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Abstract. We construct a class of combinatorially described compactifications of
M0,n, each admitting a map from M0,n. Up to normalization, our compactifications
include the weighted moduli spaces of Hassett, the modular compactifications of
Smyth, and many of the GIT constructions of Giansiracusa-Jensen-Moon. Our
compactifications are constructed as closures inside toric varieties, and are always
proper algebraic varieties, but not always projective.

1. Introduction

The moduli space M0,n of rational curves with n marked points is a smooth affine
variety of dimension n − 3. In addition to the well-known Grothendieck-Deligne-
Mumford-Knudsen compactification M0,n, a number of alternative compactifications
have been constructed using weighted points [Has03], modular considerations [Smy13],
and GIT of Chow varieties [GJM13]. In this paper, we give a new family of com-
pactifications of M0,n, which includes many of the previously listed examples. Our
compactifications are parametrized by combinatorial data, which we call an admissible
collection of trees.

Theorem 1.1. For any admissible collection of trees F , there exists a compactification
MF of M0,n, together with a birational morphism φF : M0,n →MF .

An admissible collection is a set of trees with n labeled leaves satisfying combinato-
rial conditions listed in Definition 2.3 below. The properties of MF and the behavior of
the birational morphism φF are determined combinatorially by the collection F . For
example, recall that M0,n has a stratification by locally closed subsets M

τ

0,n indexed

by trees τ whose leaves are labeled by {1, . . . , n}. The strata for which φF(M
τ

0,n) is
a point are those such that some contraction of τ is in the admissible collection F .
More generally, the admissible collection determines the image of any stratum of
M0,n, and these images form a stratification of MF , indexed by a class of trees called
F -stable. See Propositions 4.5 and 4.8 for details.

The construction of the compactification MF is by taking the closure of M0,n in
a toric variety determined by the collection of trees F . Recall that M0,n can be

realized as a tropical compactification, meaning that M0,n embeds in (Gm)(
n−1
2 )−1

and M0,n is isomorphic to the closure of M0,n in a toric variety defined by a fan
supported on the tropicalization of M0,n in this embedding [Tev07, GM10]. Given
an admissible collection of trees F , we construct a fan ΣF and define MF to be
the closure of M0,n in the toric variety corresponding to ΣF . Except in the case
of M0,n, MF is not a tropical compactification, and in general the fan ΣF is not
equidimensional. Morphisms between different compactifications MF , including the
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map φF from Theorem 1.1, are obtained from toric maps between the corresponding
toric varieties.

One virtue of this construction is that it encompasses most compactifications of
M0,n known in the literature, at least up to normalization. For example, modular
compactifications, as defined by Smyth [Smy13], parametrize possibly degenerate
curves, which are allowed to have coinciding points or worse than nodal singularities,
depending on the parameters. In genus 0, Smyth classified these modular degenerations
in terms of the combinatorial data of an extremal assignment Z. An extremal
assignment can be translated into an admissible collection of trees FZ .

Theorem 1.2. Any modular compactification of M0,n in the sense of Smyth is iso-
morphic to a tree compactification MFZ , up to normalization. More precisely, there
exists a birational and bijective morphism from MFZ to the modular compactification
M0,n(Z).

We are not aware of any cases when the morphism MFZ →M0,n(Z) from Theorem 1.2
is not an isomorphism. While Smyth proves that his modular compactifications
are represented by algebraic spaces [Smy13], Theorem 1.2 shows that, at least after
normalization, they are in fact algebraic varieties.

In a different direction, Giansiracusa, Jensen, and Moon generalized Kapranov’s
construction of M0,n from [Kap93] to get a family of compactifications of M0,n coming
from Chow varieties using GIT [GJM13]. We give an explicit translation of the
parameters from their construction into an admissible collection of trees. For generic
GIT parameters, their construction is isomorphic to a Smyth modular compactification,
and thus to a tree compactification, up to normalization. Our specification of the tree
compactification extends to the walls and other special GIT parameters, and for these
we also get a regular morphism from the normalization of the tree compactification
to the GIT quotient, as described in Theorem 6.3.

Smooth tree compactifications are interesting from both combinatorial and modular
perspectives. Combinatorially, smooth tree compactifications can be characterized
in terms of the trees allowed in admissible collection, and such admissible collec-
tions have an equivalent description in terms of what we call combinatorial weight
data. Moreover, all smooth tree compactifications have a modular interpretation,
parametrizing genus 0 curves with at worst nodal singularities and marked points
which are allowed to coincide under circumstances controlled by the combinatorics.
Smooth tree compactifications include the Hassett weighted moduli spaces [Has03],
and can be related by blow-ups along smooth subvarieties in an analogous manner.

While tree compactifications and modular compactifications are always proper
algebraic varieties, they are not always projective. This is in contrast to the GIT
construction of [GJM13] which only yields projective varieties. The existence of
proper, non-projective smooth modular compactifications was first noted in [MSvAX18,
Ex. 11.1].

The rest of this paper is structured as follows. In Section 2 we introduce admissible
collections of trees and describe their combinatorics. Section 3 contains the construc-
tion of the compactification from an admissible collection of trees. In Section 4, we
establish a stratification of the tree compactification, generalizing the stratification
by combinatorial type on M0,n. Sections 5 and 6 study the relationship with the
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compactifications due to Smyth and Giansiracusa-Jensen-Moon, respectively. Finally,
Section 7 is devoted to smooth tree compactifications.

Acknowledgements. The ideas that led to this paper began when both authors were
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We thank Arend Bayer for helpful conversations about the spaces studied in Section 7
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NSF grant DMS-1103856L and NSA grant H98230-16-1-0019. The second author
was partially supported by EPSRC grant EP/I008071/1 and a Leverhulme Trust
International Academic Fellowship.

2. Admissible collections of trees

In this section we construct the compactification MF associated to an admissible
collection of trees. We begin by giving some preliminary combinatorial definitions
related to trees with labeled leaves, which will be needed for the definition of an
admissible collection of trees. Throughout this section, n will be a fixed positive
integer, denoting the number of leaves in the tree, as well as the number of marked
points for the moduli space M0,n. We work over an arbitrary field k.

Notation 2.1. By a tree, we will always mean an acyclic graph with n leaves labeled
by the set [n] = {1, . . . , n} and without 2-valent vertices. The vertices that are not
leaves will be called internal vertices. A leaf edge is an edge adjacent to a leaf and an
internal edge is an edge that is not a leaf edge. A contraction of a tree is the tree
obtained by contracting zero or more internal edges. An expansion of a tree is the
reverse of a contraction.

A tree is trivalent if all internal vertices have valency three. The star tree with n
leaves is the tree with no internal edges and only one non-leaf vertex.

Definition 2.2. By a partition of [n], we mean an unordered collection of one or
more subsets, called parts, P1, . . . , Pm ⊂ [n], which are disjoint and whose union is [n].
A refinement of a partition with parts P1, . . . , Pm is another partition with parts
P ′1, . . . , P

′
s where each P ′i with 1 ≤ i ≤ s is contained in some Pj for 1 ≤ j ≤ m. In

that case we call the first partition a coarsening of the second.
The partition part(v) of [n] induced by an internal vertex v of a tree T is the set of

leaf labels of the connected components of the graph obtained by deleting v from T .

The terms from Notation 2.1 and Definition 2.2 are illustrated by the trees shown
in Figure 1.

Definition 2.3. An admissible collection of trees F is a set of trees with n labeled
leaves such that:

(1) The star tree with n leaves is not in F .
(2) For any trivalent tree T , there is exactly one contraction of T that is in F .
(3) If v is a vertex of a tree T in F , then any tree T ′ that is trivalent except at a

vertex v′ with part(v′) a coarsening of part(v) has a contraction in F .

If P is a partition of [n] that coarsens part(v) for some vertex v of some tree T ∈ F ,
then we say that P is an admissible partition of the collection F .
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Figure 1. All three of the pictured trees have n = 7 labeled leaves.
The tree on the left is the star tree, with a unique internal vertex. In
the center is an expansion of the star tree to a tree with 4 internal
vertices, and 3 internal edges. This tree is not trivalent because of the
rightmost internal vertex. The partition induced by this non-trivalent
vertex is {1237, 4, 5, 6}. On the right is a trivalent expansion of the
middle tree at this non-trivalent vertex, creating the edge e. Conversely,
the middle tree is the contraction of the edge e on the right tree.

The collection of all trivalent trees is an admissible collection, whose associated
compactification is M0,n. Our goal in the next two sections is to construct a compact-
ification of M0,n from an admissible collection of trees.

Recall that the boundary of M0,n has a stratification according to the the number
of components of the parametrized curves, or equivalently the number of internal
vertices and internal edges of the dual graph. The strata corresponding to dual
graphs with n− 4 internal edges are one-dimensional, and their closures are known
as F -curves. The dual graphs are then trees that are trivalent except for a single
4-valent vertex.

Example 2.4. When n = 4, the set of all trivalent trees is the only admissible
collection.

Consider now the case n = 5. Since an admissible collection F does not contain the
star tree by the first axiom of Definition 2.3, it must consist only of trivalent trees,
which will have two internal edges, and non-trivalent trees with exactly one internal
edge. Moreover, by the second axiom, the trivalent trees in F must be exactly the
set of trivalent trees which are not expansions of the non-trivalent trees in F . Thus,
the set of non-trivalent trees in F determines the admissible collection. Again by the
second axiom, the non-trivalent trees must have the property that no two of them
share a common refinement.

The trees with 5 leaves and exactly one internal edge correspond to the 1-dimensional
strata of M0,5, whose closures are the F -curves. A set of trees, each with one internal
edge and such that no pair has a common refinement corresponds to a collection of
(−1)-curves in M0,5 which are pairwise non-intersecting.

The third axiom of Definition 2.3 is vacuous for n = 5.

Example 2.5. Let n ≥ 5 and fix an F -curve C corresponding to a tree τ with
4-valent vertex v. Let F consist of the trees τ ′ such that τ ′ is either: a trivalent tree
except for a 4-valent v′ for which part(v) = part(v′); or, a trivalent tree such that
no contraction of τ ′ is in the previous case. One can check that F defined in this
way is an admissible collection of trees. Note that the trees in the first case of our
description correspond to F -curves in the same numerical equivalence class as C.
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In Example 2.5, the non-trivalent vertices that occurred in a tree in F were
characterized by their partitions. In fact, trees in any admissible collections are
characterized by their partitions, as follows.

Lemma 2.6. Let F be an admissible collection of trees. If T is a tree such that for
every vertex v of T , part(v) is an admissible partition of F , then a contraction of T
lies in F .

Proof. Let T be as in the statement, and choose τ to be a trivalent expansion of T .
Now fix a vertex v of T . Let Tv be the tree which is a contraction of τ and trivalent
except at a single vertex which has partition equal to part(v). Then by the third
axiom of an admissible collection, there exists a tree T ′v ∈ F that is a contraction
of Tv. However, as we vary v over the vertices of T , the trees T ′v are all contractions of
the trivalent tree τ , so they must all be equal to a single tree T ′. Since every edge of
τ that is contracted in T is contracted in some Tv, this means that T ′ is a contraction
of T . �

Lemma 2.6 shows that an admissible collection of trees determines and is deter-
mined by the collection of its admissible partitions. We can go further and give
an axiomatization equivalent to an admissible collection of trees via the following
definition and Propositions 2.8 and 2.10 below.

Definition 2.7. A collection P of partitions of [n] is an admissible collection of
partitions if it satisfies the following four properties:

(1) If π is a partition of [n] with at most three parts, then π ∈ P ;
(2) The refined partition {1}, {2}, . . . , {n} of [n] is not in P ;
(3) If π ∈ P , and π′ is a coarsening of π, then π′ ∈ P ;
(4) Suppose π is a partition of [n] with l parts, π′ is the coarsening of π obtained

by replacing the first r parts by a single part, and π′′ is the coarsening of π
obtained by replacing the last s parts by a single part, where r + s < l. If
π′, π′′ ∈ P , then π ∈ P .

Proposition 2.8. If F is an admissible collection of trees, then the set of admissible
partitions of F in the sense of Definition 2.3 is an admissible collection of partitions
as in Definition 2.7.

Proof. Let F be an admissible collection of trees. Since all trivalent trees have a
contraction in F , all three-part partitions are admissible for F . Since the star tree
is not in F , the refined partition is not admissible for F . This shows the first two
conditions for an admissible collection of partitions. The third is immediate from the
definition of an admissible partition for F .

Suppose now that π is a partition of [n] with l parts, and π′, π′′ are partitions
obtained from π by replacing some parts by a single part as in condition 4, with π′, π′′

admissible for F . Fix a tree T of the form shown in Figure 2, where I1, . . . , Il are the
parts of the partition π, and every vertex except the vertices of e and e′ are trivalent.
Let T ′ be the tree obtained by contracting the edge e′. The vertex v obtained by
contracting e′ has part(v) = π′, so by the third condition on admissible collections
of trees we have that T ′ has a contraction in F . Let T ′′ be the tree obtained by
contracting the edge e. The vertex v obtained by contracting e has part(v) = π′′,
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I1

Ir
...

Ir+1 Il−s· · ·

e e′ Il−s+1

Il

...

