
Sample Solutions to Homework

UTK – M148 – Honors Calculus II – Spring 2015

Jochen Denzler

1. Find antiderivatives of the following functions:

(a) f(x) = cos(2x+ 4) F (x) =
1

2
sin(2x+ 4) + C

(b) g(x) = 3ex + e3x + x3e G(x) = 3ex +
1

3
e3x +

1

3e+ 1
x3e+1 + C

(c) h(x) =
1

5x
for x > 0 H(x) =

1

5
lnx+C

(d) k(x) = 1/x5 K(x) = −1

4
x−4 + C

Note: I would consider it ok here if you were to omit the C (or choose one particular number for
it), simply because “Find antiderivatives for [these]” could be reasonably understood as “Find
some / at least one antiderivative for each of these”. Had I specifically demanded to find the or
all antiderivatives, then the C would be mandatory.

Note: In part (c), H(x) = 1
5 ln(5x) + C is also correct since ln(5x) = lnx+ ln 5. An absolute

value sign as in ln|x|+ C is permissible, but redundant, since I specified x > 0 beforehand.

2. Find the area below the curve y = x2, above the x-axis, between x = 0 and x = b as a
limit of a sum of rectangle areas (as done for y = ax in class). To this end, divide the interval
[0, b] into n pieces each of equal length ∆x = b

n . Do two calculations, one by evaluating the
function at the left endpoint, one at the right endpoint.

Draw a picture.

Hints: You may need the following formula (which is likely new to you, and you may just

take my word for its validity): 12 + 22 + 32 + . . . + n2 = n(n+1)(2n+1)
6 . You may also need

a similar formula ending with (n − 1)2, which you can obtain from the one I gave you by
simple algebra.

Solution:

Let me first use the hint. From

12 + 22 + 32 + . . .+ n2 =
n(n+ 1)(2n + 1)

6

(which is true for each positive integer n) we conclude, by replacing n with n− 1, that

12 + 22 + 32 + . . .+ (n− 1)2 =
(n− 1)(n − 1 + 1)(2(n − 1)n+ 1)

6
=

n(n− 1)(2n − 1)

6
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0 n b
n = nb

n 2 b
n 3 b

n

The Riemann sum with tags at the left end of each interval is

Al(n) =
b

n
02 +

b

n

( b

n

)2
+

b

n

(

2
b

n

)2
+ . . . +

b

n

(

(n− 1)
b

n

)2
=

b3

n3

(

01 + 12 + 22 + . . .+ (n− 1)2
)

Using the above summation formula, we obtain the area of the rectangles to be Al(n) =

b3 (n−1)(2n−1)
6n2 , and limn→∞Al(n) = b3 2

6 = b3/3.

0 n b
n = nb

n 2 b
n 3 b

n

The Riemann sum with tags at the right end of each interval is

Ar(n) =
b

n
12 +

b

n

( b

n

)2
+

b

n

(

2
b

n

)2
+ . . .+

b

n

(

n
b

n

)2
=

b3

n3

(

12 + 22 + . . .+ n2
)
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Using the above summation formula, we obtain the area of the rectangles to be Ar(n) =

b3 (n+1)(2n+1)
6n2 , and limn→∞Ar(n) = b3 2

6 = b3/3.

3. (a) Evaluate
∑6

j=0 j(6− j).

(b) Simplify the expression
∑n

j=1 f(j) −
∑n−1

k=2 f(k) (where you may assume that n is an
integer ≥ 3).
(c) Evaluate

∑n
j=1

1
j(j+1) for n = 1, 2, . . . , 7 respectively and conjecture a formula for general

n. Then write 1
j(j+1) as a difference of two terms, based on the conjectured formula, and use

this to prove the formula as a telescoping sum.

Solution:

(a)

6∑

j=0

j(6− j) = 0 · 6 + 1 · 5 + 2 · 4 + 3 · 3 + 4 · 2 + 5 · 1 + 6 · 0 = 35

(b)

n∑

j=1

f(j)−
n−1∑

k=2

f(k) = f(1) + f(2) + . . .+ f(n)−
(

f(2) + . . .+ f(n− 1)
)

= f(1) + f(n)

(Note that there is an f(n− 1) in the first sum, even though it’s hiding amongst the ‘. . . ’, right
before the f(n).)

(c) First the numerical evaluation:

∑1
j=1

1
j(j+1) =

1
1·2 = 1

2
∑2

j=1
1

j(j+1) =
1
1·2 +

1
2·3 = 1

2 +
1
6 = 2

3
∑3

j=1
1

j(j+1) =
1
1·2 +

1
2·3 + 1

3·4 = 2
3 +

1
12 = 3

4
∑4

j=1
1

j(j+1) =
1
1·2 +

1
2·3 + 1

3·4 + 1
4·5 = 3

4 +
1
20 = 4

5
∑5

j=1
1

j(j+1) =
1
1·2 +

1
2·3 + 1

3·4 + 1
4·5 +

1
5·6 = 4

5 +
1
30 = 5

6
∑6

j=1
1

j(j+1) =
1
1·2 +

1
2·3 + 1

3·4 + 1
4·5 +

1
5·6 +

1
6·7 = 5

6 +
1
42 = 6

7
∑7

j=1
1

j(j+1) =
1
1·2 +

1
2·3 + 1

3·4 + 1
4·5 +

1
5·6 +

1
6·7 +

1
7·8 = 6

7 +
1
56 = 7

8

So we observe a pattern and conjecture that
∑n

j=1
1

j(j+1) =
n

n+1 .

As for writing 1
j(j+1) as a difference, you could use a formula that I mentioned in class in different

context (and quite inconspicuously so), namely 1
j(j+1) = 1

j − 1
j+1 . That would be correct, but

you could find a different way by relying on the hint ‘based on the conjectured formula’, namely:

If indeed
∑n

j=1
1

j(j+1) =
n

n+1 (as we conjecture to be true for all n and have verified up to n = 7

at least), then the sameformula for n − 1 would read
∑n−1

j=1
1

j(j+1) = n−1
n−1+1 = n−1

n . These two

sums just differ by the last term, namely the 1
j(j+1) with j = n. So if the conjectured formula is

indeed true, then 1
n(n+1) =

n
n+1 − n−1

n .

But we do not need to rely on the conjectured formula to believe this last statement; rather we
can verify it by direct algebra:

n
n+1 − n−1

n = n2−(n−1)(n+1)
n(n+1) = 1

n(n+1)
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indeed. Having verified this formula, we can now work backwards to obtain the conjectured
formula with the certainty that doesn’t rely on guesswork:

n∑

j=1

1

j(j + 1)
=

n∑

j=1

( j

j + 1
−j − 1

j

)

=
(1

2
−0

1

)

+
(2

3
−1

2

)

+
(3

4
−2

3

)

+
(4

5
−3

4

)

+. . .+
( n

n+ 1
−n− 1

n

)

We see that intermediate terms cancel: the negative term in each parenthesis cancels out the
positive term in the preceding parenthesis. All that remains is −0

1 + n
n+1 . This confirms that

the conjectured formula indeed holds for all n.

Note: in future classes you will prove this kind of formula by a method called induction. The calculational

part will be more or less the same as what we did here, but the writeup will be more formal and organized.

Your calculation may look a bit different if you wrote 1
j(j+1) =

1
j − 1

j+1 . Namely you’d get:

n∑

j=1

1

j(j + 1)
=

n∑

j=1

(1

j
− 1

j + 1

)

=
(1

1
− 1

2

)

+
(1

2
− 1

3

)

+
(1

3
− 1

4

)

+
(1

4
− 1

5

)

+ . . .+
( 1

n
− 1

n+ 1

)

Adjacent terms from adjacent pairs cancel, and all that remains is 1
1 − 1

n+1 = n
n+1 .

4. Estimate
∫ 5

0
dx

1+x2 from above and below by a Riemann sum each; make the Riemann
sums consist of 10 terms (using an equidistant partition).

Solution: Since 1/(1 + x2) is decreasing on [0, 5], we get an estimate from above by using the
left endpoints as tags, whereas we get an estimate from below by using the right endpoints as
tags.

The equidistant partition of [0, 5] into 10 pieces is

0 = x0 <
1

2
= x1 < 1 = x2 <

3

2
= x3 < . . . <

9

2
= x9 < 5 = x10

So xj = j
2 and each ∆xj = 1

2 . For the left endpoints as tags, we have tj = xj−1 = j−1
2 . We

conclude
∫ 5

0

dx

1 + x2
<

10∑

j=1

1

1 + ( j−1
2 )2

× 1

2
≈ 1.61349

Similarly, for the left endpoints as tags, we have tj = xj =
j
2 . We conclude

∫ 5

0

dx

1 + x2
<

10∑

j=1

1

1 + ( j−1
2 )2

× 1

2
≈ 1.13272

Note: We will shortly see that the exact value of the integral is arctan 5 ≈ 1.37340. Clearly, for good numerical

evaluation, a better estimate than Riemann sums is desirable. The trapezoidal rule would yield the average

of the two Riemann sums above, namely ≈ 1.37310. The midpoint rule would be a separate calculation
1
2

∑10
j=1 1/(1 + ( j−0.5

2 )2) ≈ 1.37354.

4



5. We’ll get a 4-digit precise result for
∫ 3

0
dx

x2+3 here. You will like a programmable calculator
for this, but the main work is still analytic work on the paper. Here is the philosophy of this
problem: While Riemann sums are good for theoretical purposes, a practical calculation will
give more precise results by using trapezoids rather than rectangles.

