o

L e e ‘
Y R S S PO SR

NTIAL GEOMETRY

"(1982) 255306

THREE-MANIFOLDS WITH
POSITIVE RICCI CURVATURE

RICHARD S. HAMILTON

IntrodUCHON Siaimmnis iy o s rn s e 0 55 et
Notations and conventions .. .............c..uoounnn.
The evolution €qUation : . v v cmimms wa e e oo eminiaisin
Solution fora SHott tHME s o o oy sevsmersims sivas
Evolution equations with an integrability condition . .......

Weakly parabolic linear systems
Evolution of the curvature
Curvature in dimension three

Pinching the eigenvalues
The gradient of the scalar curvature

Interpolation inequalities for tensors
Higher derivatives of the curvature
Long time existence
Controlling R ., /R

Exponential convergence

1. Introduction

Our goal in this paper is to prove the following result.
L1 Main Theorem. Let X be a compact 3-manifold which admits a Rieman-
& nian metric with strictly positive Ricci curvature. Then X also admits a metric of
~Constant positive curvature.
All manifolds of constant curvature have been completely classified by Wolf
B (6]. For positive curvature in dimension three there is a pleasant variety of
¢ Xamples, of which the best known are the lens spaces L, .. Wolf gives five
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B
different types. By our theorem, these are the only compact lhref'manifo]ﬁ
which can carry metrics of strictly positive Ricci curvature. This ansye
affirmatively a conjecture in Bourguignon [1]. ;
It is known by a theorem of Myers (see Cheeger and Ebin [2)) lha{%;
compact manifold of strictly positive Ricci curvature has finite fundamepg,
group, so its universal cover is also compact and simply connected. Th
Poincaré conjecture would imply that the universal cover is the sphere, '[‘hg‘,
one version of the Smith conjecture would imply that the group of COVCIin;
transformations is conjugate to a group of isometries in the standard metrje
and the original space would admit a metric of constant positive curvature
Thus if both these famous conjectures were known to be true, our result woylg
follow immediately. On the other hand if either of them fails, then there wil] b
a compact three-manifold with finite fundamental group which does not admj
a metric of strictly positive Ricci curvature. g
The product manifold $? X S' has a metric of nonnegative Ricci curvature
with two eigenvalues +1 and the third 0. It does not admit any metric of
constant curvature, and hence represents an obstruction to improving ﬂ;
result. 2
Our method of proof is inspired by the ideas of Eells and Sampson [3]. We
start with any metric g,; of strictly positive Ricci curvature R, and u}ri,
improve it by means of a heat equation. It would be natural to try to mummi,
an energy functional. Unfortunately we cannot form any geometrical
meaningful quadratic expression in the first derivatives of the g, since ¢
always vanish in normal coordinates. It has been suggested to use the int
JR dp of the scalar curvature as an energy. This leads to the evolutior

equation (with n = dim X) E

o e - il

¢ 2
agu’ - ;Rg:; o 2R:’;‘
which unfortunately will not have solutions even for a short time, since.

implies a backward heat equation in R. To eliminate this problem, we sol\f

instead the evolution equation
9 2 2
3% =8~ 2R, §

where r is the average of the scalar curvature R, 2

r= f Rdp/ f dp. ;
This equation always has a solution at least for a short time on any comp:
manifold of any dimension for any initial value of the metric at t = 0. T
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involves some work, for the equation is not strictly parabolic, as its lineariza-
tion involves some zero eigenvalues in the symbol. (But at least they are not
negative, as is the case for the first equation.) We prove this result using the
Nash-Moser inverse function theorem.

It is worth noting that the degeneracies are there because the equation is
invariant under the full diffeomorphism group of X. This has the interesting
consequence that any isometries which exist in the metric to begin with are
preserved as the metric evolves. Hence if the initial metric is homogeneous or
symmetric then it remains so. For such spaces the evolution may be described
by the change in a finite number of parameters. For example, on the product
space S? X S' the factor S? shrinks and the factor S' expands. Our normaliza-
tion r is chosen so that the volume is always preserved. We also note that if X
has a fixed complex structure and if the initial metric is Kihler, then it will
remain so.

The rest of our results are peculiar to three dimensions. The essential
simplification here is that the full Riemannian curvature tensor R, ;,, can be
recovered from the Ricci tensor R,;, which is much smaller and easier to
analyze. However, we have not used the Sobolev inequality in a delicate way,
so there is hope that the method may also yield some results in higher
dimensions.

For a compact three-manifold, we prove that if the initial metric has strictly
positive Ricci curvature, then it continues so for all time, and converges as
{— o to a metric of constant positive curvature. The proof of this result
requires three a priori estimates peculiar to this problem. The first shows the
Ricci curvature remains positive, the second, shows the eigenvalues of the Ricci
tensor at each point approach each other, and the third shows the gradient of
the scalar curvature R goes to zero, so that we can compare the curvature at
distant points. All three of these estimates are consequences of the maximum
Principle for parabolic equations. Once these estimates are established, we can
control all the higher derivatives by some straightforward interpolation in-
cqualities,

We would like to express our gratitude to the Harwood Foundation for a
generous grant for the research in this paper, and to Professor O’Donnell for
Many inspirational remarks.

2. Notations and conventions
We will use the old-fashioned index notation for tensors, since it is well-
3?3pled to the intense computations we must perform. We denote vectors as
Y, covectors as v, and mixed tensors as T4, etc. The summation convention
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will always hold. The Riemannian metric is 8ij> its inverse is g"/, and the
induced measure is dp = p(x)dx where p(x) = dclg . The Levi-Civita con-
nection is given by the Christoffel symbols

I*h_ 1 hk d 9 3 : 3
:;_ig ax 'g;k ax‘,gak_-a_;;-gu ’ I L

RS
-
-
-
=

and the Riemannian curvature tensor is i
R” :_B_I‘h_irh +ThTe —THTP i §
ijk axi Jk at". ik ' Yip-jk Jprik & 1
We lower the index to the middle position, so that
Rlyu’ Ehk R

Then R, ;, is anti-symmetric in the pairs i, j and k, / and symmetric in their
interchange, and satisfies a Bianchi identity on the cyclic permutation of any
three. For the sphere we have

R(u,v,u,v) = R, u'v'u*c' >0,

ijkli a

which is the opposite of the usual convention, but more symmetric. The Ricgg = |
curvature is the contraction E

Ri= g}.!Rr_;J\f'

and on the sphere we have

———=

R(u,u) = R, u'v’ >0, =

which agrees with the usual convention. The scalar curvature R = g“R, . We
denote the covariant derivative of a vector v’ by

d
v/ + Tjo*
\_l' ik

v/ =

and this definition extends uniquely to tensors so as to preserve the product
rule and contractions. For the interchange of two covariant derivatives we have

5
8,6‘51.'-"’ — a}a‘_f_h = Rfﬂ‘{,‘k_ ‘I‘:

83,0, — 33,5, = R,,,8"™,,. % -3

and similar formulas for more complicated tensors. To see how to convert from =

the old coordinate notation to the new coordinate-free notation the reader

should consider the formulas
for a vector v: v = v'd /3x’,
for a covector L: L = L.dx',
for a pairing: L(v) = L,v',
for a tensor: 7(3/9x”, 8 /9x*) = T3 /3x’,

b Baat i
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for a covariant derivative:

) d d
3T|—,— | =0o", T —.
“\ax/ axk) e *axt

For any tensor T such as T} we define its length | T; | by

“ I, m_ kn !
| I = 88 8" T,

mn?

~ and we define its Laplacian AT by

e e it =t A8

'\T;}v = g""'apaquj( :

the trace of the second iterated covariant derivative. We hope these remarks
will aid the reader in following the paper.

3. The evolution equation
We consider the evolution equation on X"

d 2
(++) ﬁg,j—;rgu—ZR

i

where r = [Rdp/[du is the average scalar curvature. The factor r serves to
normalize the equation so that the volume is constant. To see this we observe
that if du = p(x)dx is the measure then p = ydet g, and

d

l ;0
—logp==5g"=—g,=r—R,
ar OEH :2 L‘Igl__f

g];fd]u:f{r R)du=0.

Now it is awkward to have the normalizing factor present until we really
need it. Therefore we will deal first with the unnormalized evolution equation

(+)

|

g, = -2R;.

=)
.

which is easier to handle. The two equations differ only by a change of scale in
SPace and a change of parametrization in time. To see this we let f, g Rij» R,
r denote the variables for the unnormalized equation (#) and 7, &ij» R"U. R, 7 the
- torresponding variables for the normalized equation. To make the conversion
:Z-Eronl (*) to (x*), we first choose the normalization factor ¢ = (1) so that if
8ij = S'JSU then [di = 1, so that the new manifold has measure 1. Then we
hoose a new time scale 7 = [ () dr. It is easy to see that

‘R, F=1r,

iy Ij* L » -

Uk e ke i
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and f[di =1 so [dp = ¢~ "/% Arguing as before we have (8/00)logp = _p
and so

2
—lOdep. I ilo_y—ir,

Then it follows that

a d d ] 2

Y g” a."gU (}}?logd’ gr;_;rgr"a'_erj'
It is worth noting that for a sphere S” the normalized equation is constant,
while the unnormalized equation shrinks to a point in a finite time.

4. Solution for a short time

Consider the evolution equation dg;;/dt = E(g;;) where E is the second
order nonlinear partial differential operator E(g,;;) = —2R,;. The linearization
of this equatioin is 9g, /0t = DE(g,;)8;; where DE is the derivative of E and
g, is the variation in 8:;- We must compute DE, but all we need is its symbol
This is obtained by taking the highest order derivatives and replacing d /dx" by
the Fourier transform variable ¢,.

The variation g, in the metric produces a variation I‘k in the connecticn.
and this produces a variation Rr;.k in the curvature. Working in normal
coordinates where IJ'; = 0 at a point and using the formulas in §2, we see that

Yo

f‘j = %g“(a'gkl 0,8 a-’g.fﬁ')’
R'f_‘jk 9L —2 Th

i o {

Now an interchange of two covariant derivatives produces a lower order term

Also the Ricci curvature is given by R, = R ;.- Then it is easy to compute

DE(g;'k)g‘-jk = _ZR-J

— ki azg}'k - azg'ﬁj azgfk =y a“g.‘u }\
' -
ax"ax’  dx'ox*  9x"ax’/  ax/dx* |

where the dots denote lower order terms. The symbol of the linear differenual
operator DE(g;, ) in the direction §; is

0DE(8x ))& = 8" {$uSi8in — $8k8h; — 5u8 8 + $8kni)-

To see what the symbol does, we can always choose coordinates at a point
that g, = &, = (1 if j = k, 0 otherwise), and without loss of generality 5”’“‘.
the function is homogeneous we may assume ¢, has length 1, and rotate &
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{, = land§; = 0fori # 1. Then the effect of 6DE on a tensor 7}, is

[UDE(S}(SL)T]_,A =T, fj*1,k+1,
[eDE(g)($)T] =0 ifk =1,
[oDE(g)($)T]), =Ty + Ty + --- + T

The presence of the zero eigenvalues shows that the
parabolic. There is actually a good reason for
eigenvalues. The first way to see it is to conside
R, = 0. If the evolution equation were parabolic, the steady state equation
would be elliptic, and its solution space would be finite dimensional. But the
solutions of R.. = 0 (when they exist) are invariant under the full diffeomor-
phism group, which is infinite dimensional.