Figure 2. The tree T used in the proof of Proposition 2.8 The labels
I1, . . . , Il refer to the labels occurring in each of the subtrees.

so again T ′′ has a contraction in F . As these are both contractions of any trivalent
expansion of T , these contractions must coincide, so in particular the tree obtained
from T by contracting both e and e′ has a contraction in F . This means that π is an
admissible partition for F , so condition 4 is satisfied. �

The following definition is used in the proof of Proposition 2.10.

Definition 2.9. The refined partition of an edge e in a tree T is the partition of
the vertex formed by contracting e. In other words, the refined partition of e is the
common refinement of the partitions at the endpoints of e.

Proposition 2.10. Given an admissible collection of partitions P, set T = {T :
T is a tree with part(v) ∈ P for all v ∈ V (T )}. Let F be the set of trees T from T
such that no proper contraction of T is in T . Then F is an admissible collection of
trees.

Proof. Since the refined partition {1}, . . . , {n} is not in P, the star tree is not in T ,
and thus not in F . Since all trivalent trees are in T , they all have contractions in F .
Suppose now that T is a trivalent tree, and T ′, T ′′ are two different contractions of T
that both lie in F . Since T ′ 6= T ′′ there is some edge e of T that is contracted in T ′

but not in T ′′. The image v′ of e in T ′ has part(v′) ∈ P , so the refined partition of e,
which coarsens part(v′), is also in P . Let e′′ be the image of e in T ′′.

We next show that the refined partition of e′′ is also in P . This will imply that the
tree obtained by contracting the edge e′′ in T ′′ is thus also in T , which contradicts
T ′′ ∈ F . From this it follows that there is a unique contraction of T in F .

The proof is by induction on the number of edges contracted in T to form T ′′, with
the base case and induction step being identical. Suppose that T̃ ∈ T , and ẽ is an
edge of T̃ with refined partition in P . Let T̃ ′ be the tree obtained by contracting ẽ. If
ẽ′ is another edge in T̃ , with refined partition in P , then it suffices to show that the
refined partition of the image of ẽ′ in T̃ ′ lies in P. If ẽ and ẽ′ do not share a vertex,
then the refined partition of ẽ′ is the same in T̃ and T̃ ′, so we only need to consider
the case that they share a vertex v. We are then again in the situation of Figure 2.
Since the refined partitions of both ẽ and ẽ′ lie in P , the refined partition of ẽ in T̃ ′ is
also in P by Part 4 of Definition 2.7.

Finally, the third condition for admissible collections of trees follows because if v
is a vertex of a tree T ∈ F we have part(v) ∈ P, so part(v′) ∈ P whenever part(v′)
coarsens part(v). Since all three-part partitions are in P, it follows that if T ′ is a
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tree that is trivalent except at a vertex v′ with part(v′) a coarsening of part(v), then
T ′ ∈ T , and so T ′ has a contraction in F . �

3. Construction of the compactifications

Given an admissible collection, in this section we construct the tree compactification
as the closure of M0,n in a toric variety whose fan is determined by the admissible
collection.

Let R(n2) denote the vector space with basis consisting of the vectors eij = eji for

1 ≤ i, j ≤ n. Set NR to be the quotient of R(n2) by the n-dimensional vector space
generated by {∑j 6=i eij : 1 ≤ i ≤ n}. By abuse of notation, we also use eij to denote
its image in NR. We set N ⊂ NR to be the lattice generated by the vectors eij.

For any subset I of [n] such that 2 ≤ |I| ≤ n− 2, we define

(1) vI =
∑
i<j∈I

eij = −1

2

∑
i∈I,j /∈I

eij =
∑
i<j /∈I

eij ∈ N.

As a consequence, vI = vIc , where Ic denotes the complement [n] \ I. In other words,
vI only depends on the partition consisting of the unordered sets I, Ic, although we
continue to denote it by vI for notational convenience.

Since NR is a quotient of R(n2), its dual, which we denote by MR is a codimension-n

subspace of R(n2). We denote by fij = fji ∈ R(n2), for 1 ≤ i 6= j ≤ n, the dual to eij.
The dual lattice M ⊂MR is generated by elements of the form fij;kl = fik+fjl−fil−fjk.
For any set I,

(2) fij;kl · vI =


1 if I ∩ {i, j, k, l} = {i, k} or {j, l}
−1 if I ∩ {i, j, k, l} = {i, l} or {j, k}

0 otherwise.

Definition 3.1. Let T be a tree. A split of T at an internal edge e is the partition
consisting of the sets of labels on the two connected components formed by deleting
e from T . In addition, we define a division of T to be any partition of [n] into two
parts that coarsens the partition part(v) for some vertex v of T .

Every split at an edge e is also a division at either of the endpoints of e. However,
if T is not trivalent, then there is a division at any non-trivalent vertex that is not
a split of T . Nonetheless, every division of T is a split of some expansion of T and
conversely, every split of any expansion of T is a division of T .

Definition 3.2. Given a tree T , we define the cone CT in NR to be the set of
non-negative linear combinations of the vectors vI as I ranges over all divisions of T .

Our goal for the rest of the section is to show that from an admissible collection F ,
the set of cones {CT : T ∈ F} form the maximal cones of a polyhedral fan defining
a toric variety. We begin by constructing hyperplanes that will be used to separate
distinct cones. If T is a tree and I ⊂ [n], we define the restriction of T to I, denoted
by T |I , to be the unique connected subgraph of T whose leaves consist of the vertices
of T labeled by I. We consider this subgraph to be a tree as in Definition 2.1 by
merging edges incident to 2-valent vertices.



8 DUSTIN CARTWRIGHT AND DIANE MACLAGAN

Proposition 3.3. The function fij;kl is non-negative on a cone CT if and only if the
restriction T |{i,j,k,l} is trivalent with i and l not in the same split of the restriction.

Proof. Suppose that the restriction of T to these labels is trivalent with i and l not
in the same split. It suffices to check non-negativity on the rays vI for I a division of
T . Since I is a division of T , it is not possible for I to contain i and l but neither of
j and k or vice versa, so, by (2), fij;kl is non-negative on vI .

Conversely, if the restriction of T to i, j, k, and l is the star tree, then there is a
vertex v of T for which these are in different parts of part(v). By choosing a division I
at v which keeps i and l together, we get that our functional is negative on vI . If
T |{i,j,k,l} is a trivalent tree with i and l as a split, then there is a split of T containing
i and l, but not j and k, so the functional is again negative. �

Proposition 3.4. If T is not a star tree, then CT is a pointed cone.

Proof. Let g be the sum
∑

fij;kl over all 4-tuples of indices i, j, k, and l such that the
restriction of T to these indices is trivalent with i and k as a split. By Proposition 3.3,
g is non-negative on CT . Let I be a division of T . By replacing I with its complement
if necessary, we may assume that the subset of T corresponding to I contains an
internal edge e. If we choose j and l not in I and i and k to be on the opposite side
of e from j and l, then fij;kl is included in the summation forming g and fij;kl · vI = 1
by (2). Therefore, g · vI > 0, and so g is positive on every ray of CT . Thus CT is a
pointed cone. �

Subsets I, J ⊂ [n] are called incompatible if all four of the sets I ∩ J , I ∩ J c, Ic ∩ J ,
and Ic ∩ J c, are non-empty. Conversely, I and J are compatible if they are not
incompatible. Two key facts about splits that we use are that if I is a collection of
pairwise compatible subsets of [n], then there is a trivalent tree τ for which every
element of I is a split of τ , and, second, that if every split of a tree T is a split of a
tree τ , then T is a contraction of τ .

Lemma 3.5. Let T and T ′ be two trees in an admissible collection. Suppose I is
a division of T that is not a division of T ′. Then there exist four indices i, j, k, l ∈
[n] such that the restrictions T |{i,j,k,l} and T ′|{i,j,k,l} are distinct trivalent trees and
{i, j, k, l} ∩ I = {i, j}.
Proof. If I is a split of T that is not a division of T ′, then we claim that there is a
split of T ′ that is incompatible with I. Indeed, suppose that I was compatible with
every split of T ′. Then there would be a trivalent tree τ that has I, and every split
of T ′, as splits. But in that case τ would have T ′ as a contraction, so I would be a
division of T ′. We can thus find a split J of I that is incompatible with I. Choose
i ∈ I ∩ J , j ∈ I ∩ J c, k ∈ Ic ∩ J , and l ∈ Ic ∩ J c; then {i, j, k, l} has the desired
properties.

Suppose now that I is a division of T coming from a vertex v of T , and I is not a
split. Let E be the set of edges of T ′ corresponding to splits that are incompatible
with I. Let T̃ be the tree obtained from T by replacing the vertex v with a single
edge such that I is the split at that edge. By the previous paragraph applied to
T̃ and T ′ we see that E is nonempty. Note also that the subgraph of T ′ consisting
of the edges in E is connected. Indeed, suppose that e and e′ are two edges in E
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corresponding to splits J and J ′, and e′′ is an edge on the unique path in T ′ between
e and e′, corresponding to a split J ′′. By taking complements if necessary, we may
assume that J ⊂ J ′′ ⊂ J ′. Then I ∩ J ′′ 6= ∅ and J ′′ \ I 6= ∅ follow from the same
facts for J , and I \ J ′′ 6= ∅ and [n] \ (I ∪ J ′′) 6= ∅ follow from the same facts for J ′, so
e′′ ∈ E .

Suppose, for the sake of contradiction, that every part H of part(v) is compatible
with every split J of T ′ corresponding to an edge in E . Let T̃ ′ be the (possibly trivial)
expansion of T ′ constructed as follows. At each vertex v′ of an endpoint of an edge
in E , each incident edge not in E defines a split compatible with I, which is thus
either contained in I or disjoint from I. If there are two or more edges incident to v,
all of whose splits are contained in I, then we insert an edge at v′ separating these
edges from the others. Similarly, if there are two or more edges incident to v whose
splits are disjoint from I, then we also insert an edge separating these. Note that if
v′ is incident to only one edge of E , then since the split corresponding to that edge
is not compatible with I, the splits corresponding to incident edges not in E must
contain both some contained in I and some disjoint with I, and therefore, we haven’t
introduced any 2-valent vertices.

We now let T ′′ be the contraction of T̃ ′ at all the edges corresponding to edges
of E , and let v′′ be the vertex resulting from the contraction of these edges. The
construction of T̃ ′ guarantees that every part of part(v′′) will be compatible with I.

Moreover, we claim that part(v′′) coarsens part(v), and therefore it is admissible. By
our assumption that each part H of part(v) is compatible with the splits corresponding
to edges in E , and so for fixed part H, and any two labels h, h′ ∈ H, the unique path
in T ′ from the label h to h′ must be disjoint from the edges in E . Since I is a division
at v, it is a union of parts of part(v), so H is either contained in I or disjoint from
it. Thus our construction of T̃ ′ ensures that H is contained in a single part of the
partition part(v′′) of its contraction T ′′.

Since T̃ ′ is an expansion of T ′, all of its vertices have admissible partitions. All
vertices of T ′′ have the same partition as a vertex of T̃ ′, except for v′′, and part(v′′)
was shown to be admissible in the previous paragraph. Therefore, by Lemma 2.6, a
contraction of T ′′ is in F . However, this contraction cannot be T ′ because any edge
in E gives a split of T ′ that is not a split of T ′′. Therefore, we have two distinct
contractions of T̃ ′ contained in the collection F , which contradicts the definition of
an admissible collection of trees. We conclude that there exists a part H of part(v)
that is not compatible with some split J of T ′ corresponding to an edge in E .

Since I is not compatible with J , we have J \ I 6= ∅ and [n] \ (I ∪ J) 6= ∅. Since
H is not compatible with J , we have H ∩ J 6= ∅, and H \ J 6= ∅. Choose i ∈ H ∩ J ,
j ∈ H \ J , k ∈ J \ I and l ∈ [n] \ (I ∪ J). Then since H is a part of part(v), it is a
split of T , so the restrictions T |{i,j,k,l} and T ′|{i,j,k,l} are distinct trivalent trees, and
{i, j, k, l} ∩ I = {i, j} as required. �

Proposition 3.6. If F is an admissible collection of trees, then {CT : T ∈ F} form
the maximal cones of a fan.

Proof. For any two trees T, T ′ ∈ F , we construct a separating linear functional that
defines CT ∩ CT ′ as a face of CT and CT ′ . Since T and T ′ do not have a common
expansion, the set of splits of T and of T ′ are not all pairwise compatible. As all
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Figure 3. Part of the fan XF if F is an admissible collection containing
a non-trivalent tree T with split {1, 2}, superimposed on top of the
fan ∆ corresponding to the collection of all trivalent trees, shown with
dotted lines. The two 2-dimensional cones corresponding to trivalent
trees are common to both fans.

divisions of a tree are compatible with all of its splits, there must be a division of T
that is not a division of T ′, so by Lemma 3.5 there are i, j, k, and l for which the
restrictions of T and T ′ to these indices are both trivalent with splits {i, j} an {i, k}
respectively. Then, fil;jk = −fil;kj is non-negative on CT and non-positive on CT ′ by
Proposition 3.3. We now define g ∈M to be the sum of all fil;jk for which i, j, k, l has
these restriction properties. Then g is non-negative on CT and non-positive on CT ′
which means that the face F of CT defined by g satisfies CT ∩ CT ′ ⊂ F . We claim
that this inclusion is an equality.