(a) Calling f(x) := 1/(x2 +3), find out on which subinterval of [0, 3] we have f ′′(x) > 0 and
f ′′(x) < 0 respectively. Answer should be in the form “f ′′(x) < 0” if x <?? and f ′′(x) > 0
if x >??”.

(b) Instead of nesting a small slice of area beneath the graph of f , from xj to xj+1, between
rectangles, nest it between trapezoids: One trapezoid will have the oblique line connecting
(xj , f(xj)) and (xj+1, f(xj+1)), the other trapezoid will have the oblique line being a tangent
to the graph of f at x = 1

2 (xj + xj+1). Which trapezoid gives a lower bound for the area,
which gives an upper bound, and how does the answer depend on issues discussed previously?

(c) Write out a formula for the areas of the individual trapezoids involved in the calculation,

then sum up the appropriate areas to get an upper and a lower bound for
∫ 3

0
dx

x2+3 : choose
150 subintervals of equal length in [0, 3]. Make sure that you select the midpoint rule for
some intervals and the trapezoidal for others, as discussed in (a) to get either an upper or a
lower bound for the integral. Now you may want to use technology and get actual numerical
values.

Solution:

(a) First, f ′(x) = −2x
(x2+3)2 and f ′′(x) = −2(x2+3)2+4x(x2+3) 2x

(x2+3)2 = 6x2−6
(x2+3)3 . So we have f ′′(x) < 0 for

0 ≤ x < 1 and f ′′(x) > 0 for x > 1.

(b) When f ′′(x) < 0, the trapezoid connecting (xj , f(xj)) and (xj+1, f(xj+1)) underestimates
the Riemann integral; the trapezoid touching the graph of f at the midpoint (xj + xj+1)/2
overestimates the Riemann integral. (cf left picture)

xj xj+1 xj xj+1

On the other hand (cf. right picture), when f ′′(x) > 0, the trapezoid connecting (xj , f(xj)) and
(xj+1, f(xj+1)) overestimates the Riemann integral; the trapezoid touching the graph of f at
the midpoint (xj + xj+1)/2 underestimates the Riemann integral.

(c) Dividing up the interval into 150 pieces, each will have width 1
50 . According to part (a), in

the interval [0, 1], we get estimate
∫ 1
0

dx
x2+3

from below by the trapezoid method:

∫ 1

0

dx

x2 + 3
>

50∑

j=1

1

50

f((j − 1)/50) + f(j/50)

2
=: A1,tra ≈ 0.302296
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and from above by the midpoint method:

∫ 1

0

dx

x2 + 3
<

50∑

j=1

1

50
f
(j − 1/2

50

)

=: A1,mid ≈ 0.302302

In the interval [1, 3], we get the estimate from above by the trapezoid method

∫ 3

1

dx

x2 + 3
<

150∑

j=51

1

50

f((j − 1)/50) + f(j/50)

2
=: A2,tra ≈ 0.302303

and from below by the midpoint method:

∫ 3

1

dx

x2 + 3
>

150∑

j=51

1

50
f
(j − 1/2

50

)

=: A2,mid ≈ 0.302299

So we find

A1,tra +A2,mid ≈ 0.604594 <

∫ 3

0

dx

x2 + 3
< A1,mid +A2,tra ≈ 0.604605

Note: It transpires, using the fundamental theorem of calculus, that
∫ 1

0

dx

x2 + 3
=

[
1√
3
arctan

x√
3

]1

0

=
π

6
√
3

and
∫ 3

1

dx

x2 + 3
=

[
1√
3
arctan

x√
3

]3

1

=
π

6
√
3

as well. So it is a coincidence of this particular problem that the two parts of the integral are numerically so

close to each other.

6: Evaluate the following integrals (among the expected answers, there may be: “cannot do it
with tools available”, or, “integral may not exist since integrand isn’t piecewise continuous”):

(a)

∫

cosx dx (b)

∫
(
3x3 − 4 sin(2x)

)
dx

(c)

∫ 7

2

1

x2
dx (d)

∫ 5

1

sinx

x
dx

(e)

∫ 2

−2

1

x2
dx (f) lim

x→∞

∫ x

1

t−3/2 dt

(g)

∫ 1

0

x2 dx (h)

∫ 1

0

t2 dx

Solution:

(a)

∫

cos x dx = sinx+ C

(b)

∫
(
3x3 − 4 sin(2x)

)
dx =

3

4
x4 + 2cos(2x) + C

(c)

∫ 7

2

1

x2
dx =

[

−1

x

]7

2

= −1

7
+

1

2
=

5

14

(d)

∫ 5

1

sinx

x
dx you’re not expected to be able to do this

(e)

∫ 2

−2

1

x2
dx may not exist b/c integrand is not piecwise continuous on the interval [−2, 2]
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Note that in (e) all you can say is ‘may not exist. . . ’, i.e., raise doubt. We had discussed in class that

“when f is piecewise continuous on an interval [a, b], then
∫ b
a f(x) dx is defined”. This guarantee

does not apply for (e), because 1/x2 is not piecewise continuous on [−2, 2]. The above statement
does not rule out the possibility of other functions also having an integral, and indeed there are
examples of functions that have an integral without being piecewise continuous. FYI, the present
example is not of this kind and indeed the integral does not exist.

The next problem consists of two steps: first you are to calculate an integral, then a limit of
this integral. ∫ x

1
t−3/2 dt =

[

−2t−1/2
]x

1
= −2x−1/2 + 2

Therefore lim
x→∞

∫ x

1
t−3/2 dt = lim

x→∞
(−2x−1/2 + 2) = 2

In textbooks, you find this type of problems under a special section ‘Improper integrals’. We will
study them in more detail later. However, short of the name tag ‘improper integral’, all we are having
here is simply a combination of two known concepts.

(g)

∫ 1

0
x2 dx =

[
1

3
x3
]1

0

=
1

3

(That was too easy.) — In contrast, in the next problem, t is not the integration variable. It is
(short of any context indicating otherwise) a constant.

(h)

∫ 1

0
t2 dx =

[
t2x
]1

x=0
= t2 · 1− t2 · 0 = t2

Note that I have enhanced the notation of the right bracket to avoid ambiguity: I have written
[. . .]1x=0 instead of merely [. . .]10, because two symbolic variables are present.

7: Let

f(x) :=

{
x2 if |x| < 1
2|x| − 1 if |x| ≥ 1

Find
∫ 3

−1 f(x) dx

Solution: We need to split the integral depending on which formula applies: Between −1 and
1, we have f(x) = x2, and above 1, we have f(x) = 2|x| − 1 = 2x− 1. So

∫ 3

−1
f(x) dx =

∫ 1

−1
f(x) dx+

∫ 3

1
f(x) dx =

∫ 1

−1
x2 dx+

∫ 3

1
(2x− 1)dx =

[
1

3
x3
]1

−1

+
[
x2 − x

]3

1
=

=
1

3
−
(

−1

3

)

+ 9− 3− (1− 1) =
20

3

Note: Since in the case of piecewise continuous functions, the integral does not depend on the value
of the function in a single point, there is no need to worry about the fact that at the lower limit of
integration x = −1, a different formula applies. — In this particular example, there is no issue in
any case, since both formulas 2|x| − 1 and x2 give the same value at the ‘seam’ points x = ±1, so
I could have written “x2 for |x| ≤ 1” without changing the function.
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8: Take the same function f as before. Calculate F (x) :=
∫ x

0 f(t) dt. The answer should be
a formula that also involves if’s. Graph both f and F on the interval [−2, 2] in the same
coordinate system. (In this graphing job, a halfway decent handmade figure, like what I’d
draw on the blackboard, is preferable to a print-quality technology-generated figure.)

Solution: If |x| < 1, then the whole interval of integration between 0 and x contains only
such points t for which |t| < 1, and therefore the formula f(t) = t2 applies. (By the note in the
previous problem, the same conclusion applies for |x| ≤ 1.)

So we calculate

F (x) :=

∫ x

0
t2 dt =

[
t3

3

]x

0

=
x3

3
for |x| ≤ 1

Now assume |x| > 1. Specifically, we consider x > 1 first. Then we have to split the integral at
1, as we did in the preceding problem, and we calculate

F (x) :=

∫ x

0
f(t) dt =

∫ 1

0
t2 dt+

∫ x

1
(2|t| − 1
︸ ︷︷ ︸

=2t−1

) dt =
1

3
+
[
t2 − t

]x

1
= x2 − x+

1

3
for x > 1

Likewise, we calculate for x < −1:

F (x) :=

∫ x

0
f(t) dt =

∫ −1

0
t2 dt+

∫ x

−1
(2|t| − 1
︸ ︷︷ ︸

=−2t−1

) dt = −1

3
+
[
−t2 − t

]x

−1
= −x2−x−1

3
for x < −1

Note: You could have used
∫ x
0 = −

∫ 0
x to get the limits of integration into their natural order, but

doing so is not necessary, even though it may be preferred for the ‘feelgood effect’.

The figures are:

f

F

1

−1

1

F (x) :=







−x2 − x− 1
3 for x < −1

1
3x

3 for − 1 ≤ x ≤ 1
x2 − x+ 1

3 for x > 1
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9: Find the following derivatives without attempting to evaluate the integrals first.

