2. r' =
3. v(t) =
4. False, for example f(x,y) = (x+y)^2/(x^2+y^2), with f(0,0) = 0
the limit doesn't exist.
5. z_x = (1 + x/sqrt(x^2+y^2))/(x + sqrt(x^2+y^2))
6. f_xx = 5(x^2+y^2)^(1/2)(4x^2+y^2)
7. at (1,-1,0), z_x = 1, z_y = 1, so the plane is
8. dz/ds = 2s cos(x+y) - 2t cos(x-y)
dz/ds = 2(s-t)cos x cos y - 2(s+t)sin x sin y
|r'| = sqrt(3) e^t
L = int_0^2pi |r'| dt = sqrt(3) (e^(2pi)-1)
r(t) =
z_y = y/sqrt(x^2+y^2)/(x + sqrt(x^2+y^2))
f_xy = f_yx = 15 xy (x^2+y^2)^(1/2)
f_yy = 5(x^2+y^2)^(1/2)(x^2+4y^2)
z -0 = 1(x-1) + 1(y+1), or
z = x + y
dz/dt = 2t cos(x+y) - 2s cos(x-y) or
dz/dt = 2(t-s)cos x cos y - 2(s+t)sin x sin y