The second way is to recall the second con
tells us

equation is not strictly
the presence of these zero
r the steady state equation

tracted Bianchi identity, which

gY9,R;, = 19,R.
For any tensor T, we define the linear operator L(

g:;). depending on the
metric g, and its connection. by

L(g,)T,; = g"-'(&_,]_r__j_ 30,T,.).

Note that L has degree 1 in g, and degree 1 in T, ITE(g,)= -2R,
L('g;k }E(g;.i.) =
Taking first variations, we see that

« then

L(g, ) DE( k)8 + DL(g_I,j__}{Ef_ 8ix)s &jx} = 0.

Now the Operator in g, given by DL is only of degree 1, so its symbol of

degree 3 is zero, and 3 js the degree of the other term 7 o DE, because L has
degree | ang DE has degree 2. Therefore

OL(KJ,J;- )(S';) = UDE(g_;& )(;, ).q}k =0,

and the image of 6 DE( £,;) must lie in the null space of 0L(g,,). This symbol
IS .

L&) &) = 88T — 44,7,

ik — 23k t;i)-

N s ;-
Ormalizing 8« and {; as before we have

[eL(g)($)Tli =T, ifk =1,
[UL(glfﬂ'lTL:HI‘“—TH—-T — - =T.).

13
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The null space of oL(g){) consists of all those symmetric tensors T, wity
Tw=Ty+ T3+ - +7T,, and Ty =Ty = ver = 1, = 0. It 3§ eleqy that
oDE(g)({) lies in this space. We can also see the following result.

4.1 Lemma. The symbol sDE(g)(¢) acts as multiplication by | ¢ [* on the null
space of the symbol oL(g)({). |

This shows that there are no degeneracies other than those implied by the!
second contracted Bianchi identity. The following theorem is then an ime
mediate consequence of the general result in the next section.

4.2 Theorem. The evolution equation dg,;,/dt = -2 R,; has a solution for g
short time on any compact Riemannian manifold with any initial metric qr { = 0

5. Evolution equations with an integrability condition
We shall consider evolution equations
of _
at
where E( f) is a nonlinear differential operator of degree 2 in f. We suppose f
belongs to an open set U in a vector bundle £ over a compact manifold X, and
E( f) takes its values in F also. Then E is a smooth map

E:CPLX U} ECR(X El~ C®(X, F)
of an open set in a Fréchet space to itself. In studying the evolution equation it

is important to consider its linearization. Letting f denote a variation in f,we=
get

E(f),

af "
= = DE(f)f,

where the derivative DE( )f is a linear differential operator in f of degree 2
We say E is parabolic if its linearization is parabolic around any f. This can b¢ -
expressed in terms of the symbol oDE( f)(€§), which is obtained by rep]acm; 2
each derivative 3 /9x/ by §, in the highest order terms. (For simplicity we omil 2
the factor i = y=T1.) If in local coordinates

A/t = E<(x', 15, £, £8),
then the symbol of DE( f) is

oDE(f)(¢) =

(HLa TR

JdE®

ij('\"~fﬁ=1}“3ﬁf)§;€;-

The symbol is an automorphism of the vector bundle F to itself. Then DE(/) -
is parabolic if all the eigenvalues of oDE( f)(£€) have strictly positive real par* i

=
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when ¢ # 0. In this case it is well known that the evolution equation df /0t =
E(f) has a unique smooth solution for the initial value problem f = fy at 1 = 0
{or at least a short time interval 0 <t < (where e may depend on f;).

We shall consider problems where some of the eigenvalues of o DE( F)(E) are
zero. This happens when E(f) satisfies an integrability condition. Let g =
L(f)hbea differential operator of degree 1 on sections f€ U C Fand h € F
with values g in another vector bundle G over X, such that the operator
N = L(f)E(f) only has degree at most lhin f. We call L( f) the integra-
bility condition for E( f). Taking a variation f in f we see that

L(f)DE(f)f+ DL(f)}{E(f), f} = DQ(f)].

Now the operators DL( f){E(f), £} and DQ( f)f only have degree 1 in f. and
hence the operator L( f)DE( f)f also has degree 1 only. Therefore taking the
symbols, aL( f)(§) - oDE(f )(€) = 0. From this we see that

ImoDE(f)(¢) C NulloL(f)(£).

If 7 is not trivial then oDE( f)(¢) must have a null eigenspace. The most we
can hope is that the restriction of aDE( f)(£) to Null 6L( f)(§) is positive. We
shall prove the following result.

5.1 Theorem. Let 3f/dt = E(f) be an evolution equation with integrability
condition L( f). Suppose that

(A)L(f)E(f) = Q(f) has degree 1,

(B) all the eigenvalues of the eigenspaces of cDE( f)(§) in NulloL( [ )(§) have
strictly positive real parts.

Then the initial value problem f = fy at t = 0 has a unique smooth solution for
a short time O < t < e where e may depend on f,.

Proof. We shall use the Nash-Moser inverse function theorem (see [5] for a
complete exposition by the author). We shall show that if af,f--'ar — E(f)=nhis
a solution of the evolution equation on 0 < ¢ < 1, with f = f; at 1 = 0, then for
any f, near f[, and h near h there exists a unique solution of the equation
3f/31 — E(f) = h over the interval 0 < 7 < 1 with f = f; at = 0. To see that
this implies the theorem, choose f to be any function whose formal Taylor
series at ! = 0 is what it must be to solve df/dr = E( f)with f=fyat 1 =0,
?nd let h =13f/3t — E(f). Then the formal Taylor series of hatt=0is
identically zero. By translating / a little, we can find h arbitrarily close to h and
vanishing for a short time 0 < ¢ < &. Then the solution of 3/ — E(f) = h
With f = f at 1 = 0 solves the equation up to time &.

We can apply the Nash-Moser inverse function theorem to the operator

-

8: L= X X [0,1],F) = B=(X X [0,1], F) X €=(X, F),
&(f) = (8770t — E(f), fI {t = 0}).
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Its derivative is the operator
D&(f)f= (3f/3t — DE(f)f, f| {t = 0}).

We must show that the linearized equaliop a_f_;a: — DE(f)f=hhasa unique
solution for the initial value problem f=f;, at r =0, and verify that the
solution f 1s a smooth tame function of 4 and f.

We make the substitution § = L(f)f. Then & will satisfy the evolution
equation

Y. of e ] 7 Of]
%8 — L{fr{..—‘f + DL(f)| ], = l
ar LT, HEH Codi |

However 3f/3t = DE( f)f + h. Moreover differentiating the integrability con-
dition L(f)E(f) = Q( f) we get

L(f)DE(f)f+ DL(f){E(f). [} = DO(f)/.
Then we get the equation
9 _ M(f)f=k
where kK = L( f)h and

py E . I ~ E‘.I-. A vl s 1 = 7
M(f)f=DL(f)|/, 5l DL(f){E(f). f; +DO(f)]
gkl 12 :

is a linear differential operator in f of degree 1 whose coefficients depend
smoothly on f and its derivatives (possibly of degree 3 in space, or | in space
and 1 in time).

If we choose a measure on X and inner products on the vector bundles F
and G, we can form a differential operator L*( f)g = h, of degree 1 in fand g
which is the adjoint of L( /). Let us write

P(f)=DE(f)+ L*(f)L(f).
We claim that the equation df/dr = P(f)f is parabolic. To see this, we must
examine the symbol

oP(f)(&) = oDE(f)(&) + oL*(f)(&) - oL(f)(£).

Suppose v is an eigenvector in F with eigenvalue A. Then oP( f)(£)v = Av. Bul
oL(f)E&) - oDE(f)£)=0,s0

oL(f)(&)-oL*(f)(&)-oL(f)(&)vo=AoL(f)(§)v.
It follows that

[oL*(f)(&) - oL(f)(&)o P =A|aL(f)(§)v ]’
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Now if oL*(f)(§) - oL(f)(§)v =0 then oL(f)(§)v = 0, and otherwise A is
real and strictly positive. When oL( f }(§)v = 0 then eDE(f)(§)v = Av, and A
has strictly positive real part by our hypothesis (B). Thus P( f) is parabolic.

We proceed to solve the system of equations

of

L p(nf+1E="h
82 .
=M=k

for the unknown functions f and g for given 4 and k and given f, with initial
dataf=fyand § = g, = L(f))fatt=0.

It follows from the theorem in the next section that the solution ( f, £) exists
and is unique, and is a smooth tame function of ( f, A, k, f,, &,). Then putting
[= § — L(f)f we see that / satisfies the evolution equation

S = L)L

and /= 0 at t = 0. But then the obvious integral inequality
d 2 e STy
EI_J I dp + 2fX|L*(_f)s|~ dp=0

proves that /= 0. Then it follows that 3f/dr — DE(f)f = h. This completes
the proof of the theorem, except for the result of the following section.

6. Weakly parabolic linear systems

Let X be a compact manifold and let F and G be vector bundles over X. We

consider a system of linear evolution equations on 0 < r < T for sections f of F
and g of G

ﬂ__ 1 ag— Af 4+ Nog 4
a{—Pf. Lg+ h, g—Mf= Ng + k,

where P, L, M and N are linear differential operators involving only space
derivatives whose coefficients are smooth functions of both space and time. We
assume P has degree 2, L and M have degree 1, and N has degree 0.

_6‘ Theorem. Suppose the equation df/dt = Pf is parabolic. Then for any
8tven (fy, gq, h, k) there exists a unique smooth solution ( f, g) of the system
Withf = foand g = gy ar 1 = 0.

Proof. We can use the equation to solve formally for the Taylor series of f
and g at 1 = 0. Choose functions f and g with the given Taylor series, and
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subtract them off from f and g. This reduces us to the case where g hk are
all known to vanish for 7 < 0. We can then use the following regularizatiop
device.

We introduce a time lag 6 > 0 into the second equation, so that

() = (ur+ng+n),.
at +8
The resulting system clearly has a unique smooth solution on 0 < ¢ < T, for we
can alternatively use the first and second equations separately to advance the
solution on intervals of length § > 0. In the sequel we shall derive a prioni
estimates for the solutions f and g of the evolutionary system. These estimaies
also clearly hold for the delayed system and are independent of § — 0, We
leave the necessary modification to the reader. Then by passing to a convergent
subsequence we get a solution for § = 0.

We turn to the a priori estimates. We introduce the following norms. For a
section of F (or G) over X we let | f|, measure the L, norm of S and its
derivatives up to degree n. For a time-dependent section f over X X [0, T'] with
[={f£:0=<1< T} weput

1= [ 14 B e

so that | f|, measures space derivatives of degree < » only. Then we put

1F12="3 13/3Yf 1,0

2i=n

which is a weighted norm counting one time derivative equal to two space
derivatives. (We caution the reader that this weighted grading is not tamely
equivalent to the usual one.) The differential operators P, L, M, N are all
sections of some appropriate bundles over X, which could be interpreted in
terms of jet bundles. We measure P, L, M, N in terms of norms | [L]|, where
[L], measures the supremum of L and its space derivatives up to degree n, and
[[ 1], is the corresponding norm counting one time derivative equal to (w0
space derivatives as before. (Note that the gradings || || » and |[ ]|, are tamely
equivalent. Also from a point of view of tamely equivalent gradings it does not
really matter that for odd » our grading || I, has missed 1 of a time derivative.
compared to the usual one for parabolic equations. This allows us to avoid the
nuisance of discussing fractional derivatives.)