(a)
d

dx

∫ x

0

sin2 t dt (b)
d

dx

∫ 50

x

(sin2 t)/t dt

(c)
d

dx

∫ 2x

x

dt

1 + t4
(d)

d

dx

∫ 2x

x

dt

t

(e)
d

dx

∫ sin x

0

sin t

t2 + 1
dt (f)

d

dx

∫ x2

0

g((t+ 1)2) dt

Solution:
d

dx

∫ x

0
sin2 t dt = sin2 x

d

dx

∫ 50

x
(sin2 t)/t dt = −sin2 x

x
∫ 2x

x

dt

1 + t4
=

2

1 + (2x)4
− 1

1 + x4
∫ 2x

x

dt

t
=

2

2x
− 1

x
= 0

d

dx

∫ sinx

0

sin t

t2 + 1
dt =

cos x sin(sinx)

sin2 x+ 1

d

dx

∫ x2

0
g((t+ 1)2) dt = 2x g((x2 + 1)2)

10: Of the following three integrals, two are prohibitively difficult, one is easy. Select the
easy one and calculate it:

(a)

∫ √
2 + sinx dx , (b)

∫

cosx
√
2 + sinx dx , (c)

∫

sinx
√
2 + sinx dx

Solution: The manageable one is (b). The substitution u = 2 + sinx (or just as well the
similar substitution v = sinx) gives

∫

cos x
√
2 + sinx dx =

∫ √
u du =

2

3
u3/2 + C =

2

3
(2 + sinx)3/2 + C

11:
∫ 2

1

e
√
x

√
x
dx =

↑
u =

√

x, du = 1

2
dx/

√

x

2

∫ √
2

1
eu du = 2(e

√
2 − e)

Note: Numerical value by calculator is 2.78994. — Plausibility check in head: 1-term Riemann sum
at midpoint is e

√
1.5/

√
1.5 ≈ e1.2/1.2 ≈∗ e(1 + 0.2)/1.2 ≈ 2.8. — (∗) I used esmall ≈ 1 + small,

approximating the graph with its tangent line near x = 0.
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12:
∫ 2

1

lnx

x
dx =

↑
u = ln x, du = dx/x

∫ ln 2

0
u du =

[
u2/2

]ln 2

0
=

1

2
(ln 2)2

∫ 4

2

1

x lnx
dx =

↑
u = ln x, du = dx/x

∫ ln 4

ln 2

du

u
= [lnu]ln 4

ln 2 = ln(ln 4)− ln(ln 2) = ln
ln 4

ln 2
=
↑

ln 4 = ln(22) = 2 ln 2

ln 2

Note: Numerical value by calculator for the first integral is 0.240227, for the second integral
0.693147.

13:

∫ 8

0

√

1 +
√
1 + x dx =

↑
u =

√

1 + x, x = u2
− 1, dx = 2u du

∫ 3

1
2u

√
1 + u du =

↑
v =

√

1 + u, du = 2v dv

∫ 2

√
2
2(v2 − 1) v 2v dv =

[
4

5
v5 − 4

3
v3
]2

√
2

=

=
128

5
− 32

3
− 16

5

√
2 +

8

3

√
2 =

224 − 8
√
2

15

Note: Plausibility check in head:
√
2 is not quite 1.5, so make 8

√
2 into approximately 11. Then

213/15 = 71/5 ≈ 14. (The precise numerical value by calculator is 14.1791.) Looking at the
integrand, it increases from

√
2 to

√
4 = 2, so the integral must be between 8

√
2 ≈ 11 and

8× 2 = 16, consistent with our calculation.

14:
∫

tanx dx =

∫
sinx

cos x
dx =

↑
u = cosx

∫ −du

u
= − lnu+ C = − ln cos x+ C

15:

∫
2dx

ex + e−x
dx =

↑
ex = u, x = ln u, dx = du/u

∫
2du

u(u+ u−1)
=

∫
2 du

u2 + 1
= 2arctan u+ C = 2arctan ex + C

16:

(a) Calculate
∫
x3e−x dx.

(b) Given any positive integer n, express
∫ N

0 xne−x dx in terms of
∫ N

0 xn−1e−x dx. Then

express limN→∞

∫ N

0 xne−x dx in terms of limN→∞

∫ N

0 xn−1e−x dx.

(c) Evaluate limN→∞

∫ N

0 x100e−x dx. Rather than writing the result of a huge integer with
over 150 digits, write it as a product of many 1- and 2-digit numbers without further evalu-
ation.

Solution: (a) We do three integrations by parts, deriving the power and integrating the
exponential:

∫

x3e−x dx = x3(−e−x) +

∫

3x2e−x dx = −x3e−x − 3x2e−x +

∫

6xe−x dx =

= −x3e−x − 3x2e−x − 6xe−x +

∫

6e−x dx = −(x3 + 3x2 + 6x+ 6)e−x + C

10



(b) A single integration by parts, just as before, gives

∫ N

0
xne−x dx =

[
−xne−x

]N

0
+ n

∫ N

0
xn−1e−x dx = −Nne−N + n

∫ N

0
xn−1e−x dx

when n > 0. Taking the limit N → ∞ kills the integrated term:

lim
N→∞

∫ N

0
xne−x dx = n lim

N→∞

∫ N

0
xn−1e−x dx

(c) Let me use the abbreviation
∫∞
0 for limN→∞

∫ N
0 . Using the result from (b) repeatedly, we

get

∫ ∞

0
x100e−x dx = 100×

∫ ∞

0
x99e−x dx = 100 × 99×

∫ ∞

0
x98e−x dx =

= 100 × 99× 98×
∫ ∞

0
x97e−x dx = . . . = 100 × 99× 98× . . .× 1×

∫ ∞

0
e−x dx =

= 100 × 99× . . .× 1 (which you may know to be abbreviated as 100! )

17:

∫

e2x cos 3x dx =
1

3
e2x sin 3x− 2

3

∫

e2x sin 3x dx =
1

3
e2x sin 3x+

2

9
e2x cos 3x− 4

9

∫

e2x cos 3x dx

↓ ↑ ↓ ↑

2e2x 1
3 sin 3x 2e2x −1

3 cos 3x

After two IBPs we are back to the original integral. We read this calculation as an equation to
be solved for the unknown integral, i.e., moving the integral to the left, we conclude

13

9

∫

e2x cos 3x dx =
1

3
e2x sin 3x+

2

9
e2x cos 3x

hence ∫

e2x cos 3x dx =
1

13
e2x(3 sin 3x+ 2cos 3x) + C

18: (assuming a > 0)

∫ 1

a
x2 (ln x)2 dx =

[
x3

3
(ln x)2

]1

a

− 2

3

∫ 1

a
x2 lnx dx = −a3

3
(ln a)2 −

[
2

9
x3 lnx

]1

a

+
2

9

∫ 1

a
x2 dx

↑ ↓ ↑ ↓
1
3x

3 2 lnx
x

1
3x

3 1
x

= −a3

3
(ln a)2 +

2

9
a3 ln a+

2

27
(1− a3)

Therefore

lim
a→0+

∫ 1

a
x2(ln x)2 dx =

2

27

11



19:

∫ 4

0
e−

√
x dx =

↑
√

x = u, dx = 2u du

∫ 2

0
2ue−u du =

↑
IBP as in #16

[
−2u e−u

]2

0
+

∫ 2

0
2e−u du =

[
−2ue−u − 2e−u

]2

0
= 2− 6e−2

20: IBP applied to 1 × arcsinx with 1 being integrated and arcsinx being differentiated; the
remaining integral can then be handled by substitution:
∫

arcsin x dx = x arcsin x−
∫

x√
1− x2

dx =
↑

1− x2 = u, x dx = −
1

2
du

x arcsinx+
1

2

∫

u−1/2 du = x arcsinx+
√

1− x2+C

21:

∫
ln(lnx) lnx

x
dx =

↑
ln x = u, du = dx

x

∫

u lnu du =
↑
IBP

u2

2
lnu−

∫
u

2
du =

u2

2
lnu−u2

4
+C =

(lnx)2 ln(lnx)

2
−(lnx)2

4
+C

22:

∫ 4

1

√
x lnx dx =

↑
√

x = u, x = u2, dx = 2u du

∫ 2

1
2u2 ln(u2) du = 4

∫ 2

1
u2 lnu du =

↑
IBP

[

4
u3

3
lnu

]2

1

− 4

∫ 2

1

u3

3

1

u
du =

=
32

3
ln 2− 4

[
u3

9

]2

1

=
32

3
ln 2− 28

9

23: (quote of problem abridged here:)

M.I. Shap had forgotten the antiderivative of 1
x2+1 . So he attempted integration by parts, using

u′ = 1 and v = 1
x2+1 .

Task 1: Carry out M.I. Shap’s calculation and see what integral he obtained.

Task 2: (too easy)
∫

dx

x2 + 1
=???

Using this simple piece of algebra:

x2

(x2 + 1)2
=

x2 + 1

(x2 + 1)2
− 1

(x2 + 1)2

and using the trick of going around in circles (and be known as a big wheel for it), do the
next task:

Task 3: Evaluate

∫
dx

(x2 + 1)2
.

Task 4: Now evaluate

∫
dx

(x2 + a2)2
.

