your own.)

If there were indeed an x for which limn→∞ cosnx = 0, then we would also have
limn→∞ cos(n+ 1)x = 0 (since, when n→∞, then n+ 1 also goes to ∞).

All lim will mean limn→∞ in the following.

From lim(cosnx cos x− sinnx sinx) = 0 and lim cosnx = 0, we conclude lim sinnx sinx = 0. So
either sinx = 0, or else lim sinnx = 0.

But both possibilities run into a contradiction: If lim sinnx = 0 (and as assumed lim cosnx = 0
as well) then lim(sin2 nx+cos2 nx) = 02+02 = 0, which cannot be true since sin2 nx+cos2 nx = 1.
However, if sinx = 0, then x is a multiple of π, and so nx is a multiple of π as well, and then
cosnx is either +1 or −1. Again lim cosnx = 0 is an impossibility.

Note: You have no tools at this level to guess the value f(x) of this sum. Senior level

mathematics would tell you that actually f(x) = π2

6 − π
2 |x| + 1

4x
2 for |x| ≤ π. In particular f

is not differentiable at x = 0 because of the absolute value term. However, this f is arbitrarily
often differentiable for all other x between −π and π; but its derivatives cannot be calculated by
differentiating the series term-by-term as if it were a finite sum. — How nice it is that for power
series we do not need to concern ourselves with such troublesome possibilities (except possibly
on the boundary of the interval / disc of convergence)!

71: Here, you’ll find the value of
∑∞

n=0
n2

2n . It is done by first aiming to find the

value of
∑∞

n=0 n
2xn and then setting x = 1

2 . Here is how:
(a) Write down the value of f(x) :=

∑∞
n=0 x

n.
(b) Calculate xf ′(x) both as formula and as series.
(c) Calculate x(xf ′(x))′, both as formula and series.

(d) Conclude the value of
∑∞

n=0
n2

2n .

Solution: The geometric series is well-known:

(a)

∞∑

n=0

xn = 1 + x+ x2 + x3 + x4 + x5 + . . . =
1

1− x
(for |x| < 1)

Differentiating and multiplying with x yields

(b)

∞∑

n=0

nxn = x+ 2x2 + 3x3 + 4x4 + . . . = x
d

dx

1

1− x
=

x

(1− x)2

Differentiating and multiplying with x again yields

(c)

∞∑

n=0

n2xn = x+ 4x2 + 9x3 + . . . = x
d

dx

x

(1− x)2
= x

(1− x)2 − x 2(1 − x)(−1)
(1− x)4

=
x+ x2

(1− x)3

Both (b) and (c) are valid for |x| < 1, because the radius of convergence is inherited from (a)
under differentiation.
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(d) With x = 1
2 , we obtain

∞∑

n=0

n2

2n
=

1
2 +

1
4

1
8

= 6

72: Power series are often superior to l’Hopital, in particular when the going gets

tough: Here we calculate lim
x→0

cos(sin x)− cosh2 x+ 3
2x

2

ln(1 + x2)− tan2 x
:

(a) Construct a power series centered at 0 for the numerator, with terms up to order
x6 calculated.
(b) Do the same for the denominator.
(c) Factor out and cancel leading powers of x, then start a long division of power
series, of which only the first term is needed. – Conclude what is the limit in question.
(d) Looking at the results of (a),(b), predict how many invocations of l’Hopital would
have been needed, had you gone this route.

Solution:

(a) We re-use work from #68 to get

cos(sinx) = 1− 1

2
x2 +

5

24
x4 − 37

720
x6 + . . .

Also

cosh2 x =

(

1 +
1

2
x2 +

1

24
x4 +

1

720
x6 + . . .

) (

1 +
1

2
x2 +

1

24
x4 +

1

720
x6 + . . .

)

= 1 + x2 +
( 1

24
+

1

4
+

1

24

)

x4 +
( 1

720
+

1

48
+

1

48
=

1

720

)

x6 + . . .

= 1 + x2 +
1

3
x4 +

2

45
x6 + . . .