6.2 Theorem. Ler the solution ( f, g) of the system of evolution equations b¢
written as a function

(6 g)=S(P.L.M N.bF, [0
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of the coefficients P, L, M, N, the data h, k and the initial values Jos 8o In the
n set where P is parabolic the solution S is a smooth tame map in the gradings
ill,onf g h kand||,onfyandgyand|[]|,on P, L, M, N.
We shall prove these theorems by a sequence of lemmas.
63Lemma. If3f/0t —Pf=honO<t<Tandf=0at:=0 then we can
find a constant C independent of 8 such that for 0 <8< T

8- ]
[lrBar<c[|nRa.
0 0

Proof. When 6 = T this is a standard result for parabolic equations (see
{4)). To see that C is independent of @ for 0 < 6 < T we use the following
device. We extend P to be parabolic on the interval -T < r < T. Note that we
may assume all the derivatives of f vanish at 1 = 0 also, for the set of such
functions is dense in those with f; = 0 in the norm || [|,. Then we may extend f
smoothly to be zero for -T < 7 < 0. Now we consider translations by 7 — § of
the original equation. ThenP and f on -T + 6 <t <6 correspond to their
translates on 0 < ¢ =< T. Since the estimate above is coercive for P, it follows
by the usual argument that the same constant C works for all operators in a
ncighborhood of P. Hence we can make one constant C work for any compact
sct of parabolic operators P. But the set of translates is compact, so the lemma
follows.

6.4 Corollary. If9f/0t — Pf=honO0<t<Tandf=f at t =0 then we
can find a constant C independent of @ such that for 0 < < T

g # 5
[1hBdr<c[ |n R+ Clf[2.
“0 1]

Proof. The norm |f, |, is equivalent to the quotient norm inf(|l f [l ,: /= f,
alr=0}. It suffices to check this in local coordinates, where we can use the

Fourier transform. Given f(x) on t = 0, we define the extension f(x, 1) by
letting

f(e.) = y| :

_1+|g[2]'1+|efﬂ}(€)‘

where y(7) is a smooth function of compact support with [{(7) dr = 1. Then
fextends f, and if = 7/ +|&P)

715 = [ [(1+ 182 + | 71)*| /&, 7) [P dtdr

=IO+ 0] d6- [(1+]87)17() [ dt

<Clhl-

ikl
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Conversely given on 7 = 0 with f = f; at t = 0, we can first extend
without increasing || fll, by more lhan a factor. Then using the
transform, since

fo(§) = {f{& 7)drT
we have

61 = sup [(1+]€P)" 2 A(8)a(¢) ds

go=1"

= sup [[(1+ &) 2 A& 7)8(¢) atdr

< sup [ JQ+ 18R + 171) 1 /(6 7) P dgde

|11

v 1+|siJ|g(£1| dtdn
” ATTETRT

Now the first integral is bounded by |l f I3, and the second is bous

constant, since

}
Wy
1}
R,
=3

"7.u'1.'_{ : - = C < o0.
(1+&F+]7))" 7 (+]8))

Thus | f, |2 < CIl £ |13, proving our assertion.

We can combine the extension operators in local coordinates to
linear extension operator C*(X, F) — C*(X X [0, T'], F) such that i
extension of f, then f* =/ at t=0 and |l f*ll, < C|f|,- Nos
satisfying af/dt — Pf=h and f= f; at t =0, let f* be th:. exten
constructed above and let 8f*/0t — Pf* =h*. If f=f* + | fand h

then 3f/8t — Pf=h, and f=0 at r = 0. We can then estimate
previous lemma, so

6 _E-fa ez g (1702
[1rae< [l fae+ [C17kdr.

- T . 17 2 ~ r 12
ddes [T frdr< I3 <Clhf
0

f -, g -
sdt=< C| |h,|;dt,
".-, i 3 4

[‘1h,Rae<["|nRBd+ ["|htRar.

“0 “0 “U




dftor<y
the Fourier

wunded by a

o produce 8
it if f* is the
ow given f
ension of fo
h=h*+h
f using the

i
i

THREE-MANIFOLDS WITH POSITIVE RICCI CURVATURE 269

g 9 T )
f | h* |5dr€f |kt Rdr<Clr*li<cClfIZ<C|f -
0 0

Combining these estimates the result follows.
65Lemma. Ifdg/0t =k, thenfor0<@<T

(i 5
|goli < C[ |k, e+ Clg,l:.
1]

Proof. Since
6
=gyt | k,di
8¢ — 8o j; ‘

and every norm is convex, we have

il
|gg|,s|go|.+fn|k,|ldr-

But we also have

a 2 «
(/ |k,|,d;) <6[’|k B d.
0 0

Therefore the above estimate holds with a constant C independent of 6 for
0<f<T.

Note that if there is a delay 8 in time, so that (3g /1), , s = k,, and if g and
k vanish for 7 < 0, then g also vanishes for ¢ < 8, and we have a better estimate

) o 2
gosli<Cf |k Rar,
t=0

for0sf<sT-8.

Now we assume f and g are solutions of the system of evolution equations
of/8t = Pf+ Lg + h and dg/0t = Mf+ Ng + k with f=f, and g =g, at
1= 0. To simplify the following formulas we let

E=[hlo+ k|, + 16} + 18-

6.6 Lemma. We have estimates for0=0<T

g 2 6 2 ]
[1rBde<c[|g R+ CE?,
0 0

9 (¢ 7 F: )
sl < C[ (1B +1s}) dr + CE
5 ‘P’Wf- We apply our two previous estimates, replacing 7 by Lg + h and &
YMf+ Ng + k. Then
|Lg, + A, o< C( g + | 2,10)
. | Mf, + Ng, + k|, < C(If ] + | & + | 4. ]1)
0d the regy]y follows directly.
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6.7 Corollary. A solution of the system of evolution equations satisfies the 4
priori estimate .
|/l +1gh<C(hlo+ [kl + [l +18N)
Proof. By the above estimates we have

o) ¢ v 1 2
|8t < C["| 8, [} dr + CE2.
0

Then for any A > 0 we have
T T T
A e 2do<C { AeM 3](2’81@"\’ A,
[ ™18 R fe i

T Y ] 2
' C{ Ae Mdl T E-,
i fg:o € G J

and since the bracketed integrals are < 1, we have
T 2 vl
(A—CM e~ | g, 2 dt < CE2
=0
with a constant C independent of A. When A > C we get |g|; < CE”. Then
|f]3 < CE? also.
Note that if there is a time delay 8, so that
(08/3t),5 = (Mf + Ng + h),,

then we get a better estimate
6
T 12 1 2
Borsh = Cf | & |y dt + CE-,
0
and since
T—5 T
-A8 | 2 = XS By 2
[ LE | 8g+5]1d0 = e f e " | gq |1 d0,
“8=0 6=0

the same argument yields the same estimate with a constant independent of 8
asd — 0.

Next we show the same low-norm a priori estimate holds uniformly in "
neighborhood of a given system. Fix operators P, L, M, N and consider all
operators P, L, M, N in a neighborhood

[P—Plh+[L—Ll+[M-M],+[N-N] <6
If P is parabolic, and 8 > 0 is small enough, then so is P. .

6.8 Lemma. If 8 > 0 is small enough then for all systems P, L, M, N in 1"

given neighborhood the a priori estimate
|+ 1gh <C(hlo+klo+ ol +18h)

holds with a fixed constant C.
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proof. 1f f and g solve the system of evolution equations for P, L, M, N,

then

Y = Ff+Lg+ (P=F)f+(L—L)g+h,

%§:ﬁ}+fg4{u—ﬁfu*{x—iﬂg+k
Applying the estimate for the fixed system P, L, M, N we get
I/ +|gli<C((P=P)f+(L—L)g+h|
(M= M)f+(N=N)g+kl + ] + 1),
Ifla+ 18l < Co(Ifla+|gl) + C(lhlo+ [kl + [l +18&)-
When § > 0 is sufficiently small, the estimate follows.

We can now estimate higher space derivatives in the usual way by differ-
entiating through the equation. Choose connections in the vector bundles F
ané¢ G and let d,f denote the covariant derivative of the section f in the
direction of a vector field v. There is then a natural way to define the covariant
derivative of the linear differential operators so that (for example)

0,(Lf) = L(9,f) + (3,L)f.
Note that d, L will be a differential operator of the same degree as L, formed
by allowing the derivatives to fall on the coefficients. We will let £_ denote the

sum over a finite number of vector fields which span the tangent space at each
point of X.

6.9 Lemma. For all solutions of all systems in the 8-neighborhood given before
we have a priori estimates for all n = 0 of the form

J){I”'l + |g|*” 1 = (‘I[[h!n + |k |J':’ 1 + |ﬁ]|u+l T ]g‘_'?n‘ I)
""C([Plu T [L]-: [M]-.‘—: + [N]n- ) X (| ki + 1ol +18)-
Proof. This holds for n = 0. We proceed by induction. Suppose the esti-
mate above holds up to some n. Differentiating through the equation, we have

%ij:Pﬁf—LQg+{&PU+[&Lm*Bm.

0
garg = Mb,f+ N3, g+ (d,M)f+(3,N)g + 9,k.
For simplicity we write
A, =|flazz T | &las1s

B:.— o [P]r: - [J]r L [‘Mrlr:-', Ll [-'\‘].,-. 1»
E,=|h klpsr + [ folnsr T 180 1ns1o

n in |




272 RICHARD S. HAMILTON

i terms of which the induction hypothesis is A, < C(E, + B,E;), and B, < 3
< C. Applying the induction hypothesis to the derived equation, we have
lat;f|n12+ |al‘g|n+] < ClErr—-l T B].A:r_.'_ Bn-i!Al})‘

Now A, < CE,and 4, < C(E, + B, E;). Moreover by interpolation we haye

BB, <CByB,.,<CB,_.,,
B\E,< C(ByE,,, + B . ,E,),

and hence

"{r.-—! _|.”n—3 5 |g|n'-: f:;v!a:.f- 42 1 d -E.rl:-'

< C(E,., + B,.,E,).

-+

which completes the induction.

Finally we can estimate time derivatives also simply by using the equations.
We get the following result for the weighted gradings || ||, and |[ ||, defined
earlier, in which one time derivative counts for two space derivatives.

6.10 Lemma. For all solutions of all systems in the 8-neighborhood given
before we have a priori estimates for all n = 0 of the form

WS las2 + gl < CUAN, + Ukl ,uq + | folasr + | 80 lnst)

+CULPT L+ 1LLTL + 1 TMT e + [[N] as)

o ! h .{,_'_ " B _"-' 1 T _E 1

Proof. We must estimate the terms

| (8/80) flumjez + 1 (3/81) g,

2j+1
for 2 j < n. We can do this for j = 0 as before. We proceed by induction on .
Suppose we have estimates up to some value of j. Then for the j + 1 terms we
have

| (3/00) " fl,_y, =1 (8/8tY (Pf + Lg + ) |, s,

(3/0t) " 'g|,—s;—, =| (3 /31 (Mf + Ng + k) |,_,

and by interpolation we need only consider the extreme cases where all the
derivatives in both space and time fall entirely on P, L, M, N or entirely on
f.g h, k.

For the first terms we get

(8/0) flu-zysa + | [PUal Sl + 1 (0/30) g luyer + [ [L] o] & + IHTs




dB <3
ve

¢ have

uations.
defined

W given

on onJ.
TMS We

all the

rely on

U

vty

v g et

kb

BT

THREE-MANIFOLDS WITH POSITIVE RICCI CURVATURE 273

and for the second terms we get

f(-;;)jf#v:) F[M] - IS+ a‘,] ‘a’ + [ [N]]a-1l8lo + MK,

2;—1

which is even better than we need. The above can be bounded by terms
|{af’;ar)-}f!r:--_‘.r*: B |{a.'.a'r}.lg|.-:":)*} iy h !-_I— : ;\r-l
+ (LPT + 1LLTL + 1 [M] sy + [ [N ]| )( S + [ 811)-

We apply the induction hypothesis to the first part and our previous estimate
o|f|, + | g, This proves the lemma.