“I have done it once, I can do it again”

Task 5: Evaluate

∫
dx

(x2 + 1)3

12



Solution:

Task 1: Integration by parts on
∫

1
x2+1

dx:

∫

1× 1

x2 + 1
dx =

x

x2 + 1
−
∫

x
−2x

(x2 + 1)2
dx =

x

x2 + 1
+ 2

∫
x2

(x2 + 1)2
dx

Task 2: ∫
1

x2 + 1
dx = arctan x+ C

Task 3: Using the hint x2

(x2+1)2
= x2+1

(x2+1)2
− 1

(x2+1)2
, salvage the work from the previous task

to evaluate the new integral
∫
dx/(x2 + 1)2:

∫
1

x2 + 1
dx =

↑
from Task 1

x

x2 + 1
+ 2

∫
x2

(x2 + 1)2
dx =

↑
from hint

x

x2 + 1
+ 2

∫
1

x2 + 1
dx− 2

∫
1

(x2 + 1)2
dx

Substituting the known integral
∫

1
x2+1 dx = arctan x + C (as in Task 2) and solving for the

unknown
∫

1
(x2+1)2

dx, we get

∫
1

(x2 + 1)2
dx =

1

2

(
x

x2 + 1
+

∫
1

x2 + 1
dx

)

=
1

2

(
x

x2 + 1
+ arctan x

)

+ C

Task 4: To evaluate

∫
dx

(x2 + a2)2
, we could either redo the previous steps, starting with

∫
dx/(x2 + a2) instead of

∫
dx/(x2 + 1) (correct, but unnecessarily complicated); or else we

reduce it to the case a = 1 with a simple substitution:

∫
dx

(x2 + a2)2
=
↑

x = at, dx = a dt

∫
a dt

(a2t2 + a2)2
= a−3

∫
dt

(t2 + 1)2
=

1

2
a−3

(
t

t2 + 1
+ arctan t

)

+C =

=
1

2
a−3

(
x/a

(x/a)2 + 1
+ arctan

x

a

)

+ C =
1

2
a−2

(
x

x2 + a2
+

1

a
arctan

x

a

)

+ C

Task 5: This time, we use the integration by parts –Task 1 style– on the (now known)
∫
dx/(x2 + 1)2, obtaining (with similar algebra as in Task 3) the new integral

∫
dx/(x2 + 1)3:

∫

1× 1

(x2 + 1)2
dx =

x

(x2 + 1)2
−
∫

x
−2 · 2x
(x2 + 1)3

dx =
x

(x2 + 1)2
+ 4

∫
x2

(x2 + 1)3
dx

Using x2

(x2+1)3
= x2+1

(x2+1)3
− 1

(x2+1)3
, and solving for the new unknown integral, we get

4

∫
dx

(x2 + 1)3
=

x

(x2 + 1)2
+ 3

∫
dx

(x2 + 1)2

and therefore ∫
dx

(x2 + 1)3
=

1

4

(
x

(x2 + 1)2
+

3

2

x

x2 + 1
+

3

2
arctan x

)

+ C
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24: Sometimes, definite integrals can be determined without finding an antideriva-

tive: (a) Find
∫ 7
−7

sinxdx
x4+1

without attempting to obtain an antiderivative. Give a
quick sketch of the graph of the function under the integral sign to illustrate your
reasoning. — (b) Use the substitution y = −x on the integral to confirm your
conclusion algebraically.

Solution: (a) The function f given by f(x) = sinx
x4+1 is odd , i.e., f(−x) = −f(x). So whatever

area is above the x-axis for x > 0 is matched with a corresponding area below the x-axis for
x < 0 (and vice versa: what is below the x-axis for x > 0 is matched by a corresponding area
above the x-axis for x < 0.) Since we are integrating over a symmetric interval [−7, 7], the
contributions cancel out, and the integral is 0. Here is a graph of f :

Between π and 2π, the function is negative,
but of such a small absolute value that the
figure does not resolve it.

(b) Letting I :=
∫ 7
−7

sinx
x4+1

dx, and substituting x = −y gives

I =

∫ −7

+7

sin(−y)

(−y)4 + 1
(−1)dy =

∫ 7

−7

− sin y

y4 + 1
dy = −I

Since I = −I, we conclude that I must be 0.

25: (a) Describe the graph y =
√
25− x2 in geometric terms. Based on this deliber-

ation, what should
∫ 5
−5

√
5− x2 dx be? — (b) Use an appropriate trig substitution

to verify your conclusion calculationally.

Solution: (a) The graph is a semi-circle with radius 5. The area underneath this graph should
therefore be 1

2 π 52.

(b) Using the substitution x = 5 sinu, with u between −π
2 and π

2 , we calculate
∫ 5
−5

√
25− x2 dx =

∫ π/2
−π/2 25 cos

2 u du =
[
25
2 (u+ sinu cos u)

]π/2

−π/2
= 25

2 π.

26: You sure know that cos x ≤ 1 for all x, and probably also that sinx ≤ x for x > 0.

But you may not know yet that cos x ≥ 1 − 1
2x

2 for all x, and that sinx ≥ x− 1
6x

3

for x > 0. In this homework, you’ll see why this is the case (and a bit more).

Recall: If f(x) ≤ g(x) for x ∈ [a, b], then
∫ b
a f(x) dx ≤

∫ b
a g(x) dx.
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(a) Integrate the inequality cos t ≤ 1 for all t over the interval [0, x], with x > 0.
What inequality do you obtain?

(b) Next integrate the inequality so obtained (renaming the variable into t) over the
interval [0, x] again and solve for the trig function. What inequality do you now
obtain?

(c) Repeat the procedure three more times, obtaining new inequalities for sinx or
cosx in each step.

(d) Use the best of these inequalities to nest the values of cos 1
2 and sin 1

2 between
values easily calculated by hand; i.e., find rational numbers for the ‘?’ to make
?1 ≤ cos 1

2 ≤ ?2 and ?3 ≤ sin 1
2 ≤ ?4 true. None of your calc’s will require a pocket

calculator (except possibly for converting fractions to decimals in the very end).

Solution: (a) We obtain
∫ x
0 cos t dt ≤

∫ x
0 1 dt, which simplifies to sinx ≤ x.

(b) Integrating sin t ≤ t over the interval [0, x], we obtain
∫ x
0 sin t dt ≤

∫ x
0 t dt. This is 1−cos x ≤

1
2x

2. Solving for the trig, we obtain cos x ≥ 1− 1
2x

2.

(c) Integrating cos t ≥ 1− 1
2 t

2 over [0, x], we obtain
∫ x
0 cos t dt ≥

∫ x
0 (1− 1

2t
2) dt, which evaluates

to sinx ≥ x− 1
6x

3.

Next, we integrate sin t ≥ t − 1
6 t

3 over [0, x] and obtain 1 − cos x ≥ 1
2x

2 − 1
24x

4 and therefore
cos x ≤ 1− 1

2x
2 + 1

24x
4.

Now integrating this again, we obtain
∫ x
0 cos t dx ≤

∫ x
0 (1− 1

2t
2+ 1

24t
4) dt, in other words, sinx ≤

x− 1
6x

3 + 1
120x

5.

(d) We find 1− 1
2(

1
2 )

2 ≤ cos 1
2 ≤ 1− 1

2(
1
2 )

2 + 1
24(

1
2 )

4, which is 7
8 ≤ cos 1

2 ≤ 7
8 + 1

384 . In decimals
(with 6 digits accuracy), this is 0.875000 ≤ cos 1

2 ≤ 0.877605

Likewise for sin 1
2 , we conclude 1

2 − 1
6 (

1
2)

3 ≤ sin 1
2 ≤ 1

2 − 1
6(

1
2 )

3 + 1
120 (

1
2 )

5, which in decimals
amounts to: 0.479166 ≤ sin 1

2 ≤ 0.479428.

[When converting to decimals, I have chosen always to round up the upper bounds and to round
down the lower bounds, such as to have certain estimates.]

27a :

∫
dx

(4− x2)3/2
=
↑

x = 2 sin u (∗)

∫
2 cos u du

8 cos3 u
=

1

4
tanu+ C =

x/8
√

1− (x/2)2
+ C =

x/4√
4− x2

+ C

(∗) Clearly |x| < 2, else the original integral wouldn’t make sense. We may (and do) choose
u between −π

2 and π
2 , hence cos u > 0. This is why no absolute value arises in (4 cos2 u)3/2 =

8cos3 u.

27b :

∫

(4− x2)3/2 dx =
↑

x = 2 sin u

∫

(4 cos2 u)3/2 2 cos u du = 16

∫

cos4 u du

15



We finish this up with integration by parts:

∫

cos4 u du =

∫

cos3 u cosu du = cos3 u sinu+ 3

∫

cos2 u sin2 u
︸ ︷︷ ︸

1−cos2 u

du

↓ ↑
−3 cos2 u sinu sinu

Therefore

4

∫

cos4 u du = cos3 u sinu+ 3

∫

cos2 u du = cos3 u sinu+
3

2
(u+ cos u sinu) + C

Inserting and undoing the substitution, in particular cos2 u = 1− (x2 )
2, we get

∫

(4− x2)3/2 dx = 4
(
1− (x2 )

2
)3/2

(x/2) + 6
(

arcsin
x

2
+

x

2

√

1− (x/2)2
)

+ C

=
x

4
(4− x2)3/2 + 6arcsin

x

2
+

3

2
x
√

4− x2 +C

27c∗ :

∫
x2√
x2 + 1

dx =
↑

x = tan u , dx = du/ cos2 u , 1 + x2 = 1/ cos2 u

∫
tan2 u cos u

cos2 u
du =

∫
sin2 u

cos3 u
du

Again we may and do choose |u| < π
2 so that cos u > 0 and no absolute value is needed when

taking the square root of cos2 u. (The same remark will apply in the following problems without
being repeated each time.)

