Linear Algebra Review

- **Objects**
 - Scalars $\alpha \in \mathbb{R}$ or \mathbb{C}, Vectors $x \in \mathbb{R}^n$ (column), Matrices $A \in \mathbb{R}^{m \times n}$
 - Components: $(x)_i = x_i$, $(A)_{ij} = a_{ij}$, columns of A: a_j, rows of A: a_i

- **Actions**
 - Transpose: $(A^T)_{ij} = (A)_{ji}$
 - Scalar Product: $(\alpha x)_i = \alpha (x)_i$, $(\alpha A)_{ij} = \alpha (A)_{ij}$
 - Inner or Dot Product: $x \cdot y = x^T y = \sum_{i=1}^n x_i y_i$
 Vectors x and y are orthogonal if $x \cdot y = 0$.
 - Matrix-Vector Product: $(Ax)_i = a_i x = \sum_{j=1}^n a_{ij} x_j$
 - Matrix-Matrix Product: $(AB)_{ij} = a_{ik} b_{kj}$
 Number of columns of A must be the same as number of rows of B.
 Typically $AB \neq BA$
 - Identity Matrix: $I \in \mathbb{R}^{n \times n}$ (or I_n); $(I)_{ij} = \delta_{ij}$ where $\delta_{ij} = 1$ if $i = j$, 0 otherwise; columns are e_j
 - Outer or Tensor Product: $(xy^T)_{ij} = (x \otimes y)_{ij} = x_i y_j$
 $(I + xy^T)z = z + (xy^T)z = z + x(y^T z) = z + (y \cdot z)x$

- **Sets of Vectors**: $\{x_i\}_{i=1}^m$, $x_i \in \mathbb{R}^n$
 - Linear Combination: $v = \sum_{i=1}^m \alpha_i x_i$
 - Convex Combination: same as LC but, $\alpha_i \geq 0$ and $\sum \alpha_i = 1$
 - Span: set of all linear combinations
 - Convex Hull: set of all convex combinations
 - Linearly Independent: if $\sum_1^m \alpha_i x_i = 0$ if and only if $\alpha_i = 0$ for all i; Linearly Dependent otherwise
 If $m > n$ then they must be linearly dependent.
 - Basis: if linearly independent they form a basis for the span, i.e. every vector in the span has a unique representation in the form $\sum_1^m \alpha_i x_i$
 If $m = n$ and linearly independent, the span is \mathbb{R}^n and the vectors form a basis for \mathbb{R}^n
 If the vectors are non-zero, pairwise orthogonal, i.e. $x_i \cdot x_j = 0$ if $i \neq j$, then they are linearly independent and form an orthogonal basis
 If, in addition, $x_i \cdot x_i = 1$, they form an orthonormal basis

- **Norms**
 - Vector Norm: for $x \in \mathbb{R}^n$, length or norm of x is denoted by $\|x\|$.
 It has the following properties:
 1. $\|x\| \geq 0$ for all x and $\|x\| = 0$ if and only if $x = 0$.
 2. $\|\alpha x\| = |\alpha| \|x\|$ for all x and α.
 3. $\|x + y\| \leq \|x\| + \|y\|$ for all x and y.

Examples: \(\|x\|_2 = \sqrt{\sum x_i^2}, \|x\|_1 = \sum |x_i|, \|x\|_\infty = \max_i |x_i| \)

Theorem: All vector norms on \(\mathbb{R}^n \) are equivalent, i.e. there are constants \(c_1 \) and \(c_2 \) such that
\[c_1 \|x\| \leq \|x\|' \leq c_2 \|x\| \text{ for all } x \]

Property: For non-zero \(x, y \in \mathbb{R}^n \), the angle \(\theta \) between these vectors is defined by
\[\cos(\theta) = \frac{x \cdot y}{\|x\|_2 \|y\|_2} \]

- **Matrix Norm**: Same notation and same properties as vector norm. May add the condition that \(\|AB\| \leq \|A\| \|B\| \)

 Example: \(\|A\|_F = \sqrt{\sum_{ij} a_{ij}^2} \) (Frobenius Norm)

 Induced or Subordinate Matrix Norm: based on a vector norm, we have
 \[\|A\| = \max_{x \neq 0} \frac{\|Ax\|}{\|x\|} \]

 Also has the property that \(\|Ax\| \leq \|A\|\|x\| \)

 Examples: \(\|A\|_\infty = \max_{i} \sum_{j} |a_{ij}|, \|A\|_2 = \sqrt{\text{largest eigenvalue of } A^T A} \)

- **Linear Systems**: \(A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m \), find \(x \in \mathbb{R}^n \) such that \(Ax = b \)

 - When \(m > n \) (overdetermined system); typically no solution; solve instead least-squares problem: Find \(x \in \mathbb{R}^n \) which minimizes \(\|Ax - b\|_2^2 \); the solution satisfies the normal equations \(A^T A x = A^T b \)

 - When \(m < n \) (underdetermined system); typically a family of solutions; solve instead by adding additional condition like solution must be of minimum norm, i.e. \(\|x\|_2 \) is as small as possible

 - When \(m = n \); typically one unique solution (when \(A \) is invertible, non-singular, \(\det A \neq 0 \), \(A \) has full rank, \(Ax = 0 \) has only \(x = 0 \) as a solution, or other conditions)

 Solution is \(x = A^{-1} b \), but except in the \(2 \times 2 \) case, we never compute \(x \) this way, instead we use some computationally stable method like Gaussian Elimination to solve the system \(Ax = b \)

- **Eigenvalue and Eigenvectors**

 - For \(A \in \mathbb{R}^{n \times n}, \lambda \in \mathbb{C} \) and \(v \in \mathbb{C}^n, v \neq 0 \), if \(Av = \lambda v \) then \(\lambda \) is an eigenvalue of \(A \) and \(v \) is a corresponding eigenvector

 If \(v \) is an eigenvector for \(\lambda \), then so is \(\alpha v \) for any \(\alpha \neq 0 \)

 - Eigenvalues: \(A \) has \(n \) eigenvalues which are the roots of the polynomial \(\det(A - \lambda I) = 0 \)

 - Eigenvector: for \(\lambda \), solve \((A - \lambda I)v = 0 \) for the eigenvector \(v \)

 - Symmetry: \(A \) is symmetric if \(A^T = A \); if \(A \) is symmetric then all the eigenvalues are real and the eigenvectors can be chosen in such a way that they form an orthonormal basis for \(\mathbb{R}^n \)

- **Quadratic Form**: From \(A \in \mathbb{R}^{n \times n}, A \text{ symmetric}, b \in \mathbb{R}^n \) and \(c \in \mathbb{R} \), we form the quadratic form
 \[\phi(x) = \frac{1}{2} x^T A x - x^T b + c \]

 \[x^T A x = \sum_{ij} a_{ij} x_i x_j \]

 \(\hat{x} = A^{-1} b \) is a minimizer of \(\phi \) if and only if all the eigenvalues of \(A \) are positive (i.e. \(A \) is positive definite)