If the second equation contains a delay § in time, we can still differentiate
through the equation with respect to space or time, and the derived equation
has the same form with the same delay. Hence the estimates in Lemmas 6.9
and 6.10 still hold with a constant C independent of § as & — 0. To prove
existence for a single equation we do not have to keep track of how the
constant depends on the coefficients P, L, M. N.

Now the last lemma clearly is a tame estimate on the solution map

(f,8) =S(P,L,M,N,h,k, f, g)

in the weighted gradings. It follows that S is continuous, since the spaces
“(X, F) and the others are all Montel spaces. Then it also follows that all the
dcmames of S are tame also, by the formula for the derivative of an inverse.

7. Evolution of thc curvature
The evolution equation 9g; /dr = for the metric implies a heat
equation for the Riemannian curvature R x» Which we now derive. This
equation will be the basis for all our a priori estimates on the evolution of the

Curvature. Recall we define
AR, .= gwaa R,

Various second order derivatives of the curvature tensor are likely to differ by
lerms quadratic in the curvature tensor. To this end we introduce the tensors

B:_J»U: gﬂrgq‘R Rr."\!'

pigql
Ote we have the obvious symmetries
Boa=k =B

jk klij

but .
the other symmetries of the curvature tensor R
ik

ik, may fail to hold for

At

)
|

it | b

b

v

L s bt s s i

R R
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7.1 Theorem. The curvature tensor satisfies the evolution equation

|

Risi=AR;,+ 2( B — By — By T+ B:-'\'.u')

(=1
—~

—g"(R ;R t RpppiR oy + RyppiR o + Ri R oy).

ijpl ijkp

Proof. Letting a prime denote differentiation with respect to time ¢, we see
by considering the formulas for I, and R;;,, in normal coordinates that for
any evolution of a metric g;; we have

0 =18""(0,8/m + 3,8jm — 9..8)1).
th rh “rh
Riﬂ - air,rfn - a;Iu' ’
— h ! h
R:'_;H o gher;." =1 gh.‘.R.{"f'
Combining these results and the identity
aag:r - a_,-aag;.,’ = g?i{ RJi"g; T Ru.’_;-g:-n :"
we get the identity
’ — 1 ’ pa r ’ ’
Rr_,l.U - _.l(afai g,u’ - a;dfgﬂu & aja& 8it + a,rafg:k)
+1g79( Rijip8q+ Rijpi8o )
which holds for any evolution of a metric. In our case g/, = -2R, ., and
substituting this gives
R =93,R,—09,R, —30,R,+ 30,R,
~gPUR Rt R R, ).
Then Theorem 7.1 is an immediate consequence of the following identity,
which is independent of any evolution equation.
7.2 Lemma. For any metric g;; the curvature tensor R, ,, satisfies the identity
ARuU ™ 2{ BJ;A‘! . Bu”« . Bu’;i T ‘Bf'.kﬂ)
= aéak R_,u' = axa.’Rﬂ\ - E!__fap'_ Rn’ 55 a,'af'Ral.
+gpq( Rp;i!'R‘;; 1 Ra_:'i..’Rq; )
Proof. This formula is obtained from the second Bianchi identity
d,R + Ry + Ry, = 0

Jkim iflm

by differentiating, exchanging derivatives, permuting indices and contracting.
To begin we have

AR.":-'\.' = gpqapangjl’_'r' = g’ﬂ‘:( a';ra: Ra,:,-'i.l’ = apaJ R gikl :l
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by differentiating the second Bianchi identity and contracting. We examine the
I first term, since the second is symmetric in 7 and j. Interchanging the order of
. derivatives we have

'quaPaqujH - gpqaiaqujkI

= gpqgm"(Rpiqunjku‘ + R ank! + Rpr'kaanI + Rph‘m‘Rq_,-kn)‘

The first of these terms contracts to g79R, ;R ;. On the second term we can
use the first Bianchi identity to write it in terms of the tensor B, ; thus
gP9g™" R

pijm

pijmBankt = —Bijia t Bijiks

and the last two terms are -B;, ; + B, ;,. Moreover we have the contracted
second Bianchi identity

to which we apply the derivative 0,. Then
quGPBEqu“ = B,.B,CRJ._. = a!BFRJ.k
- [BUA-; - Bun— - Bauk + B;‘kﬂ]
+8PR Ry

Replacing this in our formula for AR, ,, and doing the same for the term with /
and j interchanged yields the formula in the lemma.

7.3 Corollary. The Ricci curvature satisfies the evolution equation

i)

aIRH( = ARik + ztgprgqupiqur: - zgqupquk'

Proof. Recall AR, =g?%33 R,. We use the relation R, = g’R;;, to
contract the previous equation. Now

. (g”) = -&’8"%;,
by the usual formula for the derivative of the inverse of a matrix, and therefore
Rix = gﬂR:'jk! it ZSJPgMR;jHqu'
~ Substituting for R} ;x; and making the obvious contractions yields
W= AR, + 28"."( B — 23.‘;.&)
+2gprgqup!_qu” - zgqup:'qu'

Then the corollary follows from the following lemma.
74 Lemma. For any metric g, ; the tensor B, ;,, satisfies the identity

3ﬂ(B:'_fu = ZBiﬂ'k) = 0.

e -

TR
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Proof. Using the Bianchi identity
'R!k:!

PiqJ
pquRrsH 3 3

= gj-‘gprgqs( Rp;‘qj - Rqun)(Rrks-‘ - Rn’sk)
= 28}?(3:'_;“ . Biﬂk)

and the result follows.
7.5 Corollary. The scalar curvature R satisfies the evolution equation

a — ij ki
3 R=0R+2g%" R, R,.

Proof. Again we contract the previous equation. Since R = g'*R,, we have 2
= gij:k 23 ZSUSHRA Ry,

g’B, ;. = 8”8”8 "R
= gﬂgprgqu

where the second term comes from (g**)". Then the equation for R}, im-
mediately gives g*R}, = AR. '
7.6 Corollary. If the scalar curvature R > 0 at t = 0, then it remains so.
Proof. The term g"g*'R, R is just the norm squared of the Ricci curva-
ture, and hence is always positive. The result now follows from the maximum
principle for the heat equation. This simple example is a model for our
subsequent a priori estimates. It also shows why the evolution equation
“prefers” positive curvature.

8. Curvature in dimension three
The Weyl conformal curvature tensor is defined as

1
u};ﬂ(f = RUU - n—2 (grkR;f - gu'R;.i - gﬂcR:! > gj.l’Rl.k)

1
t———————R{E By — )
(n_ l)(n_z) (g:igﬂ gn‘g_;.k}

This tensor is known to depend only on the conformal structure, so that if =
g, =g, then W, ,,={¢W,,, In dimension n >4 the conformal curvature ¥
tensor vanishes if and only if the metric g;; is conformally flat. In dimension 3
n =3 this fails; instead there is a condition on the first derivative of the |
curvature, and the conformal curvature tensor always vanishes. b
To see that W, ;;,= 0 in dimension three, observe first that it has all the =

symmetries of the Riemannian curvature tensor R, ;;, so that
Wit = Wit = Wi = Wi = Wiz

W, s+ Wiy + Wi =0,
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. and in addition all its traces vanish, so

8"“W, i = 0.

Win + Wi + Wiy, =0,

r G Wi = -Wisis = Wasgs = Wy = -Was
8% which implies W,;,, = 0. Moreover
Wiz + Wagsy + Wi = 0,

" and so W,,,; = 0 also. Hence in general any term W, ,, = O unless i, j, k and /

are all distinct. In dimension 3 there are only 3 possible choices for the indices,
+ and the tensor must vanish identically.

This is just one special case of a general theory about tensors as representa-
tions of the orthogonal group O(n). Any tensor decomposes as a sum of
* irreducible tensors, each of which is trace-free and has the maximum possible
= symmetry. Tensors with sufficiently exotic symmetries will always vanish in

= sufficiently low dimensions. In any case, we have the following result, which is
= well known.

8.1 Theorem. [n dimension three we have

R:;H = Bik R’j-’ . g::’Rﬂc = g)ra'\Rri' = g_,--'R(-i i %R(g;kg;a’ = gu’g;k}‘

This result implies that we can recover the full Riemannian curvature tensor
: ' R,mjus: from the Ricci curvature R, which is much easier to handle. For
i txample, we can always diagonalize R;; at a point, so that

3 J\ 0 0
o R;=|0 p 0],
g 0 0 »

Where A, u, » are the eigenvalues. Then the only nonzero components of R,
- are those of the form

Rz = A+ =),

and those derived from it by permutation. Thus the condition for positive
_SOCUOna] curvature in three dimensions is that each eigenvalue of the Ricci
tensor is smaller than the sum of the other two.

. 82 Corollary In dimension three a metric has positive sectional curvature if
wo"!}’ if R;; < {Rg;;. This shows that the condition of positive Ricci curvature
S much H’eaker than that of positive sectional curvature.

_Asa Consequence of the formula for R, the evolution equation for the
icei curvature R;; takes a particularly simple form in dimension three. To

e il

il d. ¢
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simplify the formulas we introduce the following notation. We let
Si= R?’! = Rug""R“,

T;n = Rxsn — Ri;gHRi.-'g!mRmn‘ =
: and we let S and T be the traces %3‘ '

¥

| S=gl, T=g"T,. 1
Then in terms of the previous diagonalization ! :

p |3

\ . i | N H

1 B

R,-j=( L J S = w » Ty= W l i

i g »? v’ Et
L R=A+p+r, S=N+ 2+ T=N+p®+ . E
3 We also introduce the tensor E
0, =6S,— 3RR,, + (R - 2S)g,,,

o i

; whose entry in the top corner is

bagds 2t

AN —p?2 =P —Ap— Av + 20,

and whose other entries may be obtained by permuting the eigenvalues. This =
tensor may seem somewhat bizarre, but is characterized by the following =4
property. _
8.3 Theorem. The tensor Q,; vanishes identically on any three dimensional =55
symmetric Riemannian manifold. Any symmetric tensor T, ; which is quadratic in
the Ricci curvature and has this property must be a scalar multiple of Q, .
Proof. The Ricci curvature on a three dimensional symmetric space either
(a) has all its eigenvalues equal, as for S°, or else (b) has two equal eigenvalues =
| and the third is zero, as for S? X S'. In either case it is easy to check that “'
; Q,; = 0. Conversely any tensor of the given type which is quadratic in the = 4|

- ——————

i Ricci tensor must be a linear combination of S, Sg,;, RR;;, and ngu. Then A
3 E . o . S
t considering the cases (a) and (b) gives enough conditions to show the tensor 15 ===
F . s
a multiple of Q, ;. o
8.4 Theorem. In dimension three the Ricci tensor satisfies the evolution ===

equation ‘
iR = AR =

8! iy - iy Qu' -

Proof. This follows directly from substituting the formula in Theorem 8.1 E |l
for the Riemannian curvature into the formula in Corollary 7.3 for the SSSf

v ok AT R

e p———

O e e

b |
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gtion of the Ricci curvature. The reader can check for himself that

gprgquPiqur: = %RR:J\- = ZS{k T ( - %Rz)gfkf
since 7R, R g1 = S,;, the result holds.