Therefore the numerator is

cos(sinx)− cosh2 x+
3

2
x2 =

( 5

24
− 1

3

)

x4 +
(

− 37

720
− 2

45

)

x6 + . . . = −1

8
x4 − 23

240
x6 + . . .

(b) Similarly for the denominator, we get

ln(1+x2)−tan2 x = x2−1

2
x4+

1

3
x6+. . .−

(

x+
1

3
x3+

2

15
x5+. . .

)2
=
(

−1

2
−2

3

)

x4+
(1

3
− 4

15
−1

9

)

x6+. . .

(c) So the whole ratio is

cos(sinx)− cosh2 x+ 3
2x

2

ln(1 + x2)− tan2 x
=

x4(−1
8 − 23

240x
2 + . . .)

x4(−7
6 − 2

45x
2 + . . .)

=
3

28
+O(x2)

[We could have calculated the coefficient of the x2 term, but don’t care any more.] The limit in
question is 3

28 .

(d) Given that l’Hopital requires differentiating numerator and denominator, and that we would
repeat the use of l’Hopital until either the numerator or the denominator ceases to be 0, we infer
that we would have to use l’Hopital 4 times altogether if we were to calculate the limit that way.
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73: In the ellipse x2

a2
+ y2

b2
= 1 (where we assume b < a), a is called the major semiaxis

and b is called the minor semiaxis. The quantity ε between 0 and 1 is defined by
b2 = a2(1− ε2) and is called excentricity of the ellipse.
(a) Referring back as needed, show that the perimeter of the ellipse with major

semiaxis a and excentricity ε can be written as L(a, ε) = 4a
∫ π/2
0

√

1− ε2 sin2 u du.

(b) Show that
∫ π/2
0 sin2k u du = 1

2π
1·3·5·...
2·4·6·... where there are k factors in the numerator

and k factors in the denominator. Conclude that
∫ π/2
0 sin2k u du = π (2k)!

22k+1k!2
.

(c) Use the Taylor expansion for
√
1− t (centered at t = 0) to write the integrand

as a series in powers of ε sinu (but do not replace sinu by its Taylor series. Obtain
L(a, ε) as a power series in ε (whose coefficients still involve

∫
. . . du). Using (b),

write L(a, ε) as 2πa times a power series in powers of ε.

Solution:

(a) In Hwk #44, we saw that the arclength of the ellipse is 2
∫ π/2
−π/2

√

a2 cos2 u+ b2 sin2 u du. By

symmetry we can integrate from 0 to π/2 instead, and double the integral. This makes

L(a, ε) = 4

∫ π/2

0

√

a2 cos2 u+ a2(1− ε2) sin2 u du = 4a

∫ π/2

0

√

1− ε2 sin2 u du

(b) For any n, the recursion formula
∫

sinn u du = − 1

n
cosu sinn−1 u+

n− 1

n

∫

sinn−2 u du (∗)

applies. Indeed, by integration by parts we get
∫

sinn u du =

∫

sinu sinn−1 u du = − cosu sinn−1 u+ (n− 1)

∫

sinn−2 u cos2 u du

↑ ↓ ‖
− cos u (n− 1) sinn−2 u cosu 1− sin2 u

= − cos u sinn−1 u+ (n− 1)

∫

sinn−2 u du− (n − 1)

∫

sinn u du

Solving for the integral on the left yields (∗) immediately. Specifically, with the limits of inte-
gration 0 and π/2, the nonintegral term vanishes and we get (for n ≥ 1) from (∗):

∫ π/2

0
sinn u du =

n− 1

n

∫ π/2

0
sinn−2 u du

For n = 2k even and at least 2, we therefore calculate

∫ π/2

0
sin2k u du =

2k − 1

2k

∫ π/2

0
sin2k−2 u du =

2k − 1

2k

2k − 3

2k − 2

∫ π/2

0
sin2k−4 u du = . . . =

=
2k − 1

2k

2k − 3

2k − 2
. . .

