Homework #2, Due Friday, Sept. 30

1. #2.9 in Book
2. #3.10 in Book
3. Suppose \(\phi(\alpha) = (\alpha - 1)^2 \) for our step-length problem.
 (a) Determine the range of values for \(\alpha \) that satisfy the two Wolfe Conditions. Under what condition(s) on \(c_1 \) and \(c_2 \) do values of \(\alpha \) exist that satisfy both Wolfe Conditions? Under what condition(s) on \(c_1 \) and \(c_2 \) is the global minimizer \(\alpha = 1 \) included as a possible value?
 (b) Determine the range of values for \(\alpha \) that satisfies the Goldstein Condition:
 \[
 \phi(0) + (1 - c)\alpha\phi'(0) \leq \phi(\alpha) \leq \phi(0) + c\alpha\phi'(0),
 \]
 with \(0 < c < \frac{1}{2} \)?
4. Let \(n \) be a positive integer and set \(f(x) = \sum_{i=1}^{n} f_i(x)^2 \) where
 \[
 f_i(x) = n - \sum_{j=1}^{n} (\cos x_j + i(1 - \cos x_i) - \sin x_i).
 \]
 Compute \(\nabla f \), \(\nabla^2 f \) and for \(x_0 = (\frac{1}{n}, \frac{1}{n}, \ldots, \frac{1}{n}) \), compute \(\nabla f(x_0) \) and \(\nabla^2 f(x_0) \).
5. Let
 \[
 A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}.
 \]
 Define \(f(x) = \frac{1}{2}x^T Ax \) for \(x \in \mathbb{R}^2 \), with unique minimizer \(x^* = (0, 0)^T \).
 (a) Determine all starting values \(x_0 \) with \(\|x_0\|_2 = 1 \) such that one step of Steepest Descent Method with Exact Line Search produces the exact answer \(x_1 = x^* \) (in exact arithmetic).
 (b) Determine all starting values \(x_0 \) with \(\|x_0\|_2 = 1 \) such that one step of Newton’s Method with Step-Length 1 produces the exact answer \(x_1 = x^* \) (in exact arithmetic).
 (c) (Bonus) Determine all starting values \(x_0 \) with \(\|x_0\|_2 = 1 \) such that \(x_k = x^* \) for some \(k \), \(1 < k < 10 \), using the Steepest Descent Method with Exact Line Search.