9. Preserving positive Ricci curvature

~ We shall use the following result, which generalizes the maximum principle
e say that a symmetric tensor M,;; = 0 if Mo/ =0 for all
P43,8,M,;. We let u* be a vector field and we let
on a compact manifold X which may all

= .o tensors- W

sectors v'. AS usual, AM;; = g

e M, and N,; be symmetric tensors
~depend on time .

= We assume that N;; = p(M;;, g;;)isa polynomial in M, ; formed by contract-

ing products of M;; with itself using the metric. We require that this poly-

~gomial satisfy the condition that whenever v’ is a null-eigenvector of M,;, so
fhat M, o' =0 for all /, then we have N, v'v/ = 0. We prove the following

§ roult
%2 91 Theorem. SupposethatonQ <1< T
Q4 = p
ﬁMu =AM, + ud M; + N,
this = — .
g where N,; = p(M,;, &) satisfies the null-eigenvector condition above. If M;; = 0
) ¥ a11=0, then it remains so on 0=<:<T.

Proof. We will show M, =0on0<t=< & where 8 > 0 is small compared

mgl
R o a constant C depending only on max | M,;|. Then repeated application of
this result will cover the entire interval in a finite number of steps. To this end,
" we let
ikt =
ues M;; = M+ e(8 + I]gu,
thet 2 and we claim M,;>0 on 0=t < for every ¢ > 0. Then letting € — 0 will
the e finish the proof.
h‘f’ = B _“ not, there will be a first time 6 with 0 < § < & where M‘U. acquires a null
kg digenvector o of unit length at some point x € X. If N,; = p(M,, g,), then by
_ our null-cigenvector condition N, ;v'v’ = 0 at (x, ). Moreover
iton i -
INJ‘_; 2 1\,’{_}'@ CIMU— Mul 3
where the constant C depends only on max(| Hjﬂ +|M,;|) since p is a
polynomial. If we keep &, 8 < 1, then max | M| depends only on max | M;;| .
Therefore '
8.1 N;;o'v’ = —Ceb,

. where C depends only on max | M;; | and not on & or 8.
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We can extend v’ to a vector field in a neighborhood of x with 8 o' =0 at X,

with v’ independent of 1. Let

f= M o'/,
Thenf=0on0<r<?@andall of X,503f/0r <0and d, f=0and Af=>( 4
(x, ), where f = 0. But

a_f—(i )J}J"_L
Tl ] e

and at (x, §) where 9,0’ ‘-OandM o' =0,
9, f= aAML"‘jAf A’bfvbf

From the evolution equation

[.%MJ)DQJ AM,, v'o’ + u* 0, M, 0'v! + N, v'v/,
which shows that N, ;v'v/ < —e. Combining this “ith the previous estimate, we
have e < Cde. This ones a contradiction when C§ <

We will assume now that the evolution equation has a solution on the
interval 0 s ¢ < T.

9.2 Corollary. IfR;;=0att=0rthenR,;=>00n0<(<T.

Proof. We apply Theorem 9.1 with u" =0, M;,=R,;, and N,, = —O
When M, ha:; a null eigenvalue A = 0 the correspondmg uccn\ alue of N,
(b —r)=

To get more precise control on R, we need the following computation.

9.3 Lemma. If R # 0, then )

a i R” . Rrj R RQr'_,.f g 2SR£_{
Ry [N g — / Fq —_—— -
ar(_R A(R) g aRa[‘R. R2 :

Proof. Since dR, /0t = AR;;— Q,;and 3R /3 = AR + 2.8, we have

3 (Ru‘ _. R(AR, — Q;;) — R,(AR +2S)
E _R_J o R2

On the other hand
R&RU — R,._JQR

] RU 1
A(? = R?

- Pq R,
" RS ‘%R%(?_)-
The lemma follows.

9.4 Theorem. If R=0 and R;; = €eRg;; for some constant ¢ >0 at 1= 0.
then both conditions continue to holdon 0 <t < T.

LA i e s

St Sl RS Pl S L
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roof. We saw that R >0 continues to hold in Corollary 7.6. We apply
Theorem 9.1 with

| = Rij o os 2w
M= ~y W= REUR
| RQ,, + 2SR,

il s prlt ] 1]

'| N,.j = 2eR;; (-——~———-R2 )

! : is an immediate consequence of Lemma 9.3 that the equation in Theorem 9.1

satisfied. Let us consider what happens to N,; when M;; acquires a null

genvector. The analysis is easy since when R, ; is diagonal so are M,; and N;;.

pppose the null eigenvalue of M, ; occurs in the top position, corresponding to

the eigenvalue A of R;;. Then A = &(A + p + »). The corresponding entry in

2N, is

2eA(A +p + V)2 — (A +p+ ) 2N —p? — g2 —Ap—Av + 2pp)
—2A(A2 4 p? + %),

= Using the previous identity to eliminate e, and multiplying out and gathering

I :—t_erms, this entry becomes

A+p+ v)[?\(p +p)+ (p— v)z] —2A(A gt ),

‘which further simplifies to

N(p+r—20)+ (n+ )(u—v)z-

Now if R;; > eRg,; then R > 3¢R, and if R> 0 then e < 5 .Butthenp+v=

(I/e = )A = 2), sop + v — 2X = 0. Therefore at any null eigenvector of M,

. the matrix N, is positive. The theorem follows.

Itis easy to obtain a bound above on R, ;.

9.5 Lemma. IfRU =>0then R;; < Rg; .

Proof. SinceA, p, v = 0wehave A< A+ p+».

The consequence of these estimates is that when R;; >0 at r = 0 we have a

uniform bound A /p < C on the ratio of any two eigenvalues of R, ; holding as

long as the solution exists. This allows us to control all the curvature R, just in

erms of the scalar curvature R The following estimate is also interesting.

- 96 Theorem. If eRg,; < R,; < pRg,; for some constants ¢ and B with

0<e<i< B<lart=0, rhen borh Condrrwns continue to holdon 0 < t < T.

' P"Wf Note that if e = § or 8 = { then the manifold has constant curva-

.‘ufe and the result is trivial, “fu]e B = 1 always holds. We apply Theorem 9.1
- with

R;;
M:Jr:ﬁgr'j_ st uk ngfaR
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N,= (————RQ”' i ZSR”) — 28R, ;.
ij R? | ij
It follows immediately from Lemma 9.3 that the equation in Theorem 9] g : :
satisfied. Again we consider what happens to N,; when M;; acquires a nyj] %
eigenvector in the top position where R;; has eigenvalue A. In this case 8
A = B(X + p + »). The top entry in R?N,  is .

(A+p+2)2N —p2—»>—Ap—Av + 2p»)
+2AN + p2 +»2) — 2BA(A + p + »)
Eliminating 8 with the above identity and gathering terms, this reduces to
NQA—p—») = (p+»)(n—>»)
which we can rearrange as
XA —p) + (N =2 4% (p =),

which is clearly positive if A = p = » = 0. To handle the possibility that A is b
not the largest eigenvalue we use a continuity argument. Let 8 be the largest
time on which R;; < (B + 8)Rg, ;, where § will be chosen small compared to B
and . If we can show R, < BRg;; up to time 6, then we must have 6 =T,
Now since A=B(A+ p+») and 8= 1 we see A cannot be the smallest
eigenvalue. Assume p = A =p. Uptotimef wehavep < (B + 8) (A + p+»),
and by Theorem 9.4 we have » = e(A + p+ »). Since g =A=BA + u+»)
and v<{(A+p+v») we have p—wr=(B—1)YA+p+»). If =1 the
manifold has constant curvature, and this case is easy to handle. Assume 8>1.
The entry of N,; in question by algebraic rearrangement becomes :

(p—»)—(p- A)[z)\z +(A+p)(p— l’)].
which is at least
e(B— 1) — 8[28>+ (2B + 8)(B + 8)]

times (A + pu + »). This expression will be positive if § is small enough®
compared to B and e. This completes the proof. :

9.7 Corollary. If the sectional curvature is positive at t = 0, then it remains S8
soon0=<1<T.

Proof. We say in Corollary 8.2 that the sectional curvature was positive if -
and only if R;; < %Rgu. The same result holds for weakly positive sectional ]
curvature, taking 8 = 1.
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10.  Pinching the eigenvalues

The next estimate shows, after a fashion, that the eigenvalues of the Ricci
- tensor approach each other, at least at those points where the scalar curvature

" becomes large (for the unnormalized equation). Consider the expression
‘ = § — 1R? quadratic in the eigenvalues

SR =M= + (A=) + (u—»)]].
. Clearly S — $R? >0, and vanishes only when A = y = ». Thus it measures i
B how far the eigenvalues diverge from each other. If indeed the manifold is g
B becoming spherical, we expect S — $R? to become small, at least compared to
E 'L_Rz for the unnormalized equation. That is the content of our result. We assume
B -"as usual that our manifold is three dimensional, the initial metric has strictly g

= positive Ricci curvature, and the (unnormalized) evolution equation has a
solutionon 0 <¢ < T.

m "__.

iaTans

. 10.1 Theorem. We can find a 8 > 0 and a constant C < o depending only
& on the initial metric such that on 0 < t < T we have

S —=1R*>< CR* 5,

Proof. We take y =2 — § with 1 <y < 2. The following equations follow

. from the equations for the evolution of the Ricci curvature and the scalar
Curvature.

d
aRU = ARU o Qr’j' aR = AR + 285.

Recall that

S :l RUlz — g:kg;gRuRH = AZ 4 .uz + Vz, e
- § Jiem gmg}kg;mRinHRmn - ;\3 + 1”‘3 + j'.-l'3, :
and let ;

la,. Rjk |2 — g"’g"'"'gk"a,-R}-kang,,, §
L= %gr.kgﬂQinH = 3(R* — 5RS + 6T)

=N+ +0) - (W + Ap? + Ny + A2 + p?r + ) + 3Apy
& the reader may compute. Note that C is a cubic expression in the eigen-

“}'a]ucs which vanishes for any symmetric metric; one can show that this
Condition characterizes C up to a multiple.

102 Lemma. 7#e expression S satisfies the evolution equation

9
3, S =AS —2|3,R, [ + 4(T - C).

Filk
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Proof. From the evolution equations for g;; and R;; we have

d i b -'::
ESZZg"gJ’ARU-RMJr‘i(T—- C), f.__- .;
while we also have

AS = 2g*g/AR, ;- Ry + 2| 3R [

10.3 Lemma. If R > 0 then for any ¥

3 (S _ S 20y—1) S
E(F)“A(E?]J“‘__R 0,83, )

- RY+2 |Ra| Jk a;'R 2 Rj.k lz _ ;
== =3 4 e 2 -
RY 2 R7+I b
Proof. We have _ '-';-_.
a5 dR e -
(S _ R== T, = YSg = Y, n B R3S — yS§;R 3
A\RY) R+ » YV R T RY*! 2 _'-' ;
S\ _ RAS —ySAR , vy +1) 1) I
(._R;)—__EYT{__ RH gY9,R - a8+ R S|8R|2. _
Introducing the obvious inner product of two tensors k-
(T;J'k‘ q'ﬂ( ) = g”gjmgknTij.’mn‘ k
we have 3
(0, R, a.s>: 2R, O, R Ryp),
< s
<aR 3(R7)> <aRaS)— S|aR|2

and we also have
S|6R =|o,R - RJ,(]2

Thus the terms in the evolution equation for S/R” which are quadratic in the
first derivatives of the curvature are equal to 1/RY*? times S

-2R2|6,RJ,(| + 2yR(0,R,9,;S)— y(y + )SHJR]
= 2|R&,R, — 3R Ry[*+2(y = D(R@R, S)~ maRF) '
+ (y—2)(y — DS|RP, :

and now the result follows directly.
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" 104 Lemma. IfR >0, then foranyy

a 27— . 2 '_'_l =
SRTT=ARTT+ ———("’R ) g793, Ra,(R*7)
2-v)r-1 -
e 4R IR~ y)RITS.