27d∗ :

∫
√

x2 + x+ 1 dx =

∫ √

(x+ 1
2)

2 + 3
4 dx =

↑
x+ 1

2
= (

√

3/2) tan u

∫ √

3/4

cos2 u

√
3

2

du

cos2 u
=

3

4

∫
du

cos3 u

27e∗ :
∫
√

(x− 1)(x− 3) dx =

∫
√

(x− 2)2 − 1 dx =
↑

x− 2 = 1/ cos u , dx = sin u du/ cos2 u

∫

tan u
sinu du

cos2 u
=

∫
sin2 u du

cos3 u

We have assumed x > 3 here. (Clearly the root is real only when x > 3 or x < 1.) This makes
x − 2 > 1 and therefore cos u > 0. We may assume u to be between 0 and π

2 , hence tan u > 0.
In contrast, if we had x < 1, we’d have cosu < 0, and we would need to assume u between π

2

and π. Then tan u would be negative and
√

1
cos2 u

− 1 would be − tanu rather than tanu.

27f∗ :
∫ 4

1

x

1 +
√
x4 + 1

dx =
↑

x2 = y

1

2

∫ 16

1

dy

1 +
√

y2 + 1
=
↑

y = tanu

1

2

∫ arctan 16

arctan 1

du

cos2 u (1 + 1/ cos u)

16



27g :

∫
arcsinx

x2
dx =

∫

arcsinx · 1

x2
dx = −arcsinx

x
+

∫
dx

x
√
1− x2

↓ ↑
1√

1−x2

−1
x

Now we can treat the remaining integral with a trig substitution:

∫
dx

x
√
1− x2

=
↑

x = sin u

∫
du

sinu
=

∫
sinu du

1− cos2 u
=
↑

cos u = y

∫ −dy

1− y2
= −1

2

∫ (
1

1− y
+

1

1 + y

)

dy =

=
1

2

(

ln(1− y)− ln(1 + y)
)

+ C =
1

2
ln

1− cos u

1 + cos u
+ C =

1

2
ln

1−
√
1− x2

1 +
√
1− x2

+ C

Here y is between 0 and 1, so 1 − y and 1 + y are positive and no absolute value is needed in
under the logarithm.

Note that a variety of versions are possible in the final result. For instance, expanding the

fraction with 1−
√
1− x2 to get the root out of the denominator yields ln 1−

√
1−x2

x +C, at least

if x > 0; for x < 0, you’d have to write ln 1−
√
1−x2

|x| + C instead.

27h :

∫ 1

0

√

1− x

1 + x
dx =

∫ 1

0

1− x√
1− x2

dx =
↑

x = sin u

∫ π/2

0

1− sinu

cos u
cos u du = [u+ cos u]

π/2
0 =

π

2
− 1

Here we have a convenient plausibility check: The integral is clearly <
∫ 1
0 1 dx = 1 and >

∫ 1
0 (1 −

x) dx = 1
2 . The calculated result is numerically ≈ 0.571, consistent with the plausibility check. Also

the midpoint rule with just one interval yields 1 ·
√

1/2
3/2 = 1

3

√
3 ≈ 0.577.
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28: In one of the examples of the previous problem, the trig substitution could be
avoided, and a simple power substitution would work instead. Find which of them
it is and also carry out the power substitution for comparison.

Solution: If, for the quadratic under the square root, we have its derivative explicitly available
to combine with dx, then we can substitute the quadratic, rather than using a trigonometric
substitution. This happens in #27g:

∫
dx

x
√
1− x2

=

∫
x dx

x2
√
1− x2

=
↑

1− x2 = v , −2x dx = dv

−1

2

∫
dv

(1− v)
√
v
=
↑

√

v = y , dy = dv/2
√

v

−
∫

dy

1− y2

But now we are back to the same integral as in 27g, and the finish-up is the same as before.

29: Redo all problems of the previous list (#27 a–h), using a hyperbolic substitution
instead of the trig substitution. Subsequently get rid of the hyperbolics by expressing
them as exponentials and substituting et = y (assuming t is what you named the
new variable in the hyp substitution.) If you end up with a rational expression in y
that is not routine to integrate, you may stop here; we’ll return to this task later.
Otherwise, finish them up. If possible, draw a resume whether you feel the hyperbolic
or the trigonometric substitution was easier.

Solution:

29a :

∫
dx

(4− x2)3/2
=
↑

x = 2 tanh t

∫
2dt/ cosh2 t

(4/ cosh2 t)3/2
=

1

4

∫

cosh t dt =
1

4
sinh t+ C

Undoing the substitution to get 1
4 sinh(artanh

x
2 ) + C is straightforward, but hyperbolics of

inverse hyperbolics should be simplified, and I wouldn’t expect you to have much knowledge
about inverse hyperbolics available anyways. So here we go ‘the pedestrian way’: If x

2 = tanh t =

et−e−t

et+e−t = e2t−1
e2t+1

, then solving for e2t is easy: e2t = (1 + x
2 )/(1 − x

2 ). So et =
√

2+x
2−x . This means

sinh t = 1
2(e

t − e−t) = 1
2(
√

2+x
2−x −

√
2−x
2+x). Conclusion:

∫
dx

(4− x2)3/2
=

1

8

(√

2 + x

2− x
−
√

2− x

2 + x

)

+ C =
↑

common denominator
√

4− x2

1

8

(2 + x)− (2− x)√
4− x2

+ C =
x

4
√
4− x2

+ C

Here the hyperbolic subsitution gave an easy integral, but returning to the orginal variables was
lengthy. So this time the trig sub seems easier.

29b :

∫

(4− x2)3/2 dx =
↑

x = 2 tanh t

∫ ( 4

cosh2 t

)3/2 2dt

cosh2 t
=

∫
16 dt

cosh5 t
=

∫
16 · 32dt

(et + e−t)5
=

∫
29e5t dt

(e2t + 1)5

The standard sub is et = y, et dt = dy; so we can continue

. . . = 29
∫

y4 dy

(y2 + 1)5
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You may stop here until we learn the algebra to integrate rational functions, but there is one
sneaky thing you could do first to simplify matters: borrow one factor y to go with the denom-
inator for an integration by parts:
∫

y3
y

(y2 + 1)5
dy = − y3

8(y4 + 1)4
+

3

8

∫

y
y

(y2 + 1)4
dy = − y3

8(y4+1)4 − y
16(y2+1)3 + 1

16

∫ dy
(y2+1)3

↓ ↑ ↓ ↑
3y2 −1/8

(y2+1)4
1 −1/6

(y2+1)3

Hey, we’re lucky; Miss Happy’s hwk #23 will take care of the rest:

29
∫

y4 dy

(y2 + 1)5
=

−26y3

(y2 + 1)4
− 25y

(y2 + 1)3
+

8y

(y2 + 1)2
+

12y

y2 + 1
+ 12 arctan y + C

As before, we argue that, if x
2 = tanh t, then y = et =

√
2+x
2−x ; and therefore y2 + 1 = 4

2−x . So

we get
∫

(4− x2)3/2 dx = −(2− x)4

4

(2 + x)3/2

(2− x)3/2
− (2− x)3

2

(2 + x)1/2

(2− x)1/2
+

(2− x)2

2

(2 + x)1/2

(2− x)1/2
+

+ 3(2− x)
(2 + x)1/2

(2− x)1/2
+ 12arctan

√

2 + x

2− x
+ C

=
1

4

√

4− x2
(

−(2− x)2(2 + x)− 2(2− x)2 + 2(2− x) + 12
)

+ 12arctan

√

2 + x

2− x
+ C

=
10x− 4x3

4

√

4− x2 + 12arctan

√

2 + x

2− x
+C

Both trig and hyp subs were a bit lengthy, but still it looks like trig has an edge here. — Note also
that the results do not look like they are the same; but that doesn’t mean they aren’t. We’d have
to do some algebra to convert the arctan into an arcsin to see this.

29c :

∫
x2√
x2 + 1

dx =
↑

x = sinh t

∫
sinh2 t cosh t dt

cosh t
=

1

4

∫

(e2t − 2 + e−2t) dt =
1

8

(

e2t − e−2t − 4t
)

+C

To undo the substitution, we need to solve for t: Yes, that’s t = arsinhx (if you are familiar with
inverse hyperbolics), but we can express this with logarithms (since hyperbolics can be expressed
in terms of exponentials), and we sure want to simplify et, which should feature the undoing of
a logarithm by the exponential. So here we go: 2x = et − e−t, hence (et)2 − 2x(et) − 1 = 0.
Therefore et = x±

√
x2 + 1 (and we can discard the − sign since et > 0). In conclusion we get

∫
x2√
x2 + 1

dx =
1

8

(

(x+
√

x2 + 1)2 − (x−
√

x2 + 1)2 − 4 ln(x+
√

x2 + 1)
)

+ C

=
1

2

(

x
√

x2 + 1− ln(x+
√

x2 + 1)
)

+ C

That looks easier than the trig sub; in particular since we are done already with the hyperbolic,
whereas there is still unfinished work to do on the trig sub.