1

2

∫ π/2

0
sin0 u du =

π

2

(2k − 1)(2k − 3) . . . 1

(2k)(2k − 2) . . . 2

which is the formula claimed first in part (b). It’s easier to ‘fill in the blanks’ in the numerator,
which are exactly the terms in the denominator: So we get

∫ π/2

0
sin2k u du =

π

2

(2k)(2k − 1)(2k − 2)(2k − 3) . . . 1

[(2k)(2k − 2) . . . 2]2
=
↑

pull out factor 2 from each term in the denominator

π

2

(2k)!

[2kk!]2
=

π (2k)!

22k+1 k!2
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(c) We have seen the Taylor expansion

(1 + t)1/2 = 1 +
1

2
t+

1

2

(

−1

2

) t2

2!
+

1

2

(

−1

2

)(

−3

2

) t3

3!
+

1

2

(

−1

2

)(

−3

2

)(

−5

2

)t4

4!
+ . . .

for |t| < 1. With t = −ε2 sin2 u, we get

(1−ε2 sin2 u)1/2 = 1−1

2
ε2 sin2 u−1

2

(1

2

)ε4 sin4 u

2!
−1

2

(1

2

)(3

2

)ε6 sin6 u

3!
−1

2

(1

2

)(3

2

)(5

2

)ε8 sin8 u

4!
−. . .

The general term in this series is

−(2k − 3) . . . 1

2k k!
ε2k sin2k u = − (2k − 2)!

2k−1(k − 1)! 2kk!
ε2k sin2k u

where, on the left, the product in the numerator contains a countdown only involving odd
numbers. (At k = 1, the ‘empty countdown’ has product 1 by the usual definition.) The second
version is obtained by filling in the gaps as before.

Integrating term by term, we get
∫ π/2

0

√

1− ε2 sin2 u du =
π

2
−

∞∑

k=1

(2k − 2)!

22k−1(k − 1)!k!
ε2k
∫ π/2

0
sin2k u du

Using the integrals found in (b) and multiplying with 4a again, we get

L(a, π) = 2πa

(

1−
∞∑

k=1

(2k)!(2k − 2)!

24k−1(k − 1)!k!3
ε2k

)

74: In the sample solution to #63 I claimed that arctan 1 = 4arctan 1
5 − arctan 1

239 .
Let’s understand why this is the case: Admittedly a trig hwk, not a series hwk.

(a) Looking up the addition theorem for sine and cosine, obtain an addition theorem
expressing tan(u+v) in terms of tanu and tan v. With u = arctan a and v = arctan b,
express arctan a+ arctan b as arctan f(a, b) for some appropriate expression f(a, b).
(b) Use part (a), to succesively find the ‘?’ in 2 arctan 1

5 = arctan?, 3 arctan 1
5 =

arctan?, 4 arctan 1
5 = arctan?. Then find y so that 4 arctan 1

5 + arctan y = arctan 1.

Solution: Dividing sin(u+ v) = sinu cos v+cosu sin v by cos(u+ v) = cos u cos v− sinu sin v,
we obtain

tan(u+ v) =
sinu cos v + cos u sin v

cos u cos v − sinu sin v
=

tanu+ tan v

1− tanu tan v

Letting u = arctan a and v = arctan b and taking the arctan on both sides, we get

arctan a+ arctan b = arctan
a+ b

1− ab
.

With a = b = 1
5 we get 2 arctan 1

5 = arctan 2/5
24/25 = arctan 5

12 .

With a = 1
5 and b = 5

12 , we get 3 arctan 1
5 = arctan 1/5+5/12

11/12 = arctan 3755.

With a = b = 5
12 (or else a = 1

5 and b = 37
55 ) we get 4 arctan 1

5 = arctan 5/12+5/12
1−25/144 = 120

119 .

This is pretty close to arctan 1 = π
4 , so we are now looking for the proper (small, negative)

correction y such that arctan 120
119 + arctan y = arctan 1. This requires

120/119 + y

1− 120y/119
= 1

and we can easily solve this to find y = − 1
239 .
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75: Here we calculate S := 1+ 1
3 − 1

2 +
1
5 +

1
7 − 1

4 +
1
9 +

1
11 − 1

6 +
1
13 +

1
15 − 1

8 ++− . . .
(alternatingly two positive terms and one negative term taken from the alternating
harmonic series). In the introduction I had mentioned that S is 3

2 ln 2, as opposed
to the alternating harmonic series with terms in their original order, whose value we
know to be ln 2.