Proaf_ \VC ha\'e
%R' v =(2—-y)R" (AR + 25),
AR* 7= (2—y)R"™MR+ (2 —v)(1 —y)R|R]%,

20y -1 = =
20 =1 gray, Ry (R*7) = 22— v)(y — DRVIBRE,

B 2nd the result follows.
" 105Lemma. Iff=S/R* — iR*77, then

af —Af (?—llg

R Jk_a:R'R;kl:
2= 1
E=l= (s 4r2) jokp
2 o = S 1 p2
o= [(2 —v)S(s — $R?) - 2P],

B where P = S2 + R(C — T).

' '. . Proof. This follows directly from Lemmas 10.3 and 10.4.

& Now we must analyze the polynomial P, which is clearly a symmetric
_polynomjal of degree 4 in A, p, ».

- 10.6 Lemma.

B P = N(A — p)A—») + p(p— M) —») + 22> = A)» — p).

. Proof. Using our formulas for R, S, T, and C (given just before Lemma
10 2) we can multiply out to get

P=(N+pt+v )—{P\Jp+lp3-f-hjl-+}\p3+p;v‘-,urs)
__, : + (A%ur + Ap?v + Apr?).

5 And if we multiply out the polynomial above we get the same thing. Note that
g_“le polynomial P vanishes for any symmetric metric, since it vanishes when
A= pu=yorwhen = pandr = 0.

107 Lemma. IfR >0and R, > eRg,, then P > £S(S — {R?).

 Proof. Since both sides are homogeneous of degree 4 in A, p, », it suffices
10 check the result on S =M + p? + »? = 1. Assume A > p > » > 0. Since
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(A+p+ )= N+l + p?=1,wehaver = &A + p+ ») = eby lhebOUnd.
R, = eRg;;. Now we can rewrite P as

P=(A—p) R+ A+p)(p—»)]+rA=r)(n—»),
which makes it clear that
P=N(A—p) +»¥(p—»),

and since A = » = £ we have

P=e(A—p) + (n—)7].

On the other hand, since

A=) =[(A—p)+ (e =) <2[(A =) + (u—»)],

we see that

and this proves the lemma. =
10.8 Lemma. If 8 > 0 is chosen so small that § < 262, then withy=2—-8
and f = S/RY — {R*"" we have ;
o X
5 <Af+u"d,f,
where u* = (2(y — 1)/R)g"'3,R.
Proof. This follows from Lemma 10.5 and our estimate on P.
Now we can finish the proof of Theorem 10.1. Let § > 0 be as above and 2
choose C so that

N g

-R_T e %R' T C
at t = 0. Then f < C at r = 0, and by the maximum principle we have f<C :::-'-:
0 <1 < T for the same C. Thus we have S — 1R? < CR>~® as desired. 2

11. The gradient of the scalar curvature

Again we assume our manifold is compact and three dimensional, the initiak
metric has strictly positive Ricci curvature, and the unnormalized evoluﬁ.
equation has a solutionon 0 <7 <T. B
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1.1 Theorem. For every 1 > 0 we can find a constant C(n) depending only
‘onn and the initial value of the metric, such that on 0 < t < T we have

|9:R > < nR* + C(n).
..'.Pﬂ)gf_ We start with the evolution equation for | 8,R |* = g"/3,Rd,R.

~ 11.2 Lemma. The gradient squared of the scalar curvature satisfies the
= evolution equation

5 , L
3 [3RP=A|3RE = 2|83,R [+ 4g73,RY,S.

= Proof. We compute
a if ij
= |3;R|*=2g"3,AR - 3,R + 4g"/3,R3,S
+2g"g/ R, RO,R,
A|gR|*=2g"A3,R - 4R + 2| 3,3;R [,
A3,R =9,AR + g/*R,3,R,

~ and the result follows easily by combining terms.
. 113 Lemma. We have the evolution equation

A [I9R[P\ _  [I&R] 2 2
Y _R— = —R— —F|Ra,a}R—a{RajR|

4 38 o
T REIARYS — 3|8 RP.

Proof. We compute

£(|8,-R|3] _ RA|R|*—|3,R|’AR B

2 2
dr R RZ F |Ra‘ajR|

4 . 28 o o
+R8UBRYS = <5 AR,

_ RA|Q,RP—|3,R|AR
= =

{2

4 2 ,
~ 25 (ROJR, AR RY+ — |4 RYR P,

'ﬁnd the result follows.
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11.4 Lemma. We have evolution equations
EB—IRI = AR?—2|3;R* + 4RS,

i)
=S =S 2|3,R; P+ 4T - C),
d

2 (5 4R?) = A(s — 48?) ~ | 3Ru[ ~ $|4KF) + 40,

where 9 = T — 3RS — C. 1
Proof. The first follows from dR/dt = AR + 28, the second is Lemma

10.2, and the third follows by subtraction.
11.5 Lemma. Q < R(S — iR?).
Proof. Recall that the polynomial P = S* + R(C —T) = 0 from Lemma

10.5. Then since S < R* we have

OR<P+ QR=S(S—1R*) <R¥(S - iR?),

and the result follows by dividing by R.
Now since 3.R = g’%8,R , it is trivial to see that

|3,RI* < 3|3,Rul

since (a + b+ c)?<3(a>+b*+ ¢?). Tt is a little surprising that a slightly
better estimate holds. i
11.6 Lemma. [9,R[* < ¥ |9,R; [ =
Proof. This is a consequence of the contracted second Bianchi identitj,- |
which says, E ]
g"d,R;, = 30, R. :
It is always a good idea to try writing a tensor as a sum of irreducible':
components. Write
aiRjk =Eu T Fiiks

where
Ej= 'll_U(g:'jakR + g:’kajR) + %gjkajR'
Then it is easy to compute
| E;jx 12 = 5% |0,R |2-
On the other hand, we can check that the tensor Fy = o,R;; — Eijk
trace-free, so that -4

gij‘c;jk =0, gikﬁjk =0, gij;'jk =
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(E;jx F,;x»= 0 and the tensors E, , and F,, are perpendicular. Then

i

' Ia:RJklz :|Euk11+1ﬁ_;k12?%|arR|2'

% © 11.7 Lemma. We have the estimate

- a 7 - 2
i a(s_%Rz)gl(S_%R-)_l;llaaR_;k|-+4R(s-_%Rz)'
. Proof. This follows from Lemmas 11.4, 11.5, and 11.6.
Now we return to the equation for |3,R|>/R in Lemma 11.3. The problem
* with this equation is the term g”/3, R3,S, which we estimate as follows.
- 11.8 Lemma. We have

g3, R3S <4R|3,R; |*.
Proof. We use the Cauchy-Schwartz inequality
g/0;RyS = 2(dR - Ry, Ry )< 2| R|| R || 3Ry,

and |R,[2=S<R®and |3 R[*<3|3,R,[2. We take V3 <2 to avoid a
I square root.
119 Lemma. We have the estimate forn < }

|3R[

= 3( |3,R[?
Y -

ar R

—an) »ﬁ( —nR=] +16]3,R . [ — $nR>.

. 'jig_;_ . Proof. We use the equation in Lemma 11.3 and the first equation in
& Lemma 11.4, multiplied by 7. Since S = {R? the term 2(S/R?)|d,R|?
dominates 27| 9,R|* for n < 1. We bound the term g'3;R3,S by Lemma 11.8.

e Now we want to combine Lemmas 11.7 and 11.9. The idea is to add enough

of S — {R?10|9,R|*/R to cancel off the term | 9, R ; |*, and then use Theorem
10.1 to make R(S — {R?) small compared to R*. Note 168 - & = 16.

1L10 Lemma. Let F=|9,R|*/R — nR* + 168(S — {R?). Then for any n

E _-“’flh 0 <n < 1 we can find a constant C(n) depending only on n and the initial

* talue of the metric at t = 0 such that

NIREARM I e

%? <AF+ C(3).

= Proof. Using Lemmas 11.7 and 11.9, the terms which are left are
3 ~ 6T2R(S — {R?) — 43R,
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Now by Theorem 10.1 we can find a constant C and some § > 0 dcpendmg |
only on the initial value of the metric, such that S — {R? < CR?7%. Then with

a constant C(n) depending only on C, §, and n we have E .
- adc
CR™* — $R* < C(n) &
and the result follows. res|
It remains only to find a bound on T, the time for which the solution ensts wit
Since S = 1R? we have 921
=
R 2
o ZR? has
o1 = AR + 3R
which forces the minimum value of the scalar curvature R to go to infinity in 2 - _
finite time. laml:
11.11 Lemma. If R = patt = O for some constant p > 0 then T < 3/(2p) at;
Proof. The solution of the ordinary differential equation b . 3
e
df e
dr f Wllhf patr=10 {
is given by b 7
__3 1
/= 3—2pt° I

Taking f as a function on X X ¢ constant in X we have
0 2
S(R=1)>8R=1)+ F(R+)R~]),

and the maximum principle implies R — f=0on0=<7<T. Since f - « aS-

t = 3/p, we must have T < 3 /p.
Now the equation 3F /3t < AF + C(7) implies max F, < max F, + C(n)t:

Then our bound on 7 shows that F < C(n) for some (possibly larger) constant
C(n) depending only on 7> 0 and the initial value of the metric (whlcll;

determines F;). This gives
F=|3,R’/R—qR>+ 168(S — 1R?*) < C(n),
|3,R|*<nR*+ C(n)R,
and of course
nR*> + C(9)R <29R* + C(n)

for some constant C(7). Since 5 > 0 is arbitrary, this proves the result.
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12.  Interpolation inequalities for tensors

t T = {T,...x} denote a tensor covariant in any number of indices. We
t the extended summation convention that if a pair of indices is repeated
‘the bottom, we should sum over that index in an orthonormal basis with
respect to the metric g,.. We let 3T = {3,7...,} be the covariant derivative
m, respect to the Levi-Civita connection T'Z associated to g,;, and we let
32T = 39,7 & be the second (iterated) covariant derivative. We also let
= p(x)dx be the volume form associated to the metric. The tensor 7= T,..
length | T'| given by

l le = ?}...k?}.,.ks

d|9T| and | 9°T'| are defined analogously. We prove the following interpo-
ion inequality by integration by parts.
L 12.1 Theorem. Let X be a compact Riemannian manifold of dimension m and
 letT=T,.. beany tensor on X. Suppose

3 11 1

—+—=—= withr=1.
=

r 9

l/q

[f]BT[Z’dp}uré 2r—2+ m){f|82T]-”dp}l/P{f| T|‘?a’p}

Proof. For simplicity we take T = {T}}, since the more general case in-
volves nothing extra but is more cumbersome to write. Integrating by parts

f] T dp. = far'}} 0.7 - (3T 8,T,)" ' d
DE. _ -
bt = [T, 337 |8T "2 dp
ich

=y 1)[{;3.353,(% al_'j} 9. 1)) aT|2r—4 i

| T,- 03T < m| T|9°T]
(TAdT,, 8T, - {,T,)<| T||8°T||oT P,

="
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We can estimate the last integral using Holder's inequality with
P 4 r

and we get

1-1/r o

<@2r—2+ m)“| 1Ty dp]'”[j\ T dp]WUj BTF’d,u] ,
and hence
U|ar|2'dp}ms(zr— 2+m)[f|81TF'dp]W{f[ﬂ”dp]l/q_
12.2 Corollary. If p = 1 we have

UlaTFP dp]"”s (p—2+ m)m?x| T|- UWTP@]W.

