
 
Matrix Algebra 
Final (100pt) 
 
 

No calculators are allowed. Show work for partial credit. 
 
 
PART I (48pt)  ALL PROBLEMS WILL BE GRADED 
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a. 4pt  Circle the matrix product to the right that is well-defined:  BC   or  CB . 

b. 8pt  Find BAC T2 . 

 
 

2. Let :T ℝ3ℝ3 be a matrix transformation defined by 
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a. 6pt  Find the standard matrix to represent T . 

b. 6pt  If A  is the standard matrix from part a., find A . 
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a. 6pt  Find )(Arank  and )(Anullity . 

b. 6pt  Find a basis for )(Anull . 

 
 

4. Let 











21

85
A  be in ℝ2x2. And, note the eigenvectors of A  are 









1

8
 and 









1

1
. 

a. 12pt  If 






 


11

18
P , find APP 1

. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

“I ______________________________ will be academically honest in all of my work on this test.” 
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PRINT NAME 

SIGN NAME 



PART II (40pt)  CIRCLE THE FOUR (4) PROLEMS YOU WISH TO BE GRADED 

 

5. 8pt   Let A  be in ℝ4x4 and iE  be an elementary matrix for each i . Consider AEE 101 . Note that 

multiplication by 3E  has the effect of 224 rr  , multiplication by either 1E  or 7E  has the effect of a row 

operation of the form iji rcrr  , and multiplication by all other iE  has the effect of a row swap. If 

3A , find AEE 101 . 

 
 

6. Let V  be the space of symmetric matrices in ℝ4x4. 

a. 4pt  Find the dimension of V . 

b. 6pt  If 121 ,, vv
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 are in V , could these vectors be linearly independent? Explain. 

 
 

7. 10pt  Let A  be in ℝ3x3. A  has an eigenvector of 
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















0

0

1

 with an 

associated eigenvalue of 7 . Find A . 

 
 

8. 10pt   Consider 
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not. 
 
 

9. Let A  be an invertible matrix in ℝnxn, and let ncc



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,,1  be the columns of A . 

a. 6pt  A  cannot have an eigenvalue of zero. Explain. 

b. 4pt  If bxA
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10. Let 1a  and 
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a. 6pt  Verify the columns of A  form an orthonormal basis of ℝ2. 

b. 4pt  If x


 is in ℝ2 and 3x
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, then 3xA
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. Explain. 

 
 
 
 
 
 
 
 
 



PART III (12pt)  CIRCLE THE TWO (2) PROBLEMS YOU WISH TO BE GRADED 

 

11. Let  2,1,0F  have the following addition and multiplication tables. 

a. 2pt  There are 81 matrices in 
22xF . Explain. 

b. 4pt  Show that there are 48  invertible matrices in 
22xF . (Hint: lin ind of cols?) 

 
 

12. 6pt  Find an orthonormal basis of ℝ3 containing 
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13. 6pt  Let 
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14. Let A  be in ℝnxn, and let ijC  denote the cofactor associated with the ij  entry. 

a. 3pt  The expression kninkiki CaCaCa  2211  equals zero when ki  . Explain. (Hint: 

duplicate row?) 

b. 3pt  Show/explain why 
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15. Let A  and B  be in ℝnxn. 

a. 3pt  If AB  equals the zero matrix, then every column vector of B  is orthogonal to every row 

vector of A . Explain. 

b. 3pt  If A  is noninvertible, then a nonzero matrix B  in ℝnxn such that AB  is the zero matrix 
necessarily exists. Explain. (Hint: fund thm?) 
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1  1  2  0  

2  2  0  1  

  0  1  2  
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2  0  2  1  