(a) We strive to evaluate the power series

1+
1

3
x− 1

2
x2+

1

5
x3+

1

7
x4− 1

4
x5+

1

9
x6+

1

11
x7− 1

6
x8+

1

13
x9+

1

15
x10− 1

8
x11++− . . .

Show that this series can be written as the sum of three series

∞∑

n=0

x3n

4n+ 1
+

∞∑

n=0

x3n+1

4n+ 3
−

∞∑

n=0

x3n+2

2n+ 2
(∗)

(b) Evaluate
∑∞

n=0
y4n+1

4n+1 by integrating an appropriate geometric series and likewise
integrating its value (using PFD for the integration).

(c) Do the same task for
∑∞

n=0
y4n+3

4n+3 and
∑∞

n=0
y2n+2

2n+2 .

(d) Letting y = x3/4 twice and y = x3/2 once, obtain formulas for the series in (∗).
(e) Taking the limit as x → 1 in these formulas, you obtain the value of S. (To
carry out the limit, you may find it convenient to let x = t4 and then also group ln
terms together into combinations where you can use l’Hopital on “0/0” indeterminate
expressions.)

Solution:

(a) Since we always take two positive terms (with odd denominators) and one negative term
(with even denominator), terms come in groups of three, and we will combine the 1st in each
group into one series, the 2nd in each group into another series, and the third in each group into
the third series. These are the series in (∗).
Note that this grouping and rearranging is allowed for |x| < 1, but not for |x| = 1, because inside
the radius of convergence power series converge absolutely, and absolutely convergent series allow
such rearrangement, as stated (but not proved) in class. For x = 0 however, each of the series in
(∗) diverges, even though the original not-rearranged series did converge.

(b)

∞∑

n=0

y4n+1

4n+ 1
= y +

y5

5
+

y9

9
+

y13

13
+ . . . =

∫ y

0

(
1 + ȳ4 + ȳ8 + ȳ12 + . . .

)
dȳ =

∫ y

0

dȳ

1− ȳ4

A PFD helps us doing this integration:

1

1− ȳ4
=

1

(1− ȳ)(1 + ȳ)(1 + ȳ2)
=

A

1− ȳ
+

B

1 + ȳ
+

Cȳ +D

1 + ȳ2

Cover-up at 1 and −1 respectively gives A = 1
4 and B = 1

4 respectively. Study at ∞ (i.e.,
multiplying with ȳ and taking the limit ȳ →∞) gives −A+ B + C = 0, hence C = 0. Letting
ȳ = 0 yields A + B + D = 1, hence D = 1

2 . Of course complex cover-up at i could also have
been used to get C,D. We conclude

∞∑

n=0

y4n+1

4n+ 1
=

1

4

(

ln(1 + y)− ln(1− y)
)

+
1

2
arctan y .
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Similarly

(c)

∞∑

n=0

y4n+3

4n + 3
=

y3

3
+

y7

7
+

y11

11
+

y15

15
+ . . . =

∫ y

0

(
y2 + ȳ6 + ȳ10 + ȳ14 + . . .

)
dȳ =

∫ y

0

ȳ2 dȳ

1− ȳ4

The PFD is now

ȳ2

1− ȳ4
=

ȳ2

(1− ȳ)(1 + ȳ)(1 + ȳ2)
=

A

1− ȳ
+

B

1 + ȳ
+

Cȳ +D

1 + ȳ2

with A = 1
2 , B = 1

2 , C = 0, D = −1
2 . So we conclude

∞∑

n=0

y4n+3

4n+ 3
=

1

4

(

ln(1 + y)− ln(1− y)
)

− 1

2
arctan y .