To see this, suppose that I is a division of T but not T ′. Then by Lemma 3.5, there
exist indices i, j ∈ I and k, l 6∈ I such that T and T ′ restricted to these four labels are
distinct trivalent trees. The restriction T |{i,j,k,l} has {i, j} as a split, and, without loss
of generality, we can assume that T ′|{i,j,k,l} has {i, k} as a split. Therefore, by (2),
fil;jk · vI = 1, and g is the sum of fil;jk and other terms that pair non-negatively with
vI , so g · vI > 0. This means that vI is not in F , so all the rays of F are contained
in CT ∩ CT ′ . As CT ∩ CT ′ is convex, we have F = CT ∩ CT ′ . �

Definition 3.7. We denote the fan from Proposition 3.6 by ΣF . By Proposition 3.4,
the cones of ΣF are pointed, and so this fan defines a toric variety, which we denote
by XF . For a tree T ∈ F , we write UT ⊂ XF for the open affine corresponding to the
cone CT .

When F is the set of all trivalent trees, the fan ΣF is the space of phylogenetic
trees [MS15, Thm. 4.3.5], which we denote by ∆. This is a pure fan of dimension

n− 3 in R(n−1
2 )−1. In general the fan ΣF is not pure, however.

Example 3.8. We consider now the fans given by the admissible collections with
n = 5 from Example 2.4. When F is the collection of all trivalent trees, then ΣF = ∆
has 10 rays and 15 cones of dimension 2. If F is an arbitrary admissible collection
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of trees, then each non-trivalent tree T in F defines a 3-dimensional simplicial cone
which replaces three 2-dimensional cones and a ray from ∆. For example, if F contains
the tree T with a single internal edge having split {1, 2}, then

CT = pos(e12, e34, e35, e45) = pos(e34, e35, e45).

The second equality come from the relation e12 = e34 + e35 + e45. The cone CT
replaces the cones of ∆ corresponding to the 3 trivalent expansions of T together
with the ray spanned by e12. This cone and two adjacent ones are shown in Figure 3.

Example 3.9. Consider the admissible collection F of Example 2.5 corresponding
to a numerical equivalence class of F -curves τ , with partition [n] = AqB q C qD.
Then ΣF has a simplicial (n− 3)-dimensional cone for each trivalent tree in F , and an
(n− 2)-dimensional cone for each tree T in F with exactly one non-trivalent vertex
whose partition is A,B,C,D. Each of the latter cones is the convex hull of the cones
CT ′ for the three trivalent trees T ′ that are expansions of T . These cones all intersect
in the cone pos(eA, eB, eC , eD, eAB, eAC , eAD).

The moduli space M0,n can be realized as a subvariety of X∆, as we now recall.
Let Gr(2, n) denote the Grassmannian of 2-planes in an n-dimensional vector space,
and let Gr(2, n)◦ be the open subset of those planes not intersecting any (n − 2)-
dimensional coordinate space, or equivalently of points in Gr(2, n) for which all
Plücker coordinates are nonzero. The n-dimensional torus acts coordinatewise on the
ambient vector space, and has an induced action on Gr(2, n). This action extends to

a monomial action on P(n2)−1. The quotient of Gr(2, n)◦ by this torus action is the

moduli space M0,n, which embeds into the quotient T of the torus of P(n2)−1. The
lattice of characters of T is the lattice M introduced at the start of the section.

The toric variety X∆ is a partial compactification of T such that the closure of
M0,n ⊂ T in X∆ equals the moduli space M0,n [Tev07,GM10].

Definition 3.10. We write MF to denote the closure of M0,n inside the toric vari-
ety XF determined by an admissible collection of trees F .

Remark 3.11. In [CHMR16], the authors also construct compactifications of of
M0,n by taking the closure inside a toric variety. Specifically, they consider “heavy-
light” Hassett weighted moduli spaces M0,a, where each ai is either very small or
equal to 1. Although we will see in Section 7 that Hassett’s moduli spaces are tree
compactifications, the two constructions use different toric embeddings.

The toric variety in [CHMR16] has a smaller dimension than XF and its fan is
obtained from the space ∆ of phylogenetic trees by projecting away some coordinates.
Working in this smaller toric variety means that M0,a can be realized as a tropical
compactification in the sense of Tevelev [Tev07]. The ambient toric variety XF for
the tree compactification, by contrast, is birational to the toric variety X∆, and the
compactification of M0,n is not a tropical compactification.

We now construct morphisms between tree compactifications from morphisms
between the underlying toric varieties. Let F and F ′ be admissible collections of trees
on n and n′ leaves respectively, with n′ ≥ n. We say that F ′ is an expansion of F if
for every tree T ′ in F ′, the restriction T ′|[n] is an expansion of some tree in F . For
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example, the admissible collection consisting of all trivalent trees on n′ ≥ n leaves is
an expansion of any admissible collection on n leaves.

Proposition 3.12. Suppose that F and F ′ are admissible collections of trees on n
and n′ leaves respectively with n′ ≥ n and F ′ expanding F . Then there is a morphism
MF ′ →MF , which is birational if n′ = n.

Proof. The desired morphism will follow from the construction of a morphism of toric
varieties XF ′ → XF . We write N ′R and NR for the ambient vector spaces of the fans
for XF ′ and XF , respectively. There is a natural map π from N ′R to NR that is the
quotient of the coordinate projection defined by sending eij ∈ N ′R to eij if i, j ≤ n
and to 0 ∈ NR otherwise. For a split I ′ ⊂ [n′], the image π(vI′) equals vI , where
I = I ′ ∩ [n], if 2 ≤ |I| ≤ n− 2, and is 0 otherwise.

To show that π defines a morphism of toric varieties, we need to show that for
each T ′ ∈ F ′, the image π(CT ′) of a cone is contained in a single cone of XF . By
above π(CT ′) is the cone spanned by the vI as I ranges over the divisions of T ′|[n]. By
assumption, there exists a tree T ∈ F that is a contraction of T ′|[n], so every division
of T ′|[n] is also a division of T and thus CT contains π(CT ′).

Finally, if n′ = n, then N ′R = NR and so the map of toric varieties XF ′ → XF is
birational. Since MF ′ and MF meet the dense orbit of their respective toric varieties,
the induced morphism MF ′ →MF is also birational. �

We can now prove the existence and basic properties of our compactifications:

Proof of Theorem 1.1. By construction, MF contains M0,n as a dense open set. Since
MF is the image of the projective variety M0,n, it must be proper. Finally, the
morphism φF exists by Proposition 3.12. It is the restriction of a toric morphism
which is an isomorphism on its dense torus, so φF is birational. �

4. Stratification of tree compactifications

This section describes a stratification on the compactification MF , induced by the
stratification by combinatorial type on M0,n. Each stratum of M0,n maps surjectively
onto a single stratum of MF , but a stratum of MF may be the image of multiple
strata in M0,n. Nonetheless, there is a maximal stratum of M0,n mapping to a given
stratum of MF , and we can index strata in the latter by a class of trees which we call
F -stable.

We first recall the stratification of M0,n by combinatorial type. We denote by M
τ

0,n

the locus in M0,n consisting of those stable, genus 0 curves with dual graph equal to

a given tree τ . The tree τ also labels a cone of the fan ∆, and M
τ

0,n is the intersection

of the torus orbit of X∆ corresponding to this cone with M0,n. As a first step, we
connect the these strata and their trees with the admissible collection F via the
following proposition:

Proposition 4.1. The locally closed stratum M
τ

0,n ⊂ M0,n is contracted to a point
in MF if and only if some contraction of τ is in F .

We begin the proof of Proposition 4.1 with the following lemma, which refines the
containment of cones used for the proof of the n′ = n case of Proposition 3.12.
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Lemma 4.2. If a tree T ′ is an expansion of a tree T , then CT ′ is contained in CT ,
but not in any of its proper faces.

Proof. As in the proof of Proposition 3.12, the containment follows because every
division of T ′ is also a division of T . For the second part, induction on the number of
edges of T ′ contracted to form T shows that it is sufficient to consider the case when
T is the contraction of a single edge e of T ′. We will show that CT ′ is not contained in
any proper face of CT by showing that CT ′ contains a point from the relative interior
of CT .

Let v denote the vertex of T formed by contracting e, and let v′, v′′ denote the two
vertices of e in T ′. Let d be the number of parts of part(v). Since the formula (1)
gives vI = 0 when 2 < |I| or |I| > n− 1 in the following we relax the restriction that
2 ≤ |I| ≤ n− 2 for a division.

Let I denote the collection of parts of part(v). We claim the following identity
holds:

(3)
∑

I a division of T

vI =
∑

I a division of T ′ not at v′,v′′,I 6∈I
vI + 2d−3

∑
I∈I

vI .

Since the left-hand side of (3) is a positive sum over all rays of CT , and the right-hand
side is a positive sum over some of the rays of CT ′ , this identity gives a point in CT ′
in the relative interior of CT as required.

The difference between the left-hand side and the first sum on the right-hand side
is
∑

I a division of T at v vI . Thus, it suffices to show:

(4)
∑

I a division of T at v

vI = −2d−3
∑

(i,j)∈D
eij and

∑
I∈I

vI = −
∑

(i,j)∈D
eij,

where D consists of all pairs of indices i and j that are in distinct parts of part(v).
If we fix i and j and suppose that they are in distinct parts K and J , respectively,
of part(v), then eij will appear in the definition of vI whenever I contains exactly
one of K or J . Such divisions I form exactly half of the 2d−1 divisions at v, and
each contributes −1/2 to the sum, so this shows the first equality of (4). For the
second identity of (4), the splits in I correspond to parts of part(v) and so each eij
occurs once when choosing the part containing i and once containing j, each with
multiplicity −1/2. �

We write Wτ for the open affine chart of M0,n obtained by intersecting M0,n with
the open affine chart of X∆ corresponding to the cone τ of ∆. The open set Wτ is

the union of the strata M
τ ′

0,n as τ ′ ranges over all contractions of τ .

Proof of Proposition 4.1. Consider the closure Vτ ⊂M0,n of M
τ

0,n. The image of the

stratum M
τ

0,n under the map φ : M0,n → MF is a point if and only if the image
of Vτ is a point. The closure Vτ is covered by the collection of affine opens Wσ

corresponding to all trivalent trees σ that are expansions of τ . Suppose first that
there is a tree T in F contracting τ . By Lemma 4.2 for each such trivalent expansion
σ of τ the corresponding cone Cσ is contained in CT , and so the open affine Wσ is in
the preimage of the open affine MF ∩ UT . Thus the image of Vτ is contained in the
open affine MF ∩ UT , so must be a point, as Vτ is proper.
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Suppose now that φ(Vτ ) is a point p. Let σ be a trivalent expansion of τ , and let
T be the unique tree in F contracting σ. By Lemma 4.2 the image of the point M

σ

0,n

is contained in the affine open MF ∩ UT and not in any other MF ∩ UT ′ for T ′ ∈ F
with T ′ 6= T . Since that image is p for all such σ, the same tree T ∈ F must contract
all trivalent trees σ refining τ . Therefore, any division of τ is also a division of T , and
so T must be a contraction of τ . �

A special case of Proposition 4.1 characterizes which F -curves are contracted by
the morphism φF . An F -curve corresponds to a tree τ which is trivalent except for a
single 4-valent vertex v. By Proposition 4.1, an F -curve is contracted if and only if
some contraction of τ is in F . A consequence of the third condition of Definition 2.3
is that whether an F -curve is contracted only depends on the 4-way partition part(v),
and thus if one F -curve is contracted, so are all others numerically equivalent to it.

We now refine Proposition 4.1 by describing in more detail the image in MF of a
stratum M

τ

0,n when it is not just a point. To do this, we work with cross-ratios xij;kl
as coordinate functions on open charts of MF and XF . Geometrically, the cross-ratios
restricted to M0,n are the composition of a forgetful map to M0,4 followed by an
identification of the latter with P1 \ {0, 1,∞}. We follow the convention that this
identification comes from taking the point labelled i to ∞, the point labelled j to 0,
the point labelled k to 1, and recording the location of the the point labelled l. This
means that the cross-ratio of points (zi : 1), (zj : 1), (zk : 1), (zl : 1) ∈ P1 is given by
the rational function (zi − zk)(zj − zl)/(zj − zk)(zi − zl). On M0,n this translates into
the rational function

xij;kl = xikxjl/xilxjk.

Thus xij;kl is the character of the (
(
n
2

)
− n)-dimensional torus corresponding to

fij;kl ∈M .
The cross-ratios generate the characters of the torus, and thus the ring of regular

functions on M0,n, but it is also sufficient to use a proper subset of them.

Lemma 4.3. For any partition I, Ic into two parts, with |I|, |Ic| ≥ 2, the set {xij;kl :
i, j ∈ I, k, l 6∈ I} generates the ring of regular functions on M0,n.