Proof. Takeg= ® in the previous argument.
Next we need a result on convexity, which is geometrically obvious. 3
123 Lemma. Let f(k) be a real valued function of the integer k

o<ks<nlf
f(k) <3[f(k—1) +f(k+ 1),

then

f(k) < (1= £)f(0) + %f(n).

Proof. 1f we replace f(k) by
k) = f(k) — (1 = $)f(0) = 5/(n),

the same hypoth
g(k) = fk) — flk = 1) for 1 < k < n. Then our hypothesis states that g(k)S

g(k + 1). Choose the integer m so that
g(l) = —--ég(m)éﬁég(m-ﬁ* 1) < ---g(n).

For any k

k n
)= 3 a0 =- 2 0

i=k+1

ST

esis holds. Thus we may assume f(0)y=0 and f(n) = 0. Let




then
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\i"l k < m the first representation is negative, and when k = m the second

s, This proves f(k) <0 for 0 < k < n, which is the desired conclusion for
70 =0 and f(n) = 0.
© 124 Corollary. If f(k) satisfies

f(k) <4[f(k—1) + f(k + 1)] + C,

f(k) < (1 = %)f(0) + £/(n) + Ck(n — k).
Proof. Apply the previous result to g(k) = f(k) + Ck2.

" 12.5 Corollary. If f(k) satisfies

f(k) < ¢k = 1) f(k + 1),

Jlr)y = cHRr(0)' =" flu)*/".

Proof. Apply the previous result to g(k) = log f(k).
Weletd"7 = {9, ---9; T,..,} be the nth iterated covariant derivative of the
tensor 7.

126 Corollary. If T is any tensor and if 1 <i<n — 1 then with a constant
= C(n, m) depending only on n and m = dim X and independent of the metric
ij Or the connection I',-’; we have the estimate

JIFTP" dp < Cmax| TR/~ [[8"T  d.
X

- Proof. Applying the previous estimate to the tensor 8'~'T when

zfifﬁn — 1 with

_ _2n _ 2n _n o
Poivm 1771 T
._: : ) i/n
- {f]axTIEn/idlu]
= ) (i+1)/2n (i—1)/2n
_».;' = C{fl a'+lT|2"/”+”d|U.} [fl ai—]len/(i—l)d]u] .

_‘_here C=2n/i—2+4+m depends only on m and n. Or when i = 1 we have

n

I /n 1/
{f|8T|2”dp] éC[f|62T|"] - max | T|
X
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with C=2n — 2 + m. Let

if2n
f(0) = max]T! l]|6T|“"/‘} . 1<i<n.

Then we have
fi)y<cfi+ 12— 17”7
from the previous estimates. Therefore

(i) < ¢f(0)' 7" f(n)""

with a constant C depending only on m. This proves the theorem, since

2

(frareerian)

i/2n
sCmaxlr]i"-f’"[ﬁa"ﬂldp} .
X -

12.7 Corollary. If T is any tensor then with a constant C = C(n, m) depend-- :
ing only on n and m=dim X and independent of the metric g, and the 3 _',_

connection F we have the estimate for 0 <i<n

JI1oT P dp< c[fla"n? d,u]”f"[ﬁ T|1dp}

Proof. 1f we apply Theorem 12.1 to the tensor 3 'Twithp=g=2a
r =1 we get

f: TP dp< C{f!_ ary d,u.} I—[fl ¥ ITP d,u] |_-':1

and the result now follows from Corollary 12.5.

I—i/n

13. Higher derivatives of the curvature

If A and B are two tensors we write A * B for any hnear combmauon
tensors formed by contraction on 4, B, _; using the g**. To avoid confusiof
between the Riemannian, Ricci and scalar curvatures we let

Rm={R,,,} andRc= (R}

As before 8"T is the nth iterated covariant derivative of a tensor T. _
We want to derive the evolution equation for the nth covariant derivalive
37Rm of the Riemannian curvature. To that end the following lemma is usetti

| l 13.1 Le

then the ¢

(In dimer
Proof.
their time

which m:

Now by i

and this
13.2°T

ture satis

Proof.
explicit |
previous
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Lemma. If A and B are tensors satisfying the evolution equation

3 4=n4+3,

0 ar

i ben the covariant derivative A satisfies an equation of the form
- 8

aaA=AaA+Rm*aA+A*aRm+BB.

(In dimension 3 we may substitute Rc.)
= Proof. The covariant derivative 9 involves the Christoffel symbols J."k, and
" their time derivative is

1] s

= 18"(880 + 387 — 3,85}
. which may be expressed in terms of dRc since g/; = 2R, . Then

iEIA = BB—A-+ dRm = A.
ar ot

Now by interchanging derivatives
0A4 = AdA + 0Rm* A + Rm = 04,

* and this completes the proof.
~ 13.2 Theorem. The nth covariant derivative 3"Rm of the Riemannian curva-
ture satisfies an evolution equation of the form

%B”Rm =Ad"Rm + Y 9'Rm=*3/Rm.

i+j=n

Proof. 1f n =0 we know this is true by Theorem 7.1, which gives the
-explicit form of the quadratic term. We proceed by induction on n, using the
previous lemma. This gives

9

EB"HRm =A""'"Rm+ Rm=3""'"Rm + 3"Rm = 3'Rm

-’rEl( > O'Rm= Bij),

i+j=n
and the result follows by the distributive rule for d.

. 133 Corollary. For any n we have an evolution equation

a . a
3 |"Rm [ = A|9"Rm[> = 2|3"*'Rm|* + X 8'Rms+d’Rm+3"Rm.
i+j=n
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Proof. This follows from the previous theorem. We have

%|8"Rm 2= <8"Rm, %8"Rm>+ Rm = 9"Rm * 3"Rm,

where the extra terms come from the variation of the g/ defining the norm | |2_'-_
The usual computation gives

v ] ' 1

A|3"Rm[> = 2¢3"Rm, 83"Rm)+ 2|3"" 'Rm?, S

and the result follows. |
13.4 Theorem. We have the estimate g
e

I =

i n 2 n+l 2 n 2
d:fx““ Rm| d;;.-l-?.fxla Rm| dpéCm)z(ilem[fXW Rm |? dy

with a constant C independent of the metric, depending only on the number n of{
derivatives and the dimension m of X. =

Proof. Since [Afdp = 0 for any function f, if we integrate the equation in
the previous corollary over X we only need to estimate the terms

[|'Rm||8/Rm||8"Rm | d
X

i/f2n J/2n 1
4{ fx|a'Rm12"ﬂdp} {fxlameFwdp} { fxia”Rm]de}

with i + j = n. By our interpolation result of Corollary 12.6 we have
ifln

if2n
{f|8"Rm]2"/‘dp} < Cmax |Rm|'7/" {f]G"Rm [2dp.} i
X X X

and doing the same for j the theorem follows. Recall the constant in Corollary "
12.6 depends only on n and m.

2

'}:

T |

14. Long time existence

Let X be a compact manifold of any dimension and let us be given
initial metric at t = 0. ,_-'

14.1 Theorem. The evolution equation 5

d
5{8;‘;’ . _ZR;'_;'

has a unique solution on a maximal time interval 0 <t < T<oo IfT<®
maXﬂRU-H‘—’OOﬂSI—‘T. .

Proof. Since we already know short time existence and uniqueness b
Nash-Moser inverse function theorem, we can take the maximum time intet¥ :




THREE-MANIFOLDS WITH POSITIVE RICCI CURVATURE 297

‘<1< T on which the solution exists. We will show that if T < oo and
| ;§f|"‘" C as t — T, then the metric g,; converges as 7 = T to a limit metric
{which is strictly positive-definite), and all the derivatives converge also,
howing the limit metric is smooth. We could then use the short time existence
t to continue the solution past 7, showing T is not maximal.

'{ - T uniformly to a positive-definite metric tensor g, ,(T) which is continuous
‘and also equivalent.

~ Proof. Notice the argument is slightly subtle, since we measure the size of
' g/, with respect to g;; which is changing;

_ |8;* = &™8”8i;81:-

Fix a tangent vector v € TX at a point x € X and let

|o|f = g,(x,1)v'v’.

. Then we take

3 dt
' and it follows by Cauchy-Schwartz that

! v 13 = g:) Divj'

d 2 ’
dIIOgltl' "3;‘;" -

."Then for0 < 7 <6 < T we have

8
' |og | 03/ 0 1< ["| g, dt.
=31 Y
: If the improper integral is finite, we see that all the metrics are equivalent.
3 Moreover | v, |* converges uniformly to a continuous function |v|}asz—T
¢ and | o|, # 0 if v # 0. Since the parallelogram law ‘

lo+wP+|o—wP=2(|of +|w])

._ continues to hold in the limit, the limiting norm comes from an inner product
- 8;,(T), using the rule

: g(s,w)=—‘}((u+w]2—|n—wiz).

 This completes the proof.
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143 Lemma. If |[Rm|<Con0=<1< T and T < oo, then for any n we cq

find a constant C, with
[|o"Rm [ du <G,
5 4

Proof. This follows directly from Theorem 13.4 and the observation 'lha't: if
df/dt<Cfona finite time interval then we can bound f in terms of its initj
data. (Hint: let f = e"f))

We wish next to derive supremum norm estimates on d"Rm. Since they a;;’é
tensors, we use the following trick. First note that from the interpolatic',ﬂ“'
inequality in Corollary 12.6 we immediately get estimates :

[JaRm dx <G,y

for all n and p < 0. Now let E, =|0"Rm *. Then for all p < oo we have
g

estimates

[EF+IRE,F)dr<C,

since E, and 9E, can be expressed in terms of Rm and its covariant derivatives.

But E, is just a function, and by Sobolev’s inequality ifp>n

max|fP < C.[ (/P +13/F) di-

Of course the constant C, depends on the metric g, (1) and hence on time £.:%
But it does not depend on the derivatives of the g,;, since it enters

expression on the right only through |9f|> = g"3,f0,f and the measur
dp = p(x)dx with p(x) = ydetg;. The derivative 9, f = 3f/9x"is independen
of the connection l'f'}. Thus for functions the constant C, is uniformly bourn
as 1 — T, since the metrics are all equivalent by Lemma 14.2. Applying
estimate to E, we get the following result.
144 Lemma. If|Rm|< Coon0<t<Tand T < o then |3"Rm |<G,f
all n. The constant C, depends only on the initial value of the metric and
constant Cg. '
Of course the estimates on Rm = {R,,,} imply ones on Rc = {R,;}. S
dg,;/3t=-2R,, it is easy to see that the g, (¢) have all their derivati
bounded, and converge to the limit metric g;;(T) in the C* topology as !
This completes the proof of Theorem 14.1. ;

max | R;;|
where R,
We want t
15.1 The
Proof.
constant ¢

"~ of x of ler
~ when 7>
¢ some >
" point whe
*  the reader

. 152°7Th

B e o

"~ points.
- Thusw
~ hence R,
- 153 Th
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15. Controlling R .. /R i1

We return to the case where X is a compact three-manifold and the initial

etric has strictly positive Ricci curvature. The unnormalized evolution equa-

o1 :agu./&r = -2R;; will have a solution on a maximal time interval 0 <1 < T.

