Rate of Convergence (Q-Convergence)

Let \(\{x^k\} \) be any infinite sequence. Let \(s^k = \max_{l \geq k} x^l \) and define

\[
\limsup_{k \to \infty} x^k = \lim_{k \to \infty} s^k.
\]

Sometimes \(\limsup \) is written as \(\lim \sup \). A \(\limsup \) always exists (if we allow \(+\infty \)). If \(\lim x^k = L \) then \(\limsup x^k = L \), but the opposite is not true.

Examples:

1. \(x^k = (-1)^k \), then \(s^k = 1 \) and \(\limsup x^k = 1 \).
2. \(x^k = \sin(k) \) then \(s^k = 1 \) and \(\limsup x^k = 1 \) (note in this case there is no obvious convergence).

Assume \(\lim_{k \to \infty} x^k = \hat{x} \) and there is some \(M \) such that \(x^k \neq \hat{x} \) for all \(k > M \). Then for \(p \geq 0 \) let

\[
C(p) = \limsup_{k \to \infty} \frac{|x^{k+1} - \hat{x}|}{|x^k - \hat{x}|^p}.
\]

Then, if \(C(p^*) < \infty \) for some \(p^* \) then \(C(p) = 0 \) for \(p < p^* \). If \(C(p^*) > 0 \) for some \(p^* \) then \(C(p) = \infty \) for \(p > p^* \). Both of these results come from the equality

\[
\frac{|x^{k+1} - \hat{x}|}{|x^k - \hat{x}|^p} = \frac{|x^{k+1} - \hat{x}|}{|x^k - \hat{x}|^{p^*}} |x^k - \hat{x}|^{p^* - p}.
\]

So, there exists a \(p^* \) (possibly infinite) such that

\[
C(p) = \begin{cases}
0 & \text{if } 0 \leq p < p^* \\
C(p^*) & \text{if } p = p^* \\
\infty & \text{if } p > p^*
\end{cases}
\]

This number \(p^* \) is the order of convergence for the sequence \(x^k \) and determines the rate of convergence as follows:

- If \(p^* = 1 \) and \(C(1) = 1 \) then we say the convergence is sublinear.
- If \(p^* = 1 \) and \(1 > C(1) > 0 \) then we say the convergence is linear.
- If \(p^* > 1 \) or \(C(1) = 0 \) then we say the convergence is superlinear.
- If \(p^* = 2 \) then we say the convergence in quadratic.
- If \(p^* = 3 \), convergence is cubic, etc.

When working with convergence estimates it is often useful to use the following approximation:

\[
|x^{k+1} - \hat{x}| \approx C|x^k - \hat{x}|^{p^*}
\]

for some constant \(C \) (not necc. \(C(p^*) \)).