Proof. We need to show that every cross-ratio xij;kl can be written as a rational
function in the given cross-ratios, where the denominator does not vanish on M0,n.
First suppose that {i, j, k, l} has two elements in common with the set I. The relations
xij;kl = xkl;ij = 1− xik;jl and xij;kl = xil;jk/(xil;jk − 1) can then be used to permute
the indices so that the first two are in I, and thus write xij;kl as a rational function
of the given cross-ratios. Note that the only denominator introduced has the form
xil;jk − 1, which is invertible on M0,n, as cross-ratios never take the values 0 or 1 on
M0,n.

Second, suppose that |{i, j, k, l} ∩ I| has more than two elements. Then, since
xij;kl = xkl;ij, we may assume that i, j ∈ I. Choose an index m distinct from i, j, k, l
such that m /∈ I. We then write xij;kl = xim;klxmj;kl. Since |{i,m, k, l} ∩ I| =
|{m, j, k, l} ∩ I| = |{i, j, k, l} ∩ I| − 1, after possibly repeating this argument, we
have reduced to the first case. By replacing I by Ic, the same argument works when
|{i, j, k, l} ∩ I| < 2, which completes the proof. �
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Lemma 4.4. Let T be a tree in an admissible collection F . Then xij;kl is a regular
function on MF ∩ UT if the restriction T |{i,j,k,l} is trivalent with i and l not in the
same split.

Proof. A cross-ratio xij;kl is a regular function on an affine open UT ⊆ XF if and only
if fij;kl is a non-negative function on CT , by the characterization of regular functions
on a toric variety. The lemma then follows from Proposition 3.3. �

We now describe the image of a stratum M
τ

0,n in MF . Recall that for any tree τ ,

the stratum M
τ

0,n is canonically identified with the product
∏

vM0,link(v), where v
ranges over all non-trivalent vertices of τ and link(v) refers to the set of edges incident
to v. Fix a tree τ and an admissible collection of trees F . We let A denote the set of
vertices v of τ such that part(v) is an admissible partition of F . Let M

τ,A
0,n denote the

partial compactification of M
τ

0,n obtained by taking the union of M
τ

0,n with M
τ ′

0,n for
all expansions τ ′ of τ at vertices in A. We then have the analogous factorization:

(5) M
τ,A
0,n
∼=
∏
v∈A

M0,link(v) ×
∏
v 6∈A

M0,link(v)

Proposition 4.5. Fix a tree τ and an admissible collection F of trees. Let A be
the set of vertices of τ with admissible partitions, as above. Then the restriction of

φF : M0,n →MF to M
τ,A
0,n is the projection to the factor

∏
v 6∈AM0,link(v) of (5).

The image φF(M
τ

0,n) is equal to φF(M τ ′
F ), where τ ′ is formed by contracting all

edges whose refined partition is admissible.

Proof. The fact that the map factors through the projection is vacuous when A is
empty, so for the first part we assume that there is a vertex v in A, with part(v) is an
admissible partition of F . Choose an expansion τ̃ of τ that does not change part(v),
but is trivalent at the vertices other than v. By Lemma 2.6 there is a contraction of

τ̃ contained in F . By Proposition 4.1, M
τ̃

0,n is mapped to a point by φF .

Now, let V denote the set of all vertices of τ so that, in the above notation, M
τ,V

0,n

is the closure of M
τ

0,n in M0,n. Then we can factor M
τ,V

0,n as follows:

(6) M
τ,V

0,n = M0,link(v) ×
∏
v′ 6=v

M0,link(v′)

Note that M
τ̃

0,n is contained M
τ,V

0,n , and has the form M0,link(v) × x for some point
x in the second factor of (6). This allows us to apply Mumford’s rigidity lemma
[Mum08, p. 40]. Recall that this states that if ψ : X × Y → Z is a morphism of
integral varieties, with Y proper, and such that the image of x×Y is a point, for some
point x ∈ X, then the morphism factors through the projection to X. This implies

that the restriction of φF to M
τ,V

0,n factors through the second factor,
∏

v′ 6=vM0,link(v′),

of (6). Repeating this argument for all the vertices in A, we get that φF restricted to

M
τ,V

0,n factors through
∏

v/∈AM0,link(v).
It now remains to show, whether A is empty or not, that the factored map from∏
v 6∈AM0,link(v) to MF maps the interior

∏
v 6∈AM0,link(v) isomorphically onto its image.

Let τ ′ be a trivalent expansion of τ and let T be the unique contraction of τ ′ that lies
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in F . The cone of ∆ corresponding to the stratum M
τ

0,n is contained in Cτ ′ , which is
contained in CT , and so φ(M τ

0,n) is contained in the open UT ⊂MF . The fact that φF
factors through the product, and that it is surjective onto its image, means that the
coordinate ring of the image injects into the coordinate ring of product

∏
v 6∈AM0,link(v).

To complete the proof of the first claim it suffices to show that this injection is also a
surjection. We thus want to show that every regular function on

∏
v 6∈AM0,link(v) is

the pullback of a regular function on UT .
To do this, we choose cross-ratios xij;kl that are regular functions on UT and

that generate the ring of regular functions on
∏

v 6∈AM0,link(v). Pick a non-trivalent
vertex v 6∈ A of τ , which must exist by Proposition 4.1. In τ ′ the vertex v is expanded
to multiple edges, and, since part(v) is not admissible, there exists at least one edge e
that is not contracted in T . Let I denote the split at e. For any i, j ∈ I and j, k 6∈ I,
the cross-ratio xij;kl is a regular function on UT by Lemma 4.4.

Now we consider the restriction of xij;kl to
∏

v′ 6∈AM0,link(v′). We claim that this
restriction is a non-zero constant times the cross-ratio xeiej ;ekel on the factor M0,link(v),
where ei denotes the edge incident to v in the path from v to i and analogously for
ej, ek, and el. This claim can be seen by considering the modular interpretation of
the cross-ratio as the forgetful map to the indices {i, j, k, l}. If we forget the vertices
other than these four, then all the components of a stable curve corresponding to a
point of M

τ

0,n will be contracted except for the one corresponding to the vertex v, on
which the marked points i, j, k, and l will end up where the nodes corresponding
to ei, ej, ek, and el were, so the restriction of xij;kl is xeiej ;ekel . These cross-ratios
generate the ring of regular functions on M0,link(v) by Lemma 4.3. Therefore, as v
varies over all vertices of τ that are not in A, we get a generating set for all regular
functions on

∏
v′ 6∈AM0,link(v′).

For the second claim, note that a consequence of the first claim is that if τ ′ is an

expansion of τ at vertices v in A, then φ(M
τ

0,n) = φ(M
τ ′

0,n). We can thus replace τ
with the tree formed by contracting an edge e whenever the vertex formed by the
contraction has admissible partition. After repeatedly contracting edges, the refined
partition of every edge of τ will be not admissible. �

Definition 4.6. A tree τ is F-stable for an admissible collection of trees F if the
refined partition of every edge is not admissible. For an F -stable tree τ , we write M τ

F
for φF(M

τ

0,n).

We finish by showing that the sets M τ
F stratify MF . As with the strata of M0,n, these

sets are products of lower-dimensional moduli spaces. In particular, by Proposition 4.5,

M τ
F
∼=
∏
v

M0,link(v),

where the product is over all vertices v of τ such that part(v) is not admissible. To
prove the stratification, we need the following variation on Lemma 4.4 to describe the
behavior of cross-ratios on neighborhoods of strata M τ

F :

Lemma 4.7. If τ is an F-stable tree, then xij;kl is a regular function in a neighborhood
of M τ

F when the restriction τ |{i,j,k,l} is one of the following:

(1) a trivalent tree with split {i, j}, in which case xij;kl is identically 1 on M τ
F ,
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(2) a trivalent tree with split {i, k}, in which case xij;kl is identically 0 on M τ
F ,

(3) a star tree whose central vertex v has non-admissible partition in τ , in which
case xij;kl ranges over A1 \ {0, 1}.

Proof. The stratum M
τ

0,n of M0,n is contained in the affine open WT for any trivalent
expansion T of τ . If τ is in the last case, we choose T to be any expansion such that
T |{i,j,k,l} does not have {i, l} as a split. Let T ′ be the unique contraction of T in F .
If T ′|{i,j,k,l} is a star tree, then T ′ contracts all of the edges of T that map to the
vertex v of τ , which means that T ′ contains a vertex whose partition is a refinement of
part(v). This contradicts the assumption that part(v) is not admissible, so T ′|{i,j,k,l}
is a trivalent tree without {i, l} as a split, and thus xij;kl is a regular function on
MF ∩ UT ′ by Lemma 4.4.

Now suppose that τ is in one of the first two cases. Let let P be the subtree of τ
that becomes the unique internal edge of the restriction τ |{i,j,k,l}. In this case, we
choose T to be a trivalent expansion of τ such that for each vertex v of P , all of the
edges of the expansion of v are added to the path P , so are in the internal edge of
T |{i,j,k,l}. Again, let T ′ be the unique contraction of T in F . If T ′|{i,j,k,l} is the star
tree, then T ′ contracts all of the edges in P and all of the expansions of the vertices
in P , leaving a vertex whose partition is a refinement of the refined partition of each
edge of P . This means that the refined partition of each edge of P is admissible, which
contradicts the the assumption that τ is F-stable. Therefore T ′|{i,j,k,l} is trivalent,
and so xij;kl is a regular function, again by Lemma 4.4.

To prove the statements about the range of xij;kl, it suffices to look at the cross-ratio

on the stratum M
τ

0,n, because this projects surjectively onto MF . By definition, M
τ

0,n

consists of points corresponding to stable curves with dual graph equal to τ . The
cross-ratio is a coordinate for the forgetful map defined by the 4 indices i, j, k, and l.
This forgetful map sends a stable curve with dual graph τ to a curve whose dual
graph is the restriction τ |{i,j,k,l}. In the first two cases from the lemma statement, this

restriction is a trivalent tree, corresponding to a single point on M0,4, and verifying
the particular value of the cross-ratio is a computation. In the third case, τ |{i,j,k,l} is a
star tree, so the image of the forgetful map is M0,4, which is isomorphic to A1 \ {0, 1}
via the cross-ratio, as claimed. �

Proposition 4.8. The compactification MF is stratified by the locally closed sets M τ
F

as τ ranges over all F-stable trees. The closure of M τ
F is the union of all strata M τ ′

F
for which there exists an expansion τ ′′ of τ that is also an expansion of τ ′ at vertices
with admissible partitions.

Proof. Since M0,n is stratified by the M
τ

0,n, MF is the union of φF(M
τ

0,n) as τ ranges
over all trees τ . By Proposition 4.5 we can contract all edges of τ whose refined
partitions are admissible without changing the image φF(M

τ

0,n) and thus, φF(M
τ

0,n)

equals M τ ′
F for τ ′ the maximal such contraction and these sets cover MF .

Let τ and τ ′ be distinct F -stable trees. We first show that M τ
F and M τ ′

F are disjoint.
Suppose that there exists a split I of τ which is incompatible with some split J of τ ′.
Then we can choose i, j, k, and l from I ∩ J , I ∩ J c, Ic ∩ J , and Ic ∩ J c so that
that xij;kl is defined on an open set containing both M τ

F and M τ ′
F by Lemma 4.7.
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Moreover, xij;kl takes distinct values on these two sets, since the restrictions τ |{i,j,k,l}
and τ ′|{i,j,k,l} are distinct trivalent trees.

On the other hand, suppose that every split of τ is compatible with every split of
τ ′. Then, the union of these splits defines a tree T which is an expansion of both τ
and τ ′. Suppose further that this expansion only expands vertices of τ and τ ′ with
admissible partitions. In that case, since τ and τ ′ are F-stable, they must be both
be the contraction of all edges of T whose refined partitions are admissible. This
contradicts our assumption that τ and τ ′ are distinct.

Therefore, without loss of generality, we may assume that T expands a vertex v
of τ such that part(v) is not admissible. Choose an edge of T expanding v, with
corresponding split I, and pick indices i, k ∈ I, j, l ∈ Ic. Since I is not a split of τ ,
it must be a split of τ ′. By Lemma 4.7, xij;kl = 0 on M τ ′

F , but it is non-zero on M τ
F

since τ |{i,j,k,l} is a star tree. This again shows that M τ
F and M τ ′

F are disjoint.

Finally, we need to prove the claim about the closure of M τ
F . Since M τ

F = φF(M
τ

0,n)

and the closure of M
τ

0,n is proper and is the union of all strata indexed by expansions

of τ , the closure of M τ
F is the union of φF(M

τ ′′

0,n) as τ ′′ ranges over expansions of τ . If we

contract the edges of τ ′′ whose refined partitions are admissible, then φF(M
τ ′′

0,n) = M τ ′
F

for some τ ′ ∈ F , and so we obtain the description from the proposition statement. �

5. Smyth modular compactifications

In [Smy13] Smyth gives a combinatorial construction, indexed by an “extremal
assignment”, of a modular compactification of M g,n. In this section we show that in
genus zero these are, up to normalization, examples of tree compactifications. We
recall our convention from Definition 2.1 that a tree always has internal vertices of
degree at least 3 and its leaves are labeled by [n]. A genus zero extremal assignment
assigns to each tree T a subset Z(T ) of the internal vertices of T such that:

(1) For any tree T , there is at least one internal vertex not in Z(T ).
(2) For any map of trees φ : T ′ → T , we have v ∈ Z(T ) if and only if φ−1(v) ⊆

Z(T ′).

