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FLOW BY MEAN CURVATURE OF CONVEX
SURFACES INTO SPHERES

GERHARD HUISKEN

1. Introduction

The motion of surfaces by their mean curvature has been studied by Brakke
[1] from the viewpoint of geometric measure theory. Other authors investigated
the corresponding nonparametric problem [2], [5], [9]. A reason for this interest
is that evolutionary surfaces of prescribed mean curvature model the behavior
of grain boundaries in annealing pure metal.

In this paper we take a more classical point of view: Consider a compact,
uniformly convex n-dimensional surface M = M, without boundary, which is
smoothly imbedded in R"*!. Let M, be represented locally by a diffeomor-
phism

FiR S TS F()e MyER",

Then we want to find a family of maps F(-,t) satisfying the evolution
equation

SF(E0)=AF(Z1), FeU,
F(‘-O) =:Fp,

(1)

where A, is the Laplace-Beltrami operator on the manifold M,, given by
F(-.1). We have

A F(Z,t)=-H(x 1) -v(%1),

where H(-, 7) is the mean curvature and »(-, r) is the outer unit normal on M,.
With this choice of sign the mean curvature of our convex surfaces is always
positive and the surfaces are moving in the direction of their inner unit normal.
Equation (1) is parabolic and the theory of quasilinear parabolic differential
equations guarantees the existence of F (-, 1) for some short time interval.
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238 GERHARD HUISKEN

We want to show here that the shape of M, approaches the shape of a sphere
very rapidly. In particular, no singularities will occur before the surfaces
shrink down to a single point after a finite time. To describe this more
precisely, we carry out a normalization: For any time ¢, where the solution
F(-, 1) of (1) exists, let y(7) be a positive factor such that the manifold ¥
given by

E(%,t)=v(1)- F(X, 1)
has total area equal to | M|, the area of M|

| di=1M,| forallr.
M,

After choosing the new time variable 7(r) = [J $*(7) dr it is easy to see that F
satisfies

O f(z V= A-Flz D)+ Li-F(7 7
- o F(%, 1) = AF (X, 1) + —h;F (%, 1),
F(-.0) = F,
where

h= fw a2 dﬁ/ dn

is the mean value of the squared mean curvature on M, (see §9 below).

1.1 Theorem. Let n = 2 and assume thar M, is uniformly convex, i.e., the
eigenvalues of its second fundamental form are strictly positive everywhere. Then
the evolution equation (1) has a smooth solution on a finite time interal
0 <t < T, and the M,’s converge to a single point £ as t — T. The normalized
equation (2) has a solution M; for all time 0 < t < . The surfaces M; are
homothetic expansions of the M,’s, and if we choose £ as the origin of R"™", thex
the surfaces ;'Qf; converge to a sphere of area |M,| in the C*-topology as I — .

Remarks. (i) The convergence of .»'ff; in any C*-norm is exponential.

(i1) The corresponding one-dimensional problem has been solved recently by
Gage and Hamilton (see [4]).

The approach to Theorem 1.1 is inspired by Hamiltons paper [6]. He evolved
the metric of a compact three-dimensional manifold with positive Ricci curva-
ture in direction of the Ricci curvature and obtained a metric of constant
curvature in the limit. The evolution equations for the curvature quantities in
our problem turn out to be similar to the equations in [6] and we can use many
of the methods developed there.

In §3 we establish evolution equations for the induced metric, the second
fundamental form and other important quantities. In the next step a lower
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bound independent of time for the eigenvalues of the second fundamental
form is proved. Using this, the Sobolev inequality and an iteration method we
can show in §5 that the eigenvalues of the second fundamental form approach
each other. Once this is established we obtain a bound for the gradient of the
mean curvature and then long time existence for a solution of (2). The
exponential convergence of the metric then follows from evolution equations
for higher derivatives of the curvature and interpolation inequalities.

The author wishes to thank Leon Simon for his interest in this work and the
Centre for Mathematical Analysis in Canberra for its hospitality.

2 Notation and preliminary results

In the following vectors on M will be denoted by X = { X}, covectors by
Y={Y,} and mixed tensors by T = {7//}. The induced metric and the
second fundamental form on M will be denoted by g = {g,)and 4 = {h,}.
We always sum over repeated indices from 1 to 7 and we use brackets for the

inner product on M:
(?;Li ‘S:;.k> = gi’sgjrgkuy}isju' ‘Tll = (T;:ks T_;:k) 2

In particular we use the following notation for traces of the second funda-
mental form on M:

H= g”hU-, [“”2 = g‘.Jth:'khjh
C=g%g*g™n h, h Z=HC — |A|*.

im™njs

By (-, ) we denote the ordinary inner product in R"*!. If M is given locally by
some £ as in the introduction, the metric and the second fundamental form on
Y can be computed as follows:

X X ' 2F(%
gr‘j(f) = (g%l’ a_};gcx_)]‘ hr’j(f) = ‘(V(f)s %‘g_.‘:l)‘ X E Rns

vhere »(X) is the outer unit normal to M at F(X). The induced connection on
Mis given by

1 3 0 o
ko cgklle g g @ o o
TU 2g (axl_gﬂ axjgn‘ ax!‘gu)
w that the covariant derivative on M of a vector X 1s

i d i i k
VJ,-X =QX +I}kX.
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The Riemann curvature tensor, the Ricci tensor and scalar curvature are givey
by Gauss’ equation

Ry =hyhy;—hh

Jk?
Ry = Hh, — h:‘.‘guhﬂ(v
R=H?—- |4
With this notation we obtain, for the interchange of two covariant derivatives,

ViV, X" = v, X" = R, X* = (h hy — hyh,) g X,

v,-Vij - VIV;Y,‘ = Rijk.fg ”’Ym = (hfkhj.‘ e hi-’k_,-'k)gllmym-

The Laplacian AT of a tensor 7 on M is given by
AT = 8™V, V, T
whereas the covariant derivative of 7 will be denoted by VT = { v,7; }. Now
we want to state some consequences of these relations, which are crucial in the
forthcoming sections. We start with two well-known identities.
2.1 Lemma. (i) Ak, = V,v,H + Hh,g""h,, . — |4|’h,,.
(ii) 16|A| (hu,vv H) + IVA| + Z.
Proof. 'The first identity follows from the Codazzi equations vk, = V,h,
= V,h,, and the formula for the interchange of derivatives quoted above.
whereas (ii) is an immediate consequence of (i).
The obvious inequality | VH|? < n|VA|? can be improved by the Codazi
equations.
2.2 Lemma. (i) [VA|* > 3/(n + 2) - |VH|%.
(i) |wA|? — |[VH|*/n = 2(n — 1)|VA|*/3n.
Proof. Similar as in [6, Lemma 11.6] we decompose the tensor vA:
vihﬂ( !ﬂf + F