Matrix Algebra Final (100pt)

"I _	PRINT NAME	_ will be academically honest in all of my work on this test."
	X	
		SIGN NAME

No calculators are allowed. Show work for partial credit.

PART I (48pt) ALL PROBLEMS WILL BE GRADED

1. Let
$$A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \\ 1 & -1 \end{bmatrix}$$
, $B = \begin{bmatrix} 0 & 1 \\ 2 & 0 \\ 1 & -1 \end{bmatrix}$, and $C = \begin{bmatrix} -1 & 0 \\ 1 & 2 \end{bmatrix}$.

- a. **4pt** Circle the matrix product to the right that is well-defined: BC or CB.
- b. **8pt** Find $2C A^T B$.
- 2. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a matrix transformation defined by $T(\vec{x}) = \begin{bmatrix} x_1 + 2x_2 2x_3 \\ 2x_1 + x_3 \\ x_1 2x_3 \end{bmatrix}$.
 - a. **6pt** Find the standard matrix to represent T.
 - b. **6pt** If A is the standard matrix from part a., find |A|.

3. Let
$$rref(A) = \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
.

- a. **6pt** Find rank(A) and nullity(A).
- b. **6pt** Find a basis for null(A).

4. Let
$$A = \begin{bmatrix} 5 & 8 \\ 1 & -2 \end{bmatrix}$$
 be in $\mathbb{R}^{2\times 2}$. And, note the eigenvectors of A are $\begin{bmatrix} 8 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} -1 \\ 1 \end{bmatrix}$.

a. **12pt** If
$$P = \begin{bmatrix} 8 & -1 \\ 1 & 1 \end{bmatrix}$$
, find $P^{-1}AP$.

PART II (40pt) CIRCLE THE FOUR (4) PROLEMS YOU WISH TO BE GRADED

- 5. **8pt** Let A be in \mathbb{R}^{4x4} and E_i be an elementary matrix for each i. Consider $E_1\cdots E_{10}A$. Note that multiplication by E_3 has the effect of $4r_2 \mapsto r_2$, multiplication by either E_1 or E_7 has the effect of a row operation of the form $r_i + cr_i \mapsto r_i$, and multiplication by all other E_i has the effect of a row swap. If |A|=3, find $|E_1\cdots E_{10}A|$.
- 6. Let V be the space of symmetric matrices in \mathbb{R}^{4x4} .
 - a. **4pt** Find the dimension of V.
 - b. **6pt** If $\vec{v}_1, ..., \vec{v}_{12}$ are in V, could these vectors be linearly independent? Explain.

7. **10pt** Let A be in $\mathbb{R}^{3\times 3}$. A has an eigenvector of $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ with an associated eigenvalue of 5, A has an eigenvector of $\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ with an associated eigenvalue of 3, and A has an eigenvector of $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ with an associated eigenvalue of -7. Find A.

- 8. **10pt** Consider $\begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix}$, $\begin{bmatrix} 2 \\ 15 \\ 4 \end{bmatrix}$, and $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$. Do these four vectors span \mathbb{R}^3 ? Show/explain why or why not.
- 9. Let A be an invertible matrix in $\mathbb{R}^{n\times n}$, and let $\vec{c}_1,\ldots,\vec{c}_n$ be the columns of A.
 - a. **6pt** A cannot have an eigenvalue of zero. Explain.
 - b. **4pt** If $A\vec{x} = \vec{b}$ and $B = \{\vec{c}_1, ..., \vec{c}_n\}$, then $\vec{x} = |\vec{b}|_B$. Explain.

10. Let
$$|a| \le 1$$
 and $A = \begin{bmatrix} a & -\sqrt{1-a^2} \\ \sqrt{1-a^2} & a \end{bmatrix}$.

- a. **6pt** Verify the columns of A form an orthonormal basis of \mathbb{R}^2 .
- b. **4pt** If \vec{x} is in \mathbb{R}^2 and $||\vec{x}|| = 3$, then $||A\vec{x}|| = 3$. Explain.

PART III (12pt) CIRCLE THE TWO (2) PROBLEMS YOU WISH TO BE GRADED

- a. **2pt** There are 81 matrices in F^{2x2} . Explain.
- b. **4pt** Show that there are 48 invertible matrices in F^{2x^2} . (Hint: lin ind of cols?)

+	$\overline{0}$	1	$\overline{2}$
$\overline{0}$	$\bar{0}$	<u>1</u>	$\overline{2}$
ī	ī	$\overline{2}$	$\overline{0}$
$\bar{2}$	$\overline{2}$	$\overline{0}$	ī

	6/7		$\left[-1/\sqrt{5}\right]$	
12. 6pt Find an orthonormal basis of \mathbb{R}^3 containing	3/7	and	$2/\sqrt{5}$	
	2/7_		0	

×	$\overline{0}$	$\overline{1}$	$\overline{2}$
$\overline{0}$	$\overline{0}$	$\overline{0}$	$\overline{0}$
1	$\overline{0}$	<u>1</u>	$\overline{2}$
2	$\overline{0}$	$\overline{2}$	1

13. **6pt** Let
$$\begin{bmatrix} x \\ y \end{bmatrix}$$
 be a solution to $x^2 + y^2 = r^2$, where r is some real number. Also, let A be the matrix from problem #10 (of PART II). $A \begin{bmatrix} x \\ y \end{bmatrix}$ is also a solution to $x^2 + y^2 = r^2$. Show/explain why.

- 14. Let A be in \mathbb{R}^{nxn} , and let C_{ii} denote the cofactor associated with the ij entry.
 - a. **3pt** The expression $a_{i1}C_{k1} + a_{i2}C_{k2} + \cdots + a_{in}C_{kn}$ equals zero when $i \neq k$. Explain. (Hint: duplicate row?)

b. **3pt** Show/explain why
$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \begin{bmatrix} C_{11} & C_{21} & \cdots & C_{n1} \\ C_{12} & C_{22} & \cdots & C_{n2} \\ \vdots & \vdots & & \vdots \\ C_{1n} & C_{2n} & \cdots & C_{nn} \end{bmatrix} = \begin{bmatrix} |A| & 0 & \cdots & 0 \\ 0 & |A| & \cdots & 0 \\ \vdots & & \ddots & & \vdots \\ 0 & 0 & \cdots & |A| \end{bmatrix}.$$

- 15. Let A and B be in \mathbb{R}^{nxn} .
 - a. **3pt** If AB equals the zero matrix, then every column vector of B is orthogonal to every row vector of A. Explain.
 - b. **3pt** If A is noninvertible, then a nonzero matrix B in \mathbb{R}^{nxn} such that AB is the zero matrix necessarily exists. Explain. (Hint: fund thm?)