Smyth’s description for general g has the extra requirement that for a graph G of
genus g, Z(G) is invariant under Aut(G). This condition is vacuous in genus 0, as
trees with labelled leaves have no automorphisms.

Trees with labelled leaves are the set of dual graphs of stable genus 0 curves
with n marked points. For a curve C with dual graph T , the set Z(T ) defines a
distinguished collection of irreducible components of the curve. A reduced, marked,
genus 0 curve (C, p1, . . . , pn) is Z-stable if there is (C ′, p′1, . . . , p

′
n) and a surjective

morphism π : C ′ → C with π(p′i) = pi and connected fibers such that π contracts
a connected component Y of the distinguished collection of components of C ′ to a
(possibly singular) point of C with multiplicity |Y ∩ Y c|. In [Smy13, Theorem 1.21]
Smyth shows that the moduli space M0,n(Z) of Z-stable curves is an algebraic space.

We first show that all such compactifications are, up to normalization, tree com-
pactifications. From an extremal assignment Z, we construct an admissible collection

of trees FZ with n labels and an admissible collection F̃Z of trees on n+ 1 labels. We
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I1

I2 I3

Im

...e
v′

Figure 4. The tree T ′ used in the proof of Proposition 5.2 to show
that the partitions of Z are closed under coarsening.

will show that MFZ is the normalization ofM0,n(Z), and MF̃Z is the universal family
of this moduli space.

Definition 5.1. Let Z be an extremal assignment. Set FZ to be the set of all trees
T with n leaves such that no two vertices in Z(T ) are adjacent and such that all

non-trivalent internal vertices of T are in Z(T ). Set F̃Z to be the set of all of trees T̃

with n+ 1 leaves such that the restriction T = T̃ |[n] is in FZ and T̃ is the result of
attaching n+ 1 either to a vertex of Z(T ) or to an edge that is not incident to any
vertex of Z(T ).

Proposition 5.2. Both FZ and F̃Z are admissible collections of trees.

Proof. We prove both claims by appeal to Proposition 2.10. Let P be the set of all
partitions that either have at most 3 parts or are of the form part(v) for a vertex
v in Z(T ) for some tree T . Note that if T ′ is any other tree with a vertex v′ such
that part(v) = part(v′), then T and T ′ both have a common contraction formed
by contracting all internal edges not incident to v or v′. By the assumptions on
an extremal assignment, v′ is also in Z(T ′). In other words, whether a vertex v of
a tree T is in Z(T ) only depends on the partition part(v). We will refer to such
partitions as the partitions of Z.

Now we check the conditions in Definition 2.7. First, any partition into at most
3 parts is in P by assumption. Second, if T is the star tree, then the definition of
an extremal assignment makes the assumption that the central vertex is not in Z(T )
and therefore {1}, . . . , {n} is not in P .

For the third condition, we claim that if σ′ is a coarsening of σ with at least 3 parts,
and σ is a partition of Z, then σ′ is also a partition of Z. Since partitions σ′ with at
most 3 parts are in P automatically, this claim will suffice to prove that P is closed
under coarsening. It is enough to prove the claim when σ′ is formed by merging the
first two parts of σ, whose parts we denote by I1, . . . , Im. In that case, let T ′ be a tree
as in Figure 4, where the edge e has refined partition σ and let T be the contraction
of the edge e to form a vertex v. Since σ is assumed to be a partition of Z, we have
v ∈ Z(T ), and so its two preimages are also in Z(T ′). Therefore, σ′ = part(v′) is a
partition of Z, which proves the claim.

For the fourth condition, suppose that π = I1, . . . , Il is a partition and r and s are
positive integers such that r + s < l and the two partitions formed by merging the
first r and the last s parts of π, respectively, are both in P . Consider the tree T as in
Figure 2, where the refined partition of e is π. Let T ′ and T ′′ be the trees formed
by contracting either of the edges e and e′, respectively. The vertices formed by
the contracting e or e′ have partitions in P , so are in Z(T ′) and Z(T ′′), respectively.
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I1

Ir

...
v

Ir+2

Il

...e
v′

Figure 5. The tree T used in the proof of Proposition 5.2 for checking
the fourth axiom of admissible partitions for the set P̃ .

Therefore, the three vertices of e and e′ of T are also similarly in Z(T ) and so the
vertex formed by contracting both e and e′ is in Z(T ′′′). Since the partition of this
vertex is I1, . . . , Il, this shows that π is in P , as desired, and so FZ is an admissible
collection of trees.

Let P̃ be the collection of partitions π of [n + 1] such that either π has at most
three parts, or n+ 1 is not a part of π and the result of removing n+ 1 from π lies in
P, or n+ 1 is a part of π and the result of removing n+ 1 from π is a partition of
Z. We next show that this is an admissible collection of partitions, and F̃Z is the
corresponding admissible collection of trees.

We first show that this is indeed an admissible collection of partitions. Again, the
first axiom follows from the construction and the second follows from the fact that
the central vertex of a star tree T is not in Z(T ).

If σ ∈ P̃, then the restriction to [n] of a coarsening σ′ of σ is a coarsening of the
restriction of σ′, so lies in P̃ because P is an admissible collection of partitions. This
shows the third axiom.

For, the third axiom, we take a coarsening σ′ of σ ∈ P̃. We may assume that σ′

has at least 4 parts. The result of removing n+ 1 from σ′ is a coarsening of the result
of removing n+ 1 from σ. This suffices to show that σ′ ∈ P̃ if n+ 1 is not a part of
σ′, as the result of removing n+ 1 from σ ∈ P̃ lies in P . If n+ 1 is a part of σ′, then
it is also a part of σ, and so the result of removing n+ 1 from σ is a partition of Z.
The same is true for any coarsening, so again σ′ ∈ P̃ .

For the fourth axiom, we suppose that π = I1, . . . , Il is a partition of [n+ 1] and r
and s are positive integers with r + s ≤ l − 1 such that merging the first r or last
s parts of π yields partitions in P̃. If r or s equals 1, then the condition is trivial,
and so we can assume that r, s ≥ 2, which means that the partitions after merging
each have at least 4 parts. If n + 1 is not a part of the merged partition then this
follows from the same axiom for P , so we may assume that n+ 1 is one of Ir+1, ,̇Il−s.
If r + s < l − 1, then the result of removing n+ 1 from the original partition is again
a partition satisfying the conditions of this axiom for P , and we get that the result of
removing n+ 1 from the merged partition is again a partition of Z by the argument
given for P . We may thus reduce to the case that r + s = l − 1.

We now assume that r + s = l − 1, with Il−s = Ir+1 = {n+ 1}. Consider the tree
T shown in Figure 5. If I1, . . . , Ir, {n+ 1}, Ir+2 ∪ · · · ∪ Il is in P̃, then the vertex v
of T must be in Z(T ), and similarly if I1 ∪ · · · ∪ Ir, {n+ 1}, Ir+2, . . . , Il is in P̃ , then
v′ is in Z(T ). Contracting the edge e of T yields a tree T ′ with a vertex in Z(T ′),
showing that I1, . . . , Il is in P̃ . �
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j

k

k′

j′i′

i

v v′

Figure 6. Arrangement of the leaves i, j, k, i′, j′, and k′ on the tree
T considered in the proof of Lemma 5.3. The leaves i and i′ can be
placed anywhere in the regions indicated by dashed lines, not including
the vertices v or v′, which are assumed to be trivalent.

We will show that the map MF̃Z →MFZ is a flat family satisfying Smyth’s moduli
problem for the extremal assignment Z. We first prove the following step in that
direction:

Lemma 5.3. The map MF̃Z →MFZ is a flat family with reduced fibers.

Proof. The statement is local on MFZ , so it suffices to work with an affine chart
UT ∩ MFZ corresponding to a single tree T ∈ FZ . We write W ⊂ MF̃Z

for the
preimage of UT ∩MFZ . Let S denote the set of unordered triples {i, j, k} ⊂ {1, . . . , n}
such that the unique internal vertex of the restriction of T to {i, j, k} is not in
Z(T ). For {i, j, k} ∈ S, the forgetful morphism M0,n+1 →M0,{i,j,k,n+1} extends to a

morphism W → M0,{i,j,k,n+1}. Indeed, coordinates on M0,{i,j,k,n+1} can be given by
the cross-ratio xij;k(n+1) or a cross-ratio given by a permutation of these indices. Then,
Lemma 4.4 shows that one of these permutations is a regular function on UT̃ ∩MF̃Z
for any T̃ having T as a restriction. Let ψ : W → (UT ∩MFZ )×∏ijk∈SM0,{i,j,k,n+1}
be the product of the projection and these forgetful morphisms. We will show that
ψ is a closed immersion, which means that the fibers of W → UT ∩MFZ are closed
subschemes of

∏
ijk∈SM0,{i,j,k,n+1}.

We now want to show that the fibers of W → UT ∩MFZ are reduced subschemes
of the product

∏
ijk∈SM0,{i,j,k,n+1} ∼= (P1)S. We do that by finding explicit equations

for W as a subscheme of (UT ∩MFZ )×∏{ijk∈S}M0,{i,j,k,n+1}, which give a Gröbner

basis on each fiber, as a subscheme of
∏
{ijk∈S}M0,{i,j,k,n+1}. This Gröbner basis will

show that the fibers are reduced and all have the same Hilbert function, from which
we can conclude that W → UT ∩MFZ is flat.

Let {i, j, k} and {i′, j′, k′} be two triples in S and we will given an equation
on (UT ∩MFZ ) ×M0,{i,j,k,n+1} ×M0,{i′,j′,k′,n+1} which pulls back to an equation on
U × (P1)S which vanishes on ψ(W ). We let v and v′ be the unique internal vertices
of the restriction of T to these triples {i, j, k} and {i′, j′, k′}, respectively. By the
definition of FZ , both v and v′ must be trivalent vertices of T . If v and v′ are distinct,
we can assume that the path from v to v′ shares edges with the path from v to i and
also with the path from v′ to i′. Moreover, we can assume that the path from v to j
and from v to i′ don’t share an edge, and similarly with the paths from v′ to j′ and i.
Thus, T restricted to these labels is as depicted in Figure 6.
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We claim that the following equation on (UT ∩MFZ )×M0,{i,j,k,n+1}×M0,{i′,j′,k′,n+1}
pulls back to an element of the ideal of the image of ψ:

(7) uj′i′k′ujik − xj′i′;k′jwj′i′k′ujik − xji;kj′uj′i′k′wjik + xj′i′;k′jxji;ki′wj′i′k′wjik

Here we give the equation using ujik and wjik as homogeneous coordinates on
M0,{i,j,k,n+1} such that the cross-ratio is equal is equal to the rational function ujik/wjik.
One can check that (7) vanishes on the image of M0,n+1 by reweriting it in terms
of the x variables and then expanding those using their definitions as cross-ratios.
We also need to show that each of the variables xj′i′;k′j, xji;kj′ , and xji;ki′ are regular
functions on MFZ ∩ CT . For the first two variables, this is because the corresponding
restrictions T |{j′,i′,k′,j} and T |{j,i,k,j′} have splits {j′, k′} and {j, k}, respectively, and
the claim then follows from Lemma 4.4. For xji;ki′ , the restriction T |{j,i,k,i′} to these
four labels can have either the splits {j, k} or {j, i}, but Lemma 4.4 proves the claim
in either case.

Therefore, if we consider a fixed point of UT ∩MFZ , then its fiber in W can be
considered as a closed subscheme of

∏
{i,j,k}∈SM0,{i,j,k,n+1} whose defining ideal I

contains a bilinear equation for every pair of factors, which is obtained by specializing
the x variables in (7). In any term order for which ujik > wjik for all triples {i, j, k}
in S, the initial ideal of I contains uj′i′k′ujik for all pairs of a triple {i, j, k} and a
triple {i′, j′, k′} in S. These monomials define a reduced union of coordinate lines
in the product (P1)S with multidegree (1, 1, . . . , 1). Any larger ideal would have
a smaller multidegree, and thus to show that these monomials uj′i′k′ujik generate
the entirety of the initial ideal of I, it is sufficient to show that I has multidegree
(1, 1, . . . , 1). However, over a generic point of UT ∩MFZ , the fiber is a smooth P1,
which maps isomorphically onto each factor M0,{i,j,k,n+1}, and therefore embedding of
the generic fiber under ψ has multidegree (1, 1, . . . , 1). By the upper semicontinuity
of multidegrees in projective families, I must also have multidegree (1, 1, . . . , 1), and
so is generated by bilinear equations, which form a Gröbner basis.

Since the ideal I has the same square-free initial ideal for any point in UT ∩MFZ , I
is radical and has constant Hilbert function. Therefore, the morphism W → UT ∩MF
is flat and its fibers are reduced, which completes the proof. �

The second ingredient we need in order to satisfy Smyth’s moduli problem is to
construct the sections of the map MF̃Z

→MFZ corresponding to the marked points.
The images of these sections are closures of strata as in Section 4, and the morphism
is given by the following lemma.

Lemma 5.4. Let τi denote the tree having a single internal edge with split {i, n+ 1}.
The closure Di of the stratum M τi

F̃Z
is a section of the map MF̃z

→MFZ .