29d :

∫
√

x2 + x+ 1 dx =

∫ √

(x+ 1
2)

2 + 3
4 dx =

↑
x+ 1

2
= (

√

3/2) sinh t

3

4

∫

cosh2 t dt =
3

16

∫ (

e2t + e−2t + 2
)

dt
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which is 3
32 (e

2t− e−2t+4t)+C. The further evaluation is as in #29c, with only a minor change;
namely

e±t = ±x+ 1/2√
3/2

+

√
(x+ 1/2√

3/2

)2
+ 1 =

±(2x+ 1) + 2
√
x2 + x+ 1√

3

So

∫
√

x2 + x+ 1 dx =
3

32

( (2x+ 1 + 2
√
x2 + x+ 1)2

3
− (−(2x+ 1) + 2

√
x2 + x+ 1)2

3
+ 4t

)

+ C

=
2x+ 1

4

√

x2 + x+ 1 +
3

8
ln
(

2x+ 1 + 2
√

x2 + x+ 1
)

+ C̃

(where in the last step, the ln
√
3 was absorbed in the arbitrary constant C).

Again the hyp sub seems more expedient, given that we still have to deal with the return to the
original variables in the case of the trig sub.

29e :

∫
√

(x− 1)(x− 3) dx =

∫
√

(x− 2)2 − 1 dx =
↑

x− 2 = cosh t , dx = sinh t dt

∫

sinh2 t dt =
1

8

(

e2t − e−2t − 4t
)

+ C

We have used x > 3 again and may take t > 0. In contrast, if we had had x < 1, we would have
needed the sub x− 2 = − cosh t instead (and could still have t > 0).

To undo the substitution, we have et + e−t = 2(x − 2), i.e., (et)2 − 2(x − 2)et + 1 = 0, hence
et = (x− 2)±

√

(x− 2)2 − 1 and e−t = (x− 2)∓
√

(x− 2)2 − 1. Since we took t > 0, we know
et > e−t and therefore the upper sign is applicable. We conclude

∫
√

(x− 1)(x − 3) dx =
1

8

((

(x− 2) +
√

(x− 2)2 − 1
)2

−
(

(x− 2)−
√

(x− 2)2 − 1
)2

− 4t

)

+ C

=
x− 2

2

√

(x− 1)(x− 3)− 1

2
ln
(

x− 2 +
√

(x− 1)(x − 3)
)

+ C

Again, it looks the hyperbolic is the easier one, unless we find a really swift way of finishing up the
trig integral in #27e.
29f :
∫ 4

1

x

1 +
√
x4 + 1

dx =
1

2

∫ 16

1

dy

1 +
√

y2 + 1
=
↑

y = sinh t

1

2

∫ y=16

y=1

cosh t dt

1 + cosh t
=

1

2

∫ y=16

y=1

(e2t + 1) dt

2et + e2t + 1

We have postponed the tranformation of the limits of integration for a moment. As before (in
#29c), if y = sinh t, then et = y +

√

y2 + 1. We substitute et = z, dt = dz/z, and get

∫ 4

1

x

1 +
√
x4 + 1

dx =
1

2

∫ 16+
√
257

1+
√
2

(z2 + 1)dz

z(z2 + 2z + 1)

At this moment, we await the skill to integrate rational functions before finishing up.

The decision whether trig or hyp is faster has to wait yet.

29g :

∫
arcsin x

x2
dx = −arcsinx

x
+

∫
dx

x
√
1− x2
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where ∫
dx

x
√
1− x2

=
↑

x = tanh t , dx = dt/ cosh2 t

∫
dt/ cosh2 t

tanh t/ cosh t
=

∫
dt

sinh t
=

∫
2et dt

e2t − 1
=
↑

et = z

∫
2 dz

z2 − 1

With a similar hint as in #27g, we can write the last integrand as 1
z−1 − 1

z+1 and then integrate:
If x > 0, then t > 0 and z > 1, so we have the integral ln(z − 1)− ln(z + 1) + C. If x < 0, then
t < 0 and z < 1, and we have the integral ln(1− z)− ln(z + 1) + C.

We have yet to express et in terms of x. As in #29a,b, we get et =
√

1+x
1−x . Therefore

∫
dx

x
√
1− x2

= ln
|z − 1|
z + 1

+ C = ln
|
√
1 + x−

√
1− x|√

1 + x+
√
1− x

+ C

It would take a bit more algebra to show that this is indeed the same as what we got in #27g,
despite the different appearance.

29h :
∫ 1

0

√

1− x

1 + x
dx =

∫ 1

0

1− x√
1− x2

dx =
↑

x = tanh t

∫ ∞

0

(1− tanh t) dt

cosh2 t/ cosh t
=

∫ ∞

0

4e−t dt

e2t + e−2t + 2
=
↑

et = y

∫ ∞

1

4 dy

y4 + 2y2 + 1

We may rely on #23c for the last integral: It is

[

2
( y

y2 + 1
+ arctan y

)]∞

1

π − 1− π

2
=

π

2
− 1 .

Both methods were reasonably straightforward, but it seems the trig has an edge over the hyp here.

30: (a) Reduce the integral
∫

sin2 u
cos3 u

du to the integral of a rational function in two
ways: Either using the substitution sinu = y (taking advantage of the fact that one
cosu can go with the differential, leaving only even powers of sinu and of cos u). Or
use tan u

2 = t, which is a universal tool working for all rational expressions of sinu
and cos u. Which of the two methods leads to the ‘easier’ rational integral (where
‘easyness’ is judged by the degree of the denominator)?

(b) Convert the integrals obtained in 27c-e into integrals of rational expressions.

(c) Next you will use the hint that 1
1−y2

= 1
2(

1
1−y + 1

1+y ) and
y

1−y2
= 1

2 (
1

1−y − 1
1+y ),

which is a piece of algebra that you will be able to invent yourself in a few weeks;
and also a similar piece of algebra that you can obtain by squaring the given hints,
like 1

(1−y2)2
= 1

4(
1

(1−y)2
+ 1

(1+y)2
+ 2

1−y2
) (then re-use the first hint for the last term!)

With these hints you should be able to finish up the integrals obtained in 27c,d,e.
(Don’t forget to undo the substitutions in the end to get answers in terms of x.)

Solution:

(a)−With sinu = y

∫
sin2 u

cos3 u
du =

∫
sin2 u cos u

(1− sin2 u)2
du =

↑
sin u = y

∫
y2

(1− y2)2
dy
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For the substitution t = tan u
2 , we need to express sinu and cos u in terms of t = tan u

2 , which
is, by trig identities used in class,

cos u =
1− t2

1 + t2
, sinu =

2t

1 + t2
, du =

2 dt

1 + t2

Then we get

(a)−With tan u
2 = t

∫
sin2 u

cos3 u
du =

∫
(2t)2/(1 + t2)2

(1− t2)3/(1 + t2)3
2 dt

1 + t2
=

∫
8t2

(1− t2)3
dt

The former variant is simpler, and we will use it in part (b).

Part b: The reduction of 27c&e has just been done in part (a). As for #27d, we calculate

3

4

∫
du

cos3 u
=

3

4

∫
cos u du

(1− sin2 u)2
=
↑

sin u = y

3

4

∫
dy

(1− y2)2

Part c: From the hint we have the algebraic
∫
implification (which you by now know to be

called ‘partial fraction decomposition’)

y2

(1− y2)2
=

1

4

(
1

(1− y)2
+

1

(1 + y)2
− 2

1− y2

)

=
1/4

(1− y)2
+

1/4

(1 + y)2
− 1/4

1− y
− 1/4

1 + y

Therefore
∫

y2

(1− y2)2
dy =

1/4

1− y
− 1/4

1 + y
+

1

4
ln(1− y)− 1

4
ln(1 + y) + C =

y/2

1− y2
+

1

4
ln

1− y

1 + y
+ C

Now let’s undo the substitutions in #27c (I am suppressing the arbitrary constant C)

∫
x2 dx√
x2 + 1

=
↑

27c , 30ab

y/2

1− y2
+

1

4
ln

1− y

1 + y
=
↑

y = sin u

sinu

2 cos2 u
+

1

4
ln

1− sinu

1 + sinu
︸ ︷︷ ︸

(1−sinu)2/ cos2 u

=
tanu

2 cos u
+

1

2
ln
( 1

cos u
− tan u

)

=
↑

tanu = x , cosu = (1 + x2)−1/2

x

2

√

1 + x2 +
1

2
ln
(√

1 + x2 − x
)

(Using lnT = − ln(1/T ), we see that this is the same as what we got in 29c, albeit a bit
differently written.)

Next, we undo the substitutions in #27e (again I drop the C):

∫
√

(x− 1)(x − 3) dx =
↑

27c , 30ab

y/2

1− y2
+

1

4
ln

1− y

1 + y
=
↑

y = sin u as before

tanu

2 cos u
+

1

2
ln
( 1

cos u
− tan u

)

=
↑

1/ cosu = x− 2

=
(x− 2)

√

(x− 2)2 − 1

2
+

1

2
ln
(

x− 2−
√

(x− 2)2 − 1
)

=

=
(x− 2)

√

(x− 1)(x− 3)

2
+

1

2
ln
(

x− 2−
√

(x− 1)(x− 3)
)

22



Again, when comparing this to 29e, this is the same result, despite the difference in two signs.
Use lnT = − ln(1/T ). The two expressions (x− 2)±

√

(x− 2)2 − 1 are each other’s reciprocals.