Also

(c)
∞∑

n=0

y2n+2

2n+ 2
=

y2

2
+

y4

4
+

y6

6
+ . . . =

∫ y

0

(
ȳ + ȳ3 + ȳ5 + . . .

)
dȳ =

∫ y

0

ȳ dȳ

1− ȳ2
= −1

2
ln(1− y2)

(d) We have the desired coefficients already, but not the desired exponents. So, letting y = x3/4

in the first two series and multiplying with x−3/4 or x−5/4 respectively, we conclude

∞∑

n=0

x3n

4n+ 1
= x−3/4

∞∑

n=0

x3n+3/4

4n+ 1
=

1

4
x−3/4

(

ln(1 + x3/4)− ln(1− x3/4) + 2 arctan x3/4
)

∞∑

n=0

x3n+1

4n+ 3
= x−5/4

∞∑

n=0

x3n+9/4

4n+ 3
=

1

4
x−5/4

(

ln(1 + x3/4)− ln(1− x3/4)− 2 arctan x3/4
)

In the last series, we let y = x3/2 and multiply with x−1 and get

∞∑

n=0

x3n+2

2n+ 2
= x−1

∞∑

n=0

x3n+3

2n+ 2
= −1

2
x−1 ln(1− x3)

Combining, we obtain a formula for the power series in (a): It is

S(x) = 1 +
1

3
x− 1

2
x2 +

1

5
x3 +

1

7
x4 − 1

4
x5 +

1

9
x6 +

1

11
x7 − 1

6
x8 +

1

13
x9 +

1

15
x10 − 1

8
x11 ++− . . .

=

∞∑

n=0

x3n

4n+ 1
+

∞∑

n=0

x3n+1

4n+ 3
−

∞∑

n=0

x3n+2

2n + 2

=
1

4
x−3/4

(

ln(1 + x3/4)− ln(1− x3/4) + 2 arctan x3/4
)

+

+
1

4
x−5/4

(

ln(1 + x3/4)− ln(1− x3/4)− 2 arctan x3/4
)

+
1

2
x−1 ln(1− x3)

Each of these three terms becomes infinite as x → 1−, due to the ln(1 − x?) terms contained.
However, the combination of the three has a chance to have a finite limit as x → 1, due to
cancellations. We have to calculate that limx→1− S(x). Let’s put the four ‘good’ terms of S(x)
together and call it S1(x), and the three ‘bad’ terms will be S2(x):

S1(x) =
1

4
x−3/4

(

ln(1 + x3/4) + 2 arctan x3/4
)

+
1

4
x−5/4

(

ln(1 + x3/4)− 2 arctan x3/4
)
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and limx→1− S1(x) =
1
4(ln 2 +

π
2 ) +

1
4 (ln 2− π

2 ) =
1
2 ln 2.

S2(x) = −
1

4
x−3/4 ln(1− x3/4)− 1

4
x−5/4 ln(1− x3/4) +

1

2
x−1 ln(1− x3)

Letting x = t4 just to get rid of the fractions

S2(x) = −
1

4
(t−3 + t−5) ln(1− t3) +

1

2
t−4 ln(1− t12) =

ln(1− t3)

4

(
−t−3 − t−5 + 2t−4

)
+

t−4

2
ln[(1 + t3)(1 + t6)]

The last term is again easy for the limit, and we get

lim
x→1−

S1(x) = lim
t→1−

− ln(1− t3) (1− t)2

4t5
+

1

2
ln[(1 + 1)(1 + 1)]

= −1

4
lim
t→1−

(
(1− t)2 ln(1− t) + (1− t)2 ln(1 + t+ t2)

)
+

1

2
ln 4

The remaining limit is 0 since we know that lims→0 s ln s = 0. Therefore limx→1− S(x) =
1
2 ln 2 + 0 + 1

2 ln 4 = 3
2 ln 2.

This procedure is justified by the theorem that says that if a power series does converge on the
boundary of the interval of convergence and the function represented by the power series still has a
limit at that point, then the value of the power series equals that limit. It’s not such an easy theorem
to demonstrate; I just mentioned it in class without comment.
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