Proof. We exhibit a section morphism MFZ → MF̃Z
whose image is the divisor Di

using the restriction of a toric morphism. We first describe the closed toric subvariety
of XF̃Z

corresponding to the ray v{i,n+1}. The fan of this toric variety lives in the
quotient vector space NR/〈v{i,n+1}〉, where 〈v{i,n+1}〉 is the span of v{i,n+1}, and has

a cone CT̃/〈v{i,n+1}〉 for each tree T̃ ∈ F̃Z for which {i, n + 1} is a division. Such
trees are in bijection with the trees T of F by attaching the label n+ 1 either to the
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internal vertex adjacent to i or to the leaf edge incident to i, depending on whether
the vertex is or is not in Z(T ), respectively.

If we instead look at the fan ∆n+1 of phylogenetic trees with n + 1 labels, then
the quotients of the cones of ∆n+1 that contain the ray v{i,n+1} form the fan ∆n,

embedded in a linear subspace of dimension
(
n−1

2

)
− 1 in NR/v{i,n+1}. This is a

combinatorial analogue of the factorization of boundary strata of M0,n given in the
text after Lemma 4.4. In particular, the image of the rays vI corresponding to splits
I compatible with {i, n + 1} are arranged as the rays of ∆n. We claim that if we
construct the fan XF using these rays, then each cone is contained in a single cone of
the link of v{i,n+1} in XF̃ . This is the combinatorial input necessary for the claimed
toric morphism.

To see the claim, let T̃ be a tree in F̃Z and let T = T̃ |[n] ∈ FZ be its restriction. If

T̃ is formed by attaching n+ 1 to a leaf edge incident to i in T , then CT̃ is the cone
generated by the vectors vI where I is compatible with {i, n+ 1}, and its quotient
CT̃/v{i,n+1} is naturally identified with CT by the previous paragraph. On the other

hand, if T̃ is formed by attaching n+ 1 to a vertex of T , then let T̃ ′ be the expansion

of T̃ at that vertex which has {i, n+ 1} as a split. Then CT̃ ′ ⊂ CT̃ , and CT̃ ′/v{i,n+1}
can be identified with CT , as before, and so we have the desired inclusion, which gives
us the necessary section morphism. �

Proposition 5.5. The family MF̃Z →MFZ satisfies Smyth’s moduli problem for the
extremal assignment Z.

Proof. By Lemma 5.3, the map MF̃Z →MFZ is flat and its fibers are reduced, and by
Lemma 5.4, we have the necessary section morphism, so we just need to check that
the fibers have the right topology, using Proposition 4.8.

We fix a tree τ on [n] corresponding to a stratum M τ
FZ ⊂ MFZ . The preimage

of this stratum in MF̃Z is the union of strata M τ̃
F̃

such that τ̃ is a tree on [n + 1],

satisfying the conditions of Proposition 4.8, and agreeing with τ when restricted to [n].
We claim that if τ̃ is obtained from τ by attaching the label n+ 1 to either a vertex
or edge of τ , then τ̃ satisfies the conditions of Proposition 4.8 if and only if n+ 1 is
not attached to an edge e of τ with an endpoint v which is contained in Z(τ).

To prove the “only if” direction of this claim, we suppose that in τ̃ , n+1 is attached
to an edge e with an endpoint v ∈ Z(τ). Let ẽ be the subdivision of e containing v,
and then the partition of ẽ consists of {n+ 1} together with the parts of part(v). On
the other hand, we can find an expansion T of τ such that T ∈ FZ and there is a
vertex v′ ∈ T with part(v′) = part(v) and v′ ∈ Z(T ). Thus, we can attach n+ 1 to

the vertex v′ to get a tree T̃ ∈ F̃Z . The partition of v′ in this tree is equal to the
partition of v′ in T together with {n+ 1}, so τ̃ does not label a stratum of MF̃ in the
sense of Proposition 4.8.

Conversely, suppose that τ̃ is obtained from τ by attaching n+ 1 to either a vertex
or an edge whose endpoints are both not in Z(τ). If we attach n + 1 to a vertex,
then any edge partition of τ̃ , restricted to [n], is an edge partition of τ . Any such
edge partition is not admissible, so τ̃ is a valid stratum tree. On the other hand, if
we attach e to an edge with endpoints v, w 6∈ Z(τ), then the edge partitions for the
subdivisions of e, restricted to [n], are part(v) and part(w), which are not admissible.
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These strata are 1-dimensional fibrations over M τ
FZ when n + 1 is attached to a

vertex v 6∈ Z(τ) and 0-dimensional otherwise, which shows that the fibers have the
appropriate tree structure for Smyth’s moduli problem. �

Proof of Theorem 1.2. Let Z be an extremal assignment. By Proposition 5.5, the
family MF̃Z →MFZ satisfies the moduli problem associated to the extremal assign-
ment Z, so there is a morphism MFZ →M0,n(Z). We show that this map is bijective
by looking at a single stratum M τ

FZ for an FZ-stable curve τ . A curve C corresponding

to a point in M
τ

0,n has dual graph τ . The stabilization of C corresponding to a point
in M0,n(Z) contracts all the components corresponding to vertices in Z(τ). Thus, the

image of M
τ

0,n in M0,n(Z) is isomorphic to the product
∏

v∈V (τ)\Z(τ) M0,link(v). Since

Z(τ) is the same as the set of admissible vertices of τ , this image is isomorphic to M τ
FZ

by Proposition 4.5, showing that M τ
FZ maps bijectively onto its image in M0,n(Z).

Finally, we need to show that the image of a different stratum is disjoint from the
image of M τ

FZ in M0,n(Z). The curves that have the same stabilization as C either
have the same dual graph, or their dual graph is an expansion of τ at an admissible
vertex. Such expansions are not FZ-stable, so no other stratum map to the point
corresponding to C in M0,n(Z).

Therefore, MFZ →M0,n(Z) is bijective. Since it is also proper, it is finite, and thus
factors through the normalization of M0,n(Z), which coincides with the normalization
of MFZ , as claimed. �

6. Giansiracusa-Jensen-Moon’s GIT compactifications

In [GJM13] Giansiracusa, Jensen, and Moon studied compactifications of M0,n

coming from GIT quotients. For generic linearizations, these compactifications are
modular compactifications, as in the last section, and thus, up to normalization, tree
compactifications. However, there is also a natural way to associate tree compactifica-
tions to the compactifications coming from non-generic linearizations, such that there
exists a morphism from the normalization of the associated tree compactification to
the GIT quotient.

Let Ud,n = {(X, p1, . . . , pn) ∈ Cd × (Pd)n : pi ∈ X for all i}. There is an action
of SL(d + 1) on Ud,n, given by change of coordinates on each factor. Then, for
suitable linearizations, the GIT quotient Ud,n // SL(d + 1) is a compactification of
M0,n [GJM13, Thm. 1.1].

The construction of the GIT quotient depends on the degree d as well as linearization
parameters γ ∈ Q, and c ∈ Qn, which satisfy:

(8) d ≥ 1 0 < γ, ci < 1 (d− 1)γ + c[n] = d+ 1,

where for any subset I ⊂ [n], we define

cI =
∑
i∈I

ci

Motivated by their stability analysis, in [GJM13, Sec. 3.1], the authors define the
function:

φ(I, γ, c) =
cI − 1

1− γ
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We define the following function, which differs from σ in [GJM13, Sec. 3.1] only along
the walls of the GIT parameters:

(9) σ′(I) =


0 if cI < 1

bφ(I, γ, c)c+ 1 if 1 ≤ cI < c[n] − 1

d if cI ≥ c[n] − 1

By the proof of Lemma 3.1 in [GJM13], φ(I, γ, c) ≤ d− 1, and so σ′(I) ≤ d.
If I1, . . . , Im is a partition of [n], we define σ′(I1, . . . , Im) to be

∑m
j=1 σ

′(Ij). The

following lemma is similar to [GJM13, Lemma 3.2].

Lemma 6.1. Let I1, . . . , Im ⊂ [n] be disjoint, non-empty sets such that either the
union I = I1 ∪ · · · ∪ Im is not all of [n] or m ≥ 3. Then,

m∑
j=1

σ′(Ij) ≤ σ′(I).

Thus if I1, . . . , Im is a partition of [n] and m ≥ 3, then σ′(I1, . . . , Im) ≤ d.

Proof. Any set Ij with cIj < 1 does not contribute to the sum on the left and so can
be excluded. Doing so will decrease m, but will also ensure that I is a proper subset
of [n]. Also, if m = 1, then the statement is trivial. If there exists a j such that
cIj ≥ c[n] − 1, then by the disjointness, and the fact that I 6= [n] or m ≥ 3, we must
have cIk < 1 for all k 6= j, and so σ′(Ik) = 0. Therefore, in this case both sides of the
claimed inequality are equal to d.

Now, we are reduced to the case where σ′(Ij) = bφ(Ij, γ, c)c+ 1 for each j. Then,
we have

m∑
j=1

σ′(Ij) =
m∑
j=1

(⌊
cIj − 1

1− γ

⌋
+ 1

)
≤
⌊

m∑
j=1

cIj − 1

1− γ

⌋
+m

=

⌊
cI −m
1− γ

⌋
+m(10)

≤
⌊
cI −m
1− γ +

m− 1

1− γ

⌋
+ 1 = bφ(I, γ, c)c+ 1

In addition, we can bound (10) by:⌊
cI −m
1− γ

⌋
+m ≤ c[n] −m

1− γ +m =
c[n] −mγ

1− γ

=
d(1− γ) + 1 + γ −mγ

1− γ

= d+
1− (m− 1)γ

1− γ ≤ d+ 1

The first of these inequalities will be strict if I 6= [n] and the second will be strict if
m ≥ 3. We conclude that

∑m
j=1 σ

′(Ij) < d+ 1, but since it is an integer it must be at

most d. Therefore,
∑m

j=1 σ
′(Ij) ≤ min(bφ(I, γ, c)c+ 1, d) ≤ σ′(I) as required.

The last sentence then follows from the fact that σ′([n]) = d. �
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We define Fd,γ,c to be the set of all trees T such that each vertex v of T is
either trivalent or satisfies σ′(part(v)) = d, and such that for each edge e of T ,
σ′(part(e)) < d. In other words, we define Fd,γ,c to be the admissible collection of
trees whose admissible partitions are all partitions π that either have at most 3 parts
or such that σ′(π) = d.

Lemma 6.2. The collection of trees Fd,γ,c defines an admissible collection of trees.

Proof. We show that Fd,γ,c is an admissible collection of trees by showing that the
collection of partitions is an admissible collection of partitions using Proposition 2.10.
Thus, we need to check that the collection P of partitions π that either have at most
3 parts or have σ′(π) = d satisfies the conditions of Definition 2.7. The first condition
is immediate. The second condition holds because for any single index i, σ′({i}) = 0
and thus σ′({1} ∪ {2} ∪ · · · ∪ {n}) is also 0, which is less than d.

Third, suppose that π ∈ P and π′ is a coarsening of π. If π′ has 3 or fewer parts, then
it is automatically in P , so we may assume that π′ has at least 4 parts, which implies
that π does as well. In that case, Lemma 6.1 shows that d ≥ σ′(π′) ≥ σ′(π) = d,
which implies that π′ must be in P .

For the fourth condition in Definition 2.7, we suppose that I1, . . . , Il is a partition and
that r and s are positive integers such that r+ s < l and both I1∪ · · ·∪ Ir, Ir+1, . . . , Il
and I1, . . . , Il−s, Il−s+1∪· · ·∪Il are in P . If r or s is 1, then the condition is automatic,
so we may assume that r, s ≥ 2. Then both of the above partitions have at least 4
parts, and so Lemma 6.1 implies that

d = σ′(I1 ∪ · · · ∪ Ir, Ir+1, . . . , Il)

≤ σ′(I1 ∪ · · · ∪ Ir, Ir+1, . . . , Il−s, Il−s+1 ∪ · · · ∪ Il)
≤ d.

Therefore, these inequalities are equalities. In particular, by canceling, we get that
σ′(Il−s+1, . . . , Il) = σ′(Il−s+1 ∪ · · · ∪ Il). Thus,

σ′(I1, . . . , Il) = σ′(I1, . . . , Il−s, Il−s+1 ∪ · · · ∪ Il) = d,

and so the partition I1, . . . , Ir is in P . Thus, P is an admissible collection of partitions,
and so Fd,γ,c is an admissible collection of trees. �

For a fixed set I, the set of (γ, c) satisfying (9) with σ′(I) < d is open. Thus if γ
and c are fixed parameters and γ′ and c′ are sufficiently small perturbations, the set
of admissible partitions for (γ′, c′) is contained in that for (γ, c). Proposition 3.12
then then shows that there is a morphism MFd,γ′,c′ →MFd,γ,c . Such morphisms are

characteristic of variation of GIT [DH98,Tha96].
We say that the parameters γ and c are generic if φ(I, γ, c) is not an integer for

any I ⊆ [n].