Ve know from Lemma 11.11 that T < oo, and then from Theorem 14.1 that
ax|R,,|—» wast—T. Since | R’ =S <R’ wehave R, —» wast T,

vhere R ., is the maximum value of R and R, will be its minimum value.

We want to estimate R . /R ...

5.1 Theorem. WehaveR . /Ry —~ last —T.

\Proof. By Theorem 11.1 we know that for every n >0 we can find a

constant C(n) with

3 |a,R|< ?R>2 + C(n)

for 9 < 1 < T. Then | ,R|< n*R¥/ 2 for1 = 4.

.~ Fix a point x € X where R assumes its maximum. Then on any geodesic out
of x of length at most s = 1/9R!/2 we have R = (1 — n)R,,,. We claim that
when n > 0 is small enough then this includes all of X. For R,; > eRg,; for
¢ > 0. It follows that every geodesic from x of length s has a conjugate
point when 7 is small by the following well-known theorem of Myers, which
.:'i: reader will find in Cheeger and Ebin (2, Theorem 1.26(1)].

¢ 152 Theorem (Myers). If R,; = (m — 1)Hg,; along a geodesic of length at
least 7H~'/% on a manifold of dimension m then the geodesic has conjugate

-" Ruin = (1 — 7R, It follows that R . /Ry, = 1 ast = T.
gu 15.3 Theorem. We have

fDTRmd::oo.

B P_mof. Choose a function f(f) equal to R, at t =0 and solving the
¢ Ordinary differential equation

df
| at = Rowc ]
Which is possible since R, is a continuous function of t. Since S < R?, we

 have
g -

2(R=1)<MR—]) +2RpR~ 1),

R e
S
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and hence R < fon 0 <t < T by the maximum principle. Since R, - oo ':. i |

t » T, we have f — oo also. But
log f(1)/f(0) = 2 fg ‘Ronue(6) d0,

and hence the integral diverges as — T.
15.4 Corollary. If r is the average scalar curvature, then

j:rdtz

Proof. Wehave R, <r <R, and R, /R, = last = T.
15.5 Theorem. S/R*— 3} —=0ast—T.
Proof. By Theorem 10.1 we have

S/R*—1 < CR,

and R, — o (since R, — 00 and Ry, /R pp = 1)

16. Estimating the normalized equation
Next we consider how to convert our estimates for the unnormalized &

equation

d
(*) '&g;j = -2R,;

into estimates on the normalized equation

i 25 ~
3r,

(**) arg‘f J_ZR"}"

Let (*) have a solution on a ma)uma] interval 0 < < T and let (*%) have -'_' =

corresponding solution on 0 < { < T related by the transformation equauons :
given in §3.
16.1 Lemma. R, /R~ last—T.
Proof. Since we are dilating by a constant, the ratio is unchanged.
16.2 Lemma. R, = ng for some € > 0.

Proof. Again both sides stretch equall) under dilations.

163 Lemma. R, <C< won0<r<T.

Proof. Let the metric g;; have volume 7 and diameter d. Then V' < 'f.-.
and since R,; = eRg,; we have d < CR,}/* by Myer’s Theorem 152
VR/2<C. But for the normalized equation the volume ¥ = 1. Thus R nia
Then R, < C also from Lemma 16.1.
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Lemma. f:-_— 0.
Proof. Since di/dt =y and Y7 = r we have

J:Fdr-= erdx=oo

Corollary 15.4. But7 < R < C, so we must have T = 0.

6.5 Lemma. $/R — § ~0asi— 0.

Proof. Again this follows from Theorem 15.5 since the expression is

: "'a.nl under dilation.
ce we have the relation

s 1R =4[(R—g) + (K- +GE-#)].

follows that the ratio A /ji of any two eigenvalues of RU converges to 1 as
?__ o0. Since Rmu/Rmm ~ last — oo also, it must eventually happen that the

jonal curvature is 1 pinched, or indeed as pinched as we like. At this point

it follows from the Sphere Theorem (see Cheeger and Ebin [2, Theorem 6.1])
" that the universal cover of X is a sphere. However, we shall only borrow a
e

= 166 Lemma. (Klingenberg). Let X be a simply connected manifold of
" dimension 3 or more whose sectional curvature is pinched between K and K.
Then the injectivity radius of X is at least 7/ VK VK.

Proof See Cheeger and Ebin [2, Theorem 5.10].
. We apply this result to the universal cover ¥ of X. The constant K will be

¢ proportional to R ;,. The volume is at least some multiple of the injectivity

radius. Thus we get an estimate R34 < C - Vol(Y). But X has volume one for
lhe normalized equation, and then the volume of its universal cover Y is just
Tthe number of elements in the fundamental group of X (which is finite by
Mycr s theorem). This gives a proof of the following.

16.7 Lemma. We can find € > 0 such that R, =€ on 0 <1< oo.

17. Exponential convergence

We start with a principle for converting from the unnormalized to the
T-;.nﬂrmalized evolution equation. Let P and Q be two expressions formed from
® the metric and curvature tensors, and let P and Q be the corresponding
E Cfprcssions for the normalized equation. Since they differ by dilations, they
differ by a power of . We say P has degree n if P = y"P. Thus g;, has degree
____1. R;; has degree 0, R has degree ~1, and S has degree 2.
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17.1 Lemma. Suppose P satisfies

P _
S =AP+0

for the unnormalized equation, and P has degree n. Then Q has degree n — |

and for the normalized equation

Proof. We see Q has degree n — 1 since d7/3t = Y and A = yA. Then
d -np A -np -n+14
vz P) = yA(y"P) +v70,

I L
—P=AP+ Q0+ ——=P. ;
ot < ¥ ot
But from §3 we know dlogy/dt = Zr, so dlog ‘,‘z/df: 1f. This prove m;,'_
lemma. _
Now from §16 we know that the normalized equation (*#) has a solution oj_
0 <1< oo with
O(‘Eéﬁminéﬁmaﬂiéc‘ E

Eﬁguéﬁuéfigm
R../Rn,— 1 and S/R*—41 -0 ast- o0

We want to show the convergence is exponential.
17.2 Lemma. We can find constants C < o0 and 8 > 0 such that

§—1R*s Ce™®".

with y = 2 we have

of _ a7, 2 oz e
5 <ATF Egp"apRqu—deP/R :

and by Lemma 10.7 we have

This makes
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ithi? = 27%9,R/Rand § = 4¢%/3C since
2 4P /R’ > 4¢3S]/R> > 4’[/3R > 8 f
;h,S-' > {R?and R < C. But then

3 -:-_(esff) < 5(e57) + a3, (e¥F),

t
‘and by the maximum principle e¥f< C. Thus f < Ce~?". Since R is bounded
above and below, this is equivalent to the theorem.
£17.3 Corollary. |R;; — 3Rg;|< e
" Proof. The eigenvalues of the matrix are of the form
] A=A +p+r)= (A -+ (A=),
while
' st =3[ -py+ (=) +e ]
" The estimate follows.
17.4 Lemma. We can find constants C < o0 and 8 > 0 such that

R —R.<Ce.

L ~ Proof. This time we let

B F=|3,RP/R+168(S — {R?).

s '_Then F has degree -2, and from Lemmas 11.7 and 11.9 (with n = 0) we get
d

= - e == 7.
—a—.Fs AF + 6712R(S — 1R?) — 37F,
i

& since Lemma 17.1 also works for inequalities. Using our estimate from Lemma

9 F<AF+Ce¥ - OF
Ediy o o
= for some C < 00,5 > 0 and ¢ > 0, since R < Cand 7 = R i = € > 0. But this

- makes

%u&-casma¥-dy
i

= and by the maximum principle we have e8F — Ci< C.Then F< C(1 + e,
. and since § >0 is arbitrary this proves the theorem (by taking a slightly
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17.5 Corollary. | R;; — 47g,;|< Ce™®.

Proof. This follows from the last two lemmas since

|Ru - %ng'j|€| R!’j - %RS-U'] +|R = H/\ﬁ"T

Using Lemma 14.2, we get the following result.

17.6 Theorem. The metrics §; J,(r) are all equivalent, and converge as t - o
uniformly to a continuous positive-definite metric §; (). g

To estimate higher derivatives we return to Theorem 13.4. Notice that all
three terms have the same degree of homogeneity, and hence the same resul; |
holds for the normalized evolution equation. Since in three dimensions thei,:l
Riemannian curvature Rm is entirely determined by the Ricci curvature Re, we
have the estimate

d . = g 2
Z [ 19"Rc|Pdii+ 2] |9" 'Re|* dji < Cmax | Re 9"Rc |* dji
[ 1R dit2f | [ dii< Cmax | Re| [ "R di

and max ;| Re|< C. We introduce the tensor £ = (£} defined by -
E = R % gt’j’

and observe that 3"Rc = 9"E for n > 0, since F is constant. Then mterpolatmg

by Corollary 12.7

. o n/(n+1) ) 1/(n+1)
f|B”Rc|2dﬁ£C{f ]B”*'Rc|2dﬁ} {f |E|2dﬁ} :
X X X

Now for any & > 0 and all x, y > 0 we have
y{ Cexn+l + CE-" n+l
and applying this above gives
[ |a"Re P dii< Ce[ |07 Re[Pdji + Ce [ | E|* di.
X X X

Then we get the following result.
17.7 Lemma. For every n we have

[ |3"RePdp<c
X
with a constant depending on n.

Proof. 1f we choose & > 0 so small that Ce < 2 we can substitute this in
previous equation and get &

d Wi it 22 g0
dtfx]a Re| d,tLéCfXIE[ dji.

E- for some ;

Proof

4 _I_’raof.i
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we know | E|< Ce-*" for some 8 >0 by Corollary 17.5, and the lemma

follows.

ext we use th
ves the following result.

17.8 Lemma. For every n > 0 and every

e interpolation estimate of Corollary 12.6, which immediately

p < oo we have

B

[ |9"Rep dip < ce®
X

_. some constants C < oo and 8 > 0 depending on n and p.
& Proof. This follows immediately from Corollary 12.6 since for 1 <i=<

=
f]a'chl"f'*d,mcrnax |E13‘"/*'—”f |9"Re ? dii,
X X ),

* and the maximum norm of E decreases exponentially while the L, norm of

- 3"Rc is bounded.

L 17.9 Theorem. For every n > 0 we have

max |3"Re|< Ce™

 for some constants C < o and 8 > 0 depending on n.

~ Proof. We repeat the argument of Lemma 14.4. The function E =|3"Rc|’

= is exponentially decreasing in L, norm for all p < oo as are its first derivatives.

"_ the metrics g,.j(:'} are all equivalent as f - o, we can apply the Sobolev
_sstimate with a uniform constant to show the supremum norm of E, is also
texponentially decreasing.
- 17.10 Corollary. As { — oo the metrics g; ),-(l- ) converge to the limit metric

= ?u{m) in the C* topology. Hence g () is smooth, and the curvatures R,J{r-)
[ converge to the curvature R; ().

B Proof. This follows directly from the previous result since

a. 2. -

k. PR L)

- 17.11 Corollary.  The limit metric g, (o) has constant positive curcature.

t Proof. By Corollary 17.5 the tensor fi,-j — 7g,; converges uniformly to

0. This proves Main Theorem 1.1.
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