For #27d, we need to do the partial fraction decomposition yet:

1

(1− y2)2
=

1/4

(1− y)2
+

1/4

(1 + y)2
+

1/4

1− y
+

1/4

1 + y

Therefore (just changing a sign compared to the previous calculation)

∫
dy

(1− y2)2
=

y/2

1− y2
− 1

4
ln

1− y

1 + y
+ C =

↑
y = sin u

tan u

2 cos u
− 1

2
ln
( 1

cos u
− tanu

)

+ C

Undoing the substituion (and not forgetting the factor 3
4 in front of the y-integral), we get

∫
√

x2 + x+ 1 dx =
↑

27e , 30b

3 tan u

8 cos u
− 3

8
ln
( 1

cos u
− tanu

)

+ C =
↑

tanu = (2x+ 1)/
√

3

=

√
3(2x+ 1)

8

√

1 +
(2x+ 1)2

3
− 3

8
ln
(
√

1 +
(2x+ 1)2

3
− 2x+ 1√

3

)

+ C

=
2x+ 1

4

√

x2 + x+ 1− 3

8
ln
(√

x2 + x+ 1− (x+ 1
2)
)

+ C ′

In the last step I have combined C − 3
8 ln

2√
3
into the new constant C ′.

31: Finish up #27f, using the universally helpful substitution for rational expressions
in sinu, cosu mentioned in the previous problem. (And I am not aware of a simpler
procedure by means of a more specialized substitution). Make sure to get an exact
expression first, in which all occurrences of trig(arctrig(number)) are simplified; then
you may use technology to get a numeric result and check it for plausibility in view
of the original integral.
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Solution:

I :=

∫ 4

1

x

1 +
√
x4 + 1

dx =
↑

x2 = y , then y = tan u

1

2

∫ arctan 16

arctan 1

du

cos2 u+ cos u
=
↑

t = tan u
2

1

2

∫ ?

?

1
(1−t2)2

(1+t2)2
+ 1−t2

1+t2

2dt

1 + t2

First we need to express the limits in terms of t: Lower limit of integration: Note that tan u =
sinu
cos u = 2t

1−t2
. So when u = arctan 1, i.e., tan u = 1, then t must satisfy 2t

1−t2
= 1, i.e., t2+2t−1 =

0, or t = −1±
√
2. The positive sign applies since t > 0 when u is between 0 and π/2. Likewise,

when 2t
1−t2

= 16, we find t = (−1 +
√
257)/16.

So we simplify

I =

∫ (
√
257−1)/16

√
2−1

1 + t2

(1− t2)2 + (1− t2)(1 + t2)
dt =

∫ (
√
257−1)/16

√
2−1

1 + t2

2(1− t2)
dt

and ∫
1 + t2

2(1 − t2)
dt =

∫ (

−1

2
+

1/2

1− t
+

1/2

1 + t

)

dt =
1

2

(

−t+ ln
1 + t

1− t

)

+ C

Therefore

I =
1

2

(

−
√
257 − 1

16
+

√
2− 1 + ln

(
√
257 + 15)/16

(17 −
√
257)/16

− ln

√
2

2−
√
2

)

=
1

2

(

√
2−

√
257 + 15

16
+ ln(16 +

√
257)− ln(1 +

√
2)

)

The numerical value is I ≈ 1.03005.

A quick plausibility check could go like this: drop the 1 under the square root, obtaining

I =

∫ 4

1

x dx

1 +
√
x4 + 1

<

∫ 4

1

x dx

1 + x2
=

1

2

[
ln(1 + x2)

]4

1
=

1

2
ln

17

2
≈ 1.07003

The next part was not required, but let me do it for comparison anyways: We can also finish

up the same integral coming through the hyperbolic substitution, from #29f:

I =
1

2

∫ 16+
√
257

1+
√
2

(z2 + 1) dz

z(z + 1)2

The partial fraction decomposition has a repeated factor this time, but is bottom heavy. We
have

z2 + 1

z(z + 1)2
=

1

z
+

−2

(z + 1)2
+

0

z + 1

So

I =

[
1

2
ln z +

1

z + 1

]16+
√
257

1+
√
2

=
1

2

(

ln(16 +
√
257)− ln(1 +

√
2)
)

+
1

17 +
√
257

− 1

2 +
√
2

Well, you judge which one is easier. . .
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32: Find the PFD of
5x2 + 4x− 13

x3 + 2x2 − 5x− 6
and calculate

∫ 1

0

5x2 + 4x− 13

x3 + 2x2 − 5x− 6
dx.

Solution: First we need to factor the denominator. Good guesses for a zero are ±1, ±2,
±3 and ±6. The rational root test says that the only rational numbers that could be zeros of a
polynomial with integer coefficients are among those that have a numerator dividing the constant
term of the polynomial (here: −6) and a denominator dividing the highest order coefficient (here:
1). Hence, if none of the above-mentioned good guesses works, the polynomial will not have a
rational zero and our factorization becomes impossible, short of the ‘cubic formula’ (which you are
not expected to know and which is complicated enough to be a pain in the butt to use).

−1 is a zero. So is 2. So is −3. [Alternatively, We could stop guessing after the first success and
factor x3+2x2− 5x− 6 = (x+1)(x2 +x− 6) and then use the quadratic formula on x2+x− 6.]

The rational is bottom–heavy. We have the form of the PFD as

5x2 + 4x− 13

x3 + 2x2 − 5x− 6
=

5x2 + 4x− 13

(x+ 1)(x− 2)(x + 3)
=

A

x+ 1
+

B

x− 2
+

C

x+ 3

Cover-up yields:
At x → −1: A = 5−4−13

(−3)·2 = 2,

At x → 2: B = 20+8−13
3·5 = 1,

At x → −3: C = 45−12−13
(−2)(−5) = 2.

Possible consistency checks to detect miscalc’s:
Multiply with x and take limx→∞: yields 5 = A+B + C,
Plugging in x = 1 yields −4/(−8) = A

2 −B + C
4 .

Now we can integrate:

∫ 1

0

5x2 + 4x− 13

x3 + 2x2 − 5x− 6
dx =

∫ 1

0

(
2

x+ 1
+

1

x− 2
+

2

x+ 3

)

dx =

=
[

2 ln(x+ 1) + ln(2− x) + 2 ln(x+ 3)
]1

0
=

= 2 ln 2− ln 2 + 2 ln 4− 2 ln 3 = 5 ln 2− 2 ln 3 = ln
32

9

33: (a) Find the PFD of
(x+ 2)(x2 − 2)

(x+ 1)2(x2 + 1)
— Part (b) see next item.

Solution: (a) The form of the PFD is (we are in the bottom–heavy case again)

(x+ 2)(x2 − 2)

(x+ 1)2(x2 + 1)
=

A

(x+ 1)2
+

B

x+ 1
+

Cx+D

x2 + 1

Cover-up at x → −1 yields A = 1(−1)
2 = −1

2 .

Cover-up (complex) at x → i yields Ci+D = (i+2)(i2−2)
(i+1)2 = −3(i+2)

2i = −3
2 + 3i.

So we get C = 3 and D = −3
2 .

Multiplying by x and letting x → ∞ yields the equation 1 = B + C, hence (with C = 3 known
already) B = −2. We have thus found the PFD

(x+ 2)(x2 − 2)

(x+ 1)2(x2 + 1)
=

−1/2

(x+ 1)2
+

−2

x+ 1
+

3x− 3/2

x2 + 1
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A consistency check against miscalc’s could use x = 0:

−4
?
= −1

2 − 2− 3
2 .

Here is a different approach:

Obtaining A = −1
2 as before, we subtract that term from both sides:

B

x+ 1
+
Cx+D

x2 + 1
=

(x+ 2)(x2 − 2)

(x+ 1)2(x2 + 1)
+

1

2(x+ 1)2
=

2(x+ 2)(x2 − 2) + (x2 + 1)

2(x+ 1)2(x2 + 1)
=

2x3 + 5x2 − 4x− 7

2(x+ 1)2(x2 + 1)

That numerator must have −1 as a zero, allowing us to factor off (x+ 1). Namely 2x3 + 5x2 −
4x− 7 = (x+ 1)(2x2 + 3x− 7). This leaves us with the new, simpler, PFD task:

B

x+ 1
+

Cx+D

x2 + 1
=

2x2 + 3x− 7

2(x+ 1)(x2 + 1)

Cover–up at x → −1 yields B = 2−3−7
2·2 = −2. Moving the newly found term over again, gives

Cx+D

x2 + 1
=

2x2 + 3x− 7

2(x+ 1)(x2 + 1)
+

2

x+ 1
=

2x2 + 3x− 7 + 4(x2 + 1)

2(x+ 1)(x2 + 1)
=

6x2 + 3x− 3

2(x+ 1)(x2 + 1)
=

(x+ 1)(6x − 3)

2(x+ 1)(x2 + 1)

and after cancellation we read off C,D immediately. In this calculation, each reduction step
is its own consistency check since the factorization and cancellation would fail if the preceding
coefficient were not calculated correctly.

33: (b) Find the PFD of
x6 + 76

(x+ 2)3(x− 3)2

Solution: (b) This one is not bottom-heavy. The denominator has degree 5, whereas the
numerator has degree 6. Polynomial division will give us a first degree polynomial before we get
a bottom–heavy remainder.

The form of the PFD is therefore

x6 + 76

(x+ 2)3(x− 3)2
= ax+ b+

A

(x+ 2)3
+

B

(x+ 2)2
+

C

x+ 2
+

D

(x− 3)2
+

E

x− 3

We have the choice to obtain A and D by cover–up immediately or after the polynomial division.