Theorem 6.3. Let d, γ, and c be parameters satisfying the conditions in (8). Let

M̃Fd,γ,c denote the normalization of the tree compactification. There is then a birational

morphism M̃Fd,γ,c → Ud,n // SL(d+ 1). Moreover, if γ and c are generic, then there is
a bijective morphism MFd,γ,c → Ud,n //γ,c SL(d+ 1).
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Proof. For convenience, we abbreviate Fd,γ,c by F .
First, we assume that γ and c are generic. In this case, the GIT quotient

Ud,n //γ,c SL(d + 1) is isomorphic to M0,n(Zγ,c) by [GJM13, Thm. 5.8], where Zγ,c
is the extremal assignment that assigns to a tree T the set of vertices v such that
σ′(part(v)) = d. Here, we use the fact that for generic GIT parameters, our σ′ agrees
with the σ from [GJM13]. Thus, FZγ,c is the same admissible collection as F , and so
we have a bijective morphism MF →M0,n(Zγ,c) ∼= Ud,n //γ,c SL(d+ 1) by Theorem 1.2.

Second, we suppose that γ and c are not generic. We still have that the varieties
MF and Ud,n //γ,c SL(d+ 1) are birational to each other since they are both birational

to M0,n by Theorem 1.1 and [GJM13, Thm. 1.1], respectively. Let Γ be the closure
of the graph of this birational map in MF × Ud,n //γ,c SL(d+ 1). We claim that the
projection Γ→MF is finite, which, since this morphism is birational, will show that

the normalization morphism M̃F →MF factors as M̃F → Γ→MF . Composition of

the morphism M̃F → Γ with the second projection will then give the morphism from
the theorem statement.

For contradiction, we suppose that Γ→MF is not finite, which means that there
exists a curve C ∈ Γ that projects to a point in MF . In this case C must map to
a curve in Ud,n //γ,c SL(d + 1). Because we have proper birational morphisms from

M0,n to both MF and Ud,n //γ,c SL(d + 1), these factor through the graph to give a

proper birational morphism ψ : M0,n → Γ, which is thus surjective. Let C ′ be a curve
in the preimage ψ−1(C) that maps surjectively onto C. Then the image φF(C ′) is a
point in MF , while the image of C ′ in Ud,n //γ,c is a curve. Let τ be the tree labelling

the stratum M
τ

0,n that meets a dense open subset of C ′. As in Section 4, we use

the factorization M
τ

0,n
∼=
∏

v∈τ M0,link(v). Since φF(C ′) is a point, the description of

φF restricted to M
τ

0,n in Proposition 4.5 means that the projection of C ′ to a factor
M0,link(v) is a point whenever v is not an admissible vertex of τ .

Whether a curve in M0,n maps to a point in the projective variety Ud,n //γ,c SL(d+1)
depends only on the numerical class of the curve. Again, using the product structure∏

v∈τ M0,link(v), the numerical class of C ′ can be written as a sum of classes coming
from the factors. At least one of these curve classes must have positive degree in
Ud,n //γ,c SL(d+1). Therefore, we can replace C ′ with a curve C ′′ ∈M0,n, also meeting

the interior of M
τ

0,n such that the projection of C ′′ to M0,link(v) is a point except for a
single vertex v ∈ τ , which must be admissible by the previous paragraph. The curve
C ′′ thus also has φF(C ′′) a point.

Since M0,link(v) is not a point, v must be at least 4-valent, which, from our description
of the admissible partitions in F means that σ′(part(v)) = d. For 0 < ε � 1 we
choose

c′i = ci + ε
σ′(Ii)

|Ii|
γ′ = γ − ε d

d− 1
,

where Ii refers to the part of part(v) that contains the index i. The new parameters c′

and γ′ continue to satisfy the equality in (8) because σ′(part(v)) =
∑

I∈part(v) σ
′(I) = d.
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We claim that this perturbation leaves σ′(I) unchanged for all parts I in part(v).
First, if φ(I, γ, c) is an integer in the range 1 ≤ φ(I, γ, c) < d− 1, then

φ(I, γ′, c′) =
cI + εσ′(I)− 1

1− γ + ε d
d−1

This quantity will be at least as big as φ(I, γ, c) so long as

σ′(I)

d/(d− 1)
≥ cI − 1

1− γ = φ(I, γ, c).

The assumption on φ(I, γ, c) implies that cI < c[n]−1, so together with the integrality
assumption, we have σ′(I) = φ(I, γ, c) + 1, and, since σ′(I) ≤ d,

σ′(I)

d/(d− 1)
=
σ′(I)d− σ′(I)

d
≥ σ′(I)d− d

d
= φ(I, γ, c),

which verifies the desired inequality. Thus for sufficiently small ε we have that σ′(I)
is unchanged. Moreover, if φ(I, γ, c) is strictly less than d − 1, these inequalities
are strict. Second, if φ(I, γ, c) is not an integer or not in the specified range, then
choosing ε sufficiently small will also not change σ′(I).

Choose c′′ and γ′′ to be further perturbation of c′ and γ′ so that the parameters
are generic. The previous paragraph ensures that φ(I, γ′, c′) is not at one of the
thresholds in the definition of σ′ in (9), except possibly when φ(I, γ, c) = d−1. There
is at most one such set I in part(v), so we can further assume that the perturbation
is such that c′′i > ci for i in a set I such that φ(I, γ, c) = d− 1 if one exists. Then,
σ′(I) is again unchanged for all parts I of part(v), and so part(v) is an admissible
partition of Fd,γ′′,c′′ . Therefore, φFd,γ′′,c′′ (C

′′) is a point.
By the first part of the proof, and by the general theory of variation of GIT

[DH98,Tha96], respectively, we have two morphisms:

MFd,γ′′,c′′ → Ud,n //γ′′,c′′ SL(d+ 1)→ Ud,n //γ,c SL(d+ 1).

Thus, the curve C ′′ maps to a point in Ud,n //γ,c SL(d + 1), which contradicts our
construction of C ′′. Therefore, we conclude that there is no positive-dimensional fiber
of the projection Γ → MF , so the projection must be finite, which completes the
proof. �

Remark 6.4. The proof of Theorem 6.3 is indirect, passing through the modular
compactifications and not establishing a bijective morphism except for general GIT
parameters. We expect there to be a closer relationship between the GIT quotient
Ud,n //γ,c SL(d+ 1) and the tree compactification MFd,γ,c .

For example, in the d = 1 case, the Chow variety factor of U1,n is trivial and
U1,n
∼= (P1)n. By the Gelfand-MacPherson correspondence [GM82], the GIT quotient

of (P1)n can be recast as the GIT quotient of the Grassmannian Gr(2, n) by a (n− 1)-
dimensional torus. This torus acts by scaling the coordinates in the Plücker embedding
in projective space, so the quotient is a subvariety of the toric variety formed by
taking the quotient of projective space. Variation of GIT can be understood through
this toric GIT, and this is compatible with our construction of MF1,γ,c .
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7. Smooth tree compactifications

In this section we characterize smooth tree compactifications. These are special cases
of the Smyth modular compactifications considered in Section 5, and have a simpler
combinatorial description. The parameters in Smyth’s moduli problems can allow for
singularities worse than nodes and also for the marked points to coincide. However,
any smooth modular compactification, and indeed, any smooth tree compactification,
is isomorphic to a moduli space with only simple nodes, but possibly with coinciding
points.

Thus, the smooth tree compactifications include all of Hassett’s moduli spaces M0,a

of weighted stable curves of genus 0. Moreover, all smooth tree compactifications can
be described by a natural generalization of Hassett’s weight data a ∈ Rn, which is
the combinatorial weight data defined below.

One consequence of passing from Hassett’s weight vector to the combinatorial
weight data is that the resulting moduli spaces are no longer necessarily projective.
The first specific example of a non-projective Smyth modular compactification is
given in [MSvAX18], which is a smooth modular compactification.

Definition 7.1. A collection S of subset of [n] is called combinatorial weight data if
S has the following properties:

(1) Any I ∈ S has at least two elements.
(2) If I ⊂ J ⊂ [n] and I ∈ S, then J ∈ S.
(3) If I is any subset of [n], then either I or [n] \ I is in S.

The combinatorial weight data S describes a moduli problem via a translation into
Smyth’s extremal assignment which we give below. Roughly speaking, the moduli
problem described by S allows a set of marked points to coincide if and only if
the set of their indices is not in S. On the other hand, a curve containing a single
node is stable if also contains marked points indexed by a set in S. The standard
compactification M0,n corresponds to taking S to be all subsets of [n] with at least 2
elements.

More generally, any weighted moduli space of genus 0 curves in the sense of [Has03]
can also be described in terms of combinatorial weight data. Such a weighted moduli
space is given by a real vector a ∈ (0, 1]n such that

∑n
i=1 ai > 2. The corresponding

combinatorial weight data are the sets I such that
∑

i∈I ai > 1. However, there exist
combinatorial weight data that do not come from weight vectors.

In the description of smooth Smyth compactifications in [MSvAX18], the contraction
indicator is used, which is essentially the complement of the collection S. In particular,
the the collection C = {B ⊂ [n] : 2 ≤ |B|, B 6∈ S} is a contraction indicator in the
sense of [MSvAX18, Definition 7.5].

Definition 7.2. An internal vertex v tree T is an almost leaf if it is incident to only
one internal edge.

Definition 7.3. Given a combinatorial weight data S, we construct an admissible
collection FS consisting of all trees T such that:

(1) For each internal vertex v of T , either v is trivalent or v is an almost leaf with
the set of leaves adjacent to v not in S.
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(2) If e is an internal edge of T and I is the set of labels on one side of e, then
either I ∈ S or all the labels of I are attached to a single vertex.

In addition, we define an extremal assignment ZS which assigns to a tree T , the
set of vertices v of T such that there exists an edge e of T where the split of e
corresponding to the subtree containing v is not in the collection S.

Proposition 7.4. Given combinatorial weight data S, the collection FS from Defini-
tion 7.3 is an admissible collection and ZS is an extremal assignment. Moreover, the
extremal assignment ZS is the same as the extremal assignment constructed from FS
in the beginning of Section 5.

Proof. We first show that ZS is an extremal assignment. We show the second condition
on extremal assignments first. Suppose that T is a tree obtained by contracting an
edge e in a tree T . Let v, v′ be the two vertices of e, and let ṽ be the vertex of T
corresponding to e. We need to show that v, v′ ∈ ZS(T ′) if and only if ṽ ∈ ZS(T ).

Suppose that v, v′ ∈ ZS(T ′). The key point is that there must be an edge e′ 6= e,
such that one part of the split of e′ contains v and v′, and the set of labels of this part
is not in S. If not, then the split of T ′ containing v and not in S must not contain v′

and so must be defined by the edge e, and similarly for the split containing v′ and
not in S. However, then we would get that the two parts of the split at e are not in
S, which contradicts the third axiom of combinatorial weight data. This edge e′ then
certifies that ṽ is in ZS(T ). Conversely, if ṽ ∈ ZS(T ), then the edge e′ that certifies
this also gives that v, v′ ∈ ZS(T ′).

To see the first condition, if T is a tree with all vertices in ZS(T ), pick an internal
edge e of T , and contract all other edges to form a tree T ′. By the second condition
on extremal assignments we have that both vertices of T ′ are then in ZS(T ′). However
this means that both parts of the split at e are not in S, again contradicting the third
axiom on combinatorial weight data.

Next, we show that our definitions of the admissible collection FS and the extremal
assignment ZS are compatible. First suppose that T is a tree in FZS , and let v be
a vertex in ZS(T ) Since it is not adjacent to any other vertex in ZS(T ), the edge
whose split is not in S must be incident to v and, furthermore, must be the only
non-leaf edge incident to v. In other words, v is an almost leaf, and the set of leaves
incident to v must not be contained in S. By construction the vertices not in ZS(T )
are trivalent, so T is in the collection FS from Definition 7.3.

Conversely, for any tree T satisfying the conditions in Definition 7.3, ZS(T ) consists
of all the almost leaves v such that the set of labels adjacent to v is not an element
of S. The vertices in ZS(T ) are non-adjacent because if two almost leaves are adjacent,
then there is a single internal edge, and, in that case, the third axiom of combinatorial
weight data prohibits the possibility that sets of labels adjacent to both endpoints
of the internal edge are not in S. Moreover, the vertices not in ZS(T ) are trivalent,
so T is in FZS . Having shown the equality of FS and FZS , the admissibility of FS
follows from Proposition 5.2. �

We write MS for the tree compactification MFS .

Proposition 7.5. Fix a combinatorial weight data S. The compactifications MS and
M0,n(ZS) are isomorphic to each other and are smooth.
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Figure 7. A fuzzy tree

Proof. By Theorem 1.2, MS has a finite birational morphism to M0,n(ZS) and thus,
the claimed statements will follow from showing that M0,n(ZS) is smooth.

We fix a k′-point x in M0,n(Z), for an arbitrary extension k′ of our field k such that
x corresponds to a pointed Z-stable curve (C, p1, . . . , pn). By our condition on Z, the
curve C is nodal and although some of the points p1, . . . , pn may coincide, they are
all in the smooth locus of C. For each point of C with at least 1 marking, choose the
minimal index, and let A ⊂ [n] be the set of all such indices. In other words, if i ∈ A,
then pj 6= pi for j < i and if j /∈ A, then pj = pi for some i ∈ A. In particular, C,
together with the points pi for i ∈ A, defines a stable marked curve, and thus a point
in M0,A. Moreover, we can choose a neighborhood of x where the markings indexed
by A don’t coincide and continue to define a stable marked curve, therefore defining
a morphism π from this neighborhood to M0,A.

Since the curve C and the markings pi for i ∈ A are determined by π(x), each fiber
of π corresponds to a choice for the points pj for j /∈ A. The choice of these points
corresponds to a point in the (n− |A|)-fold product of the smooth locus of C, and
therefore a neighborhood of x is isomorphic to an open subset of the (n− |A|)-fold
fiber product of U over M0,A, where U is the subset of the universal family of M0,A

which is smooth over M0,A. Thus, π is a smooth morphism from a neighborhood of x
to M0,A, which is also smooth, and so M0,n(Z) is also smooth. �

The converse of Proposition 7.5 is also true: the smooth tree compactifications
are exactly the ones of the form MS. We begin by giving a criterion for a tree
compactification to be smooth on a standard affine open.

Definition 7.6. A tree T is a fuzzy tree if any non-trivalent vertices are almost leaves
and are not adjacent to each other.

Proposition 7.7. Let F be an admissible collection. An open affine MF ∩ UT is
smooth if and only if T is a fuzzy tree.

Proof. We first assume that T is a fuzzy tree. We need to show that MF ∩ UT is
smooth. For each non-trivalent vertex v of T , set Iv to be the set of indices adjacent
to the almost leaf v. Let S be the set of subsets of [n] of size at least 2 that are not
contained in any of the sets Iv. By construction, S satisfies the first two axioms of
combinatorial weight data. Since the non-trivalent vertices of T are not adjacent, it is



32 DUSTIN CARTWRIGHT AND DIANE MACLAGAN

not possible for the complement of a set Iv to coincide with Iw for another vertex w.
Therefore, if I is a subset of Iv, then its complement Ic is not a subset of any set Iw,
and therefore I is in S, which verifies the final axiom of combinatorial weight data.
Moreover, the original tree T is in the collection FS, so the cone CT also occurs in the
fan ΣFS . These cones yield toric varieties isomorphic via an extension of the identity
on the torus and thus, an isomorphism MF ∩ UT ∼= MFS ∩ UT . By Proposition 7.5,
MFS is smooth and therefore MF ∩ UT is also smooth.

We now show the converse. We show that if T is not a fuzzy tree, then there exists
a birational map with target MF ∩ UT that has an exceptional locus of codimension
at least 2. If MF ∩ UT were smooth, then van der Waerden’s purity theorem [EGA4,
Thm. 21.12.12] would imply that the exceptional locus is pure of codimension 1, so
MF ∩ UT must not be smooth. We first suppose that T has a non-trivalent vertex v
that is not an almost leaf. We let F ′ be the collection of trees formed from F by
replacing every tree T ′ that has a vertex v′ with part(v′) = part(v) by the set of all
maximal expansions of T ′ at v′. Then, F ′ is again an admissible collection of trees
and there is a birational morphism MF ′ →MF . Let τ be a tree corresponding to a
stratum of MF ′ . Then, Proposition 4.5 implies that this stratum will be exceptional
for MF ′ →MF if and only if τ has a vertex v′ with the same partition as v. However,
since the partition at v has two parts with of size at least 2, τ must have at least 2
internal edges, which means that it has codimension at least 2. Thus, MF ∩UT is not
smooth.

Second, suppose that T has a single internal edge and both internal vertices are
non-trivalent. We pick v to be one of these internal vertices and construct F ′ by
replacing all trees with the same partition as at v with the expansions, in the same
way as above. Again, a stratum indexed by τ is exceptional for MF ′ → MF if and
only if a vertex of τ has the same partition as v. Suppose τ is such a tree. If τ has
multiple internal edges, then the stratum has codimension at least 2. If τ has only
one internal edge, then τ = T and the stratum has dimension deg(v)− 3. Since the
other vertex of T is adjacent to at least 3 labels, deg(v) is at most n − 2, so this
stratum also has codimension at least 2. Thus, MF ∩ UT is again singular. �

Proposition 7.8. If F is an admissible collection such that every T ∈ F is a fuzzy
tree, then there exists a collection S such that F = FS.

Proof. We construct the set S as follows. We denote by JT,v the set of labels adjacent
to a non-trivalent almost leaf v in a tree T . Set S to be the set of all subsets I of [n]
of size at least 2 such that I 6⊆ JT,v for any non-trivalent almost leaf v of any T ∈ F .
The first two axioms for S are then satisfied by construction.

To prove that the third axiom for S is satisfied, suppose that I ⊂ [n] has size at
least 2 but is not in S. Then there is T ∈ F with I ⊆ JT,v, so the partition with with
parts {{i} : i ∈ I}∪Ic is admissible for F . Sets of size at least n−1 are automatically
in S, so |Ic| ≥ 2. If Ic 6∈ S, then the tree T with one internal edge that has split I has
the partition of both vertices admissible, so by Lemma 2.6 a contraction of T lies in
F . As the star tree is not in F , we must have T ∈ F . If |Ic| ≥ 3 then T is not a fuzzy
tree, so contradicts the assumption of the proposition. If |Ic| = 2 and Ic 6∈ S, then
there is a tree T ′ ∈ F with non-trivalent vertex v with Ic ( JT ′,v. Fix i ∈ JT ′,v ∩ I.
Then the tree T ′′ with one internal edge that has split I \ {i} also has both partitions
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admissible, so is also in F . But then any trivalent tree with splits I and I \ {i} has
two contractions in F , which contradicts F being an admissible collection of trees.

Finally, we show that F = FS. The above argument shows that every partition of a
tree in FS is admissible for F , so by Lemma 2.6 if T ∈ FS, then some contraction T ′

of T is in F . Suppose that e is an edge of T that is contracted in T ′. Since T ′ is a
fuzzy tree, the image of e must be an almost leaf v′ of T ′. Then we consider the set
JT ′,v′ 6∈ S, which is the split of the internal edge adjacent to v′, and thus is a split
of an edge e′ of T . By our construction of FS, this means that JT ′,v′ is the set of
leaves adjacent to a single vertex of T , which is a contradiction. Therefore, T ′ = T .
Thus FS ⊆ F , so the second axiom of admissible collections of trees implies that
FS = F . �

Definition 7.9. Suppose that S is combinatorial data and I is a subset of [n] not
contained in S. We write ZI for the closure in MS of the stratum M τ

S associated to
the tree τ that has a single internal edge with split I.

Remark 7.10. By definition, the locus ZI is the image of the boundary divisor in
M0,n corresponding to the tree τ , on which a generic point corresponds to a stable
curve with two components, one marked by the elements of I and the other by the
elements of Ic. Since I is not in S, such a curve is not stable according to the moduli
problem associated to MS, but we must instead contract the former component of the
stable curve, meaning that points labeled by I coincide and the others are distinct.
Therefore, as the closure of this stratum, ZI parametrizes any marked stable curve
where the points labeled by I coincide.

By replacing the coinciding labels with a single label, we can see that ZI is
isomorphic to M0,n−|I|+1. In particular, it is smooth of dimension n− |I| − 2. This
dimension can also as a consequence of the description of the dense stratum of ZI
given by Proposition 4.5.

Proposition 7.11. If S and S ′ are combinatorial weight data such that S ′ = Sq{I}
for some subset I ⊂ [n], then MS′ is the blow-up of MS along the smooth subvariety
ZI .

Proof. We first prove that the toric variety XFS′ containing MS′ is an open subset
of the blow-up of XFS . Indeed, to obtain FS′ from FS we replace every tree T ∈ FS
that has an almost leaf v whose set of adjacent labels equals I with the trees that
expand v into two extra edges, each of which ends in an almost leaf with labels I1, I2,
where I = I1 q I2. We now show that the cones CT ′ corresponding to these trees T ′

are cones induced by the stellar subdivision of a face of CT .
Let J be any division of T at v. By complementing, we may assume that J is a

subset of I. Then,

vJ =
∑
i,j∈J

eij =
∑
i,j∈J

v{i,j}.

Note that {i, j} is also a valid division of T at v. Therefore, whenever J has more
than two elements, it is not a ray of CT . In other words, we can rewrite CT as

CT = pos(vJ : J ∈ V) + pos(v{i,j} : i, j ∈ I),
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where

V = {vJ : J is a division of T that is not a division at the vertex v}.
Now we wish to show that the cone

C ′ = pos(v{i,j} : i, j ∈ I).

is a face of CT . The stellar subdivision of CT using this face contains the cones CT ′
for trees T ′ ∈ FS′ . Fix a division J from the collection V. After complementing if
necessary, we may assume that I ⊆ J . Choose i ∈ I, j ∈ J \ I, and k, l 6∈ J . If J
is a division at an almost leaf different from v then choose j not adjacent to this
vertex; this is possible because this vertex is not adjacent to v. Then by (2) we have
fik;jl ·vJ = 1, and fik;jl · emn = 0 for all m,n ∈ I. By Proposition 3.3 this functional is
non-negative on CT . Let f ∈M be the sum of all such fik;jl over all choices of divisions
J . Then the functional f is non-negative on CT , and the face it determines is For
fixed m,n ∈ I, adding the sum of all fij;kl with i, k ∈ I, j, l 6∈ I and {i, k} 6= {m,n}
to f shows that in addition v{i,j} is a ray of C ′ and thus CT .

Now consider a replacement tree T ′ corresponding to a choice I = I1 q I2. Then,
we have:

CT ′ = pos(vI : I ∈ V) + pos(vI ,v{i,j} : i, j ∈ I1, or i, j ∈ I2).

Each cone CT ′ is thus a face of the stellar subdivision of the cone CT obtained by
adding the vector vI . The toric variety XFS′ is then an open subvariety of the blow-up
of the toric variety XFS along the closed subvariety corresponding to the face C ′ of
CT .

It follows that MS′ is the blow-up of MS along the intersection of MS with this
torus-invariant subvariety. Set-theoretically, this intersection is equal to ZI , and thus
it just remains to show that the scheme-theoretic intersection is reduced. For this, we
fix a single index i ∈ I and consider just the rays vij of C ′ as j ranges over I \ {i}.
Each of these rays defines a divisor in the toric variety XFS . This divisor contains
the subvariety corresponding to C ′, and its intersection with MS is the divisor Z{ij}.
We claim that the intersection of these Z{ij} defines ZI as a reduced scheme.

Using the modular interpretation of MS, we can choose coordinates for an open
subset of MS meeting ZI where the marked points i and two arbitrary points not in
I are fixed at 0, 1, and ∞, respectively. In these coordinates, Z{ij} has the equation
xj = 0, where xj represents the position of the marked point j. From these equations,
it is immediate that the intersection of Z{ij} as j ranges over is reduced. Globally,
the intersection of the the divisors Z{ij} has the expected codimension and we have
shown it to be generically reduced, so it is reduced. �

Proposition 7.11 is also proved in [MSvAX18, Prop. 7.12], in the case that the
ground field K has characteristic 0. One consequence of this proposition is that if S
and S ′ are combinatorial weight data that only differ by sets of size 2, then MS and
MS′ are isomorphic, even though they describe different moduli problems.

Example 7.12. The collection

S = {I ⊂ [n] | |I| ≥ 2 and n ∈ I} ∪ {[n− 1]}
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is combinatorial weight data. Moreover, as a moduli space, MS parametrizes collections
of points x1, . . . , xn such that xi 6= xn and x1, . . . , xn are not equal. One can check that
this moduli space is isomorphic to Pn−3. Any combinatorial weight data containing S
can be constructed as an iterated blow-up of Pn−3 and in particular, this process gives
the Kapranov blow-up description of M0,n [Kap93, Thm. 4.3.3].

Example 7.13. Similar to Example 7.12, we can start with the minimal combinatorial
weight data

S ′ = {I ⊂ [n] | |I ∩ {1, 2, 3}| ≥ 2}.
We can think of MS′ as the moduli space of points in P1 where x1, x2, and x3 are fixed
to be 0, 1, and ∞ respectively. Thus, MS′

∼= (P1)n−3, and we get a presentation of
M0,n as an iterated blow-up of (P1)n−3, which agrees with the description in [Kee92].

Remark 7.14. The connection between Kapranov’s blow-up construction and varia-
tion of the moduli problem was noted by Hassett in the context of weighted moduli
spaces. However, Example 7.12 is more general because there are iterated blow-ups
of Pn−3 which arise as tree compactifications, but not from weight data.

A nice class of examples can be found by considering the blow-ups along the toric
boundary of Pn−3, which are the toric varieties corresponding to graph associahedra,
which themselves correspond to connected graphs on n− 2 vertices as in [FdRJR16].
By [MSvAX18, Thm. 8.5], the toric variety of a graph associahedron is a Smyth
modular compactification if and only if the complement of G is the disjoint union of
complete graphs. On the other hand, [FdRJR16, Thm. 1] shows that this toric variety
is a Hassett weighted moduli space if and only if the complement of G is the disjoint
union of a complete graph and isolated points. Thus, if we take G to be any graph
whose complement is a disjoint union of at least two non-trivial complete graphs
and disjoint points, then the corresponding graph associahedron is a Smyth modular
compactification and a tree compactification, but it is not a Hassett weighted moduli
space. The simplest such graph is for n = 6 and is a cycle of with n− 2 = 4 vertices,
whose complement is two disjoint edges, which gives an example for n = 6.
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