I’ll do it right away, and then again after the polynomial division, for you to compare, and also
as a consistency check that would likely discover miscalc’s in the polynomial division.

We get A = (−2)6+76
(−5)2 = 140

25 = 28
5 .

We also get D = 36+76
53 = 729+76

125 = 161
25 .

Let’s do the long division of polynomials; this requires us to expand the denominator:
(x+ 2)3(x− 3)2 = (x3 + 6x2 + 12x+ 8)(x2 − 6x+ 9) = x5 + 0x4 − 15x3 − 10x2 + 60x+ 72.

x6 + 76 = (x5 + 0x4 − 15x3 − 10x2 + 60x+ 72)(x + 0) + (15x4 + 10x3 − 60x2 − 72x+ 76)

So we have
x6 + 76

(x+ 2)3(x− 3)2
= x+

15x4 + 10x3 − 60x2 − 72x+ 76

(x+ 2)3(x− 3)2

and

15x4 + 10x3 − 60x2 − 72x+ 76

(x+ 2)3(x− 3)2
=

A

(x+ 2)3
+

B

(x+ 2)2
+

C

x+ 2
+

D

(x− 3)2
+

E

x− 3
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We can obtain A,D by cover-up from here as well:
A = 15·16−80−240+144+76

(−5)2
= 140

25 = 28
5 and D = 15·81+270−540−72·3+76

53
= 1215−270−140

125 = 161
25 .

From here, we have to determine three coefficients yet. Either we have to move the calculated
terms on the other side and cancel factors, or we have to plug in numbers haphazardly and solve (∗)
a system of equations. I choose to move the calculated terms over:

25(15x4 + 10x3 − 60x2 − 72x+ 76)− 140(x − 3)2 − 161(x + 2)3

25(x+ 2)3(x− 3)2
=

B

(x+ 2)2
+

C

x+ 2
+

E

x− 3

The numerator gets simplified and we know beforehand that we will be able to factor off (x +
2)(x − 3) = x2 − x− 6.

25(15x4 + 10x3 − 60x2 − 72x+ 76)− 140 (x− 3)2
︸ ︷︷ ︸

=x2−6x+9

−161 (x + 2)3
︸ ︷︷ ︸

=x3+6x2+12x+8

= 375x4 + (250 − 161)x3 +

+ (−1500 − 140 − 966)x2 + (−1800 + 840− 1932)x + (1900 − 1260 − 1288)

= 375x4 + 89x3 − 2606x2 − 2892x − 648 = (x2 − x− 6)(375x2 + 464x + 108)

This leaves us with the (simpler) PFD task

375x2 + 464x + 108

25(x + 2)2(x− 3)
=

B

(x+ 2)2
+

C

x+ 2
+

E

x− 3

By cover-up, we get
B = 375·4−464·2+108

25(−5) = 680
25(−5) = −136

25 and

E = 375·9+464·3+108
25·25 = 4875

25·25 = 975
125 = 195

25 = 39
5 .

Now we use the trick “multiply by x and let x → ∞” t get C from E: Namely C+E = 375
25 = 15,

hence C = 36
5 .

Conclusion:

x6 + 76

(x+ 2)3(x− 3)2
= x+

28

5(x+ 2)3
− 136

25(x+ 2)2
+

36

5(x+ 2)
+

161

25(x− 3)2
+

39

5(x− 3)

A quick consistency check can be done at x = 0 (in a first step, I’ll combine those terms that
have similar denominators):

76

8 · 9
?
=

28

5 · 8 − 136

100
+

18

5
+

161

25 · 9 − 13

5
⇐⇒ 19 · 25 − 322

50 · 9
?
=

70

100
− 136

100
+ 1

The left simplifies to 17
50 . The right to −33

50 + 1. Yeah!!!

Variant: Returning to the paragraph marked (*), we could trade the reduction algorithm
(moving terms over, simplifying, cancelling) for solving a system of linear equations by plugging
in some reasonably nice numbers. Let me do this here:

Using x → ∞ (after multiplying with x), we obtain 15 = C + E. Using x = 0, we obtain
76
8·9 = 28

5·8 +
B
4 + C

2 + 161
25·9 − E

3 . Using x = −1, we obtain 15−10−60+72+76
16 = 28

5 +B+C+ 161
25·16 − E

4 .
So the system of linear equations we have is

C + E = 15

B + C − 1
4E = 25·93−28·80−161

400 = −76
400 = − 19

100

1
4B + 1

2C − 1
3E = 950−14·45−644

900 = −324
900 = − 36

100







=⇒
{

B + 5
4C = 356

100 = 89
25

1
4B + 5

6C = 464
100 = 116

25

etc
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34: Find the PFD of
25

(x− 1)2(x2 + 4x+ 5)
in two ways: one using complex numbers

to deal with the quadratic, one without use of complex numbers.

Solution: The form of the PFD is

25

(x− 1)2(x2 + 4x+ 5)
=

A

(x− 1)2
+

B

x− 1
+

Cx+ E

(x+ 2)2 + 1

Alternatively, we can write it as

25

(x− 1)2(x2 + 4x+ 5)
=

A

(x− 1)2
+

B

x− 1
+

C(x+ 2) +D

(x+ 2)2 + 1

where D + 2C = E. The second variant is slightly more convenient, both for calculation with
complex numbers and for subsequent use in integration (or, later in Math231, for use in inverse
Laplace transforms). The punchline in the 2nd variant is that the (x + 2) multiplying the
unknown coefficient D aligns with the x+ 2 in the completed-square form of the denominator.

We get A by cover–up at x → 1 as A = 25
10 = 5

2 . Using complex cover-up at x → −2 + i, we get
25

(−3+i)2
= Ci+D (or = C(−2 + i) + E). But 25

(−3+i)2
= 25(3+i)2

(−10)2
= 8+6i

4 . So we see C = 3
2 and

D = 2.

From multiplying with x and letting x → ∞, we get 0 = B + C, hence B = −3
2 .

Consistency check at x = 0 yields 5 = A−B + 2C+D
5 , which is true for the numbers A,B,C,D

found.

Without use of complex numbers, we’d probably be best off using the reduction method after
finding A:

B

x− 1
+

Cx+ E

(x+ 2)2 + 1
=

25

(x− 1)2(x2 + 4x+ 5)
− 5

2(x− 1)2
=

50− 5(x2 + 4x+ 5)

2(x− 1)2(x2 + 4x+ 5)

=
−5x2 − 20x+ 25

2(x− 1)2(x2 + 4x+ 5)
=

(x− 1)(−5x− 25)

2(x− 1)2(x2 + 4x+ 5)
=

−5(x+ 5)

2(x− 1)(x2 + 4x+ 5)

Cover-up at x → 1 gives now B = −15
10 = −3

2 .

We could now get C = −B from x → ∞ as before, and D or E by plugging in x = 0. Or we do
another reduction step:

Cx+ E

(x+ 2)2 + 1
=

−5(x+ 5)

2(x− 1)(x2 + 4x+ 5)
+

3

2(x− 1)
=

−5x− 25 + 3(x2 + 4x+ 5)

2(x− 1)(x2 + 4x+ 5)
=

=
3x2 + 7x− 10

2(x− 1)(x2 + 4x+ 5)
=

(x− 1)(3x+ 10)

2(x− 1)(x2 + 4x+ 5)

So we read off C = 3
2 and E = 5.

Conclusion:

25

(x− 1)2(x2 + 4x+ 5)
=

5/2

(x− 1)2
− 3/2

x− 1
+

3(x+ 2)/2 + 2

(x+ 2)2 + 1
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35: Use PFD to evaluate I(a, b;x) :=

∫ x

0

dt

(t2 + a2)(t2 + b2)
, assuming a, b > 0 and

b 6= a. Finally, calculate the limit limb→a I(a, b;x) (which may require l’Hopital).
— The purpose of this problem is to obtain I(a, a;x) =

∫ x
0 dt/(t2 + a2)2 by a different

method; we trust that I(a, a;x) = limb→a I(a, b;x), i.e., that the integral depends
continuously on b. — Compare your result with Hwk #23 (Task 4).

Solution:
1

(t2 + a2)(t2 + b2)
=

1

b2 − a2

(
1

t2 + a2
− 1

t2 + b2

)

Therefore
∫ x

0

dt

(t2 + a2)(t2 + b2)
=

1

b2 − a2

[
1

a
arctan

t

a
− 1

b
arctan

t

b

]x

0

=
b arctan x

a − a arctan x
b

ab(b2 − a2)

To calculate the limit as b → a in this expression we use l’Hopital. The derivative of the
numerator (wrt b !) is arctan x

a − a(1 + (xb )
2)−1(− x

b2
) = arctan x

a + ax
x2+b2

. The derivative of the

denominator wrt b is a(b2 − a2) + ab(2b). So

lim
b→a

I(a, b;x) = lim
b→a

arctan x
a + ax

x2+b2

a(b2 − a2) + ab(2b)
=

arctan x
a + ax

x2+a2

2a3

Same as in #23 as it should be.

36: Use the trig substitution x = a tan u on the integral
∫
dx/(x2+a2)2 and evaluate

it this way.

Solution:

∫
dx

(x2 + a2)2
=
↑

x = a tan u

a−3

∫

cos2 u du =
1

2
a−3
(

u+sinu cos u
︸ ︷︷ ︸

=tanu cos2 u

)

+C =
1

2a3
arctan

x

a
+

1

2a3
x/a

1 + (x/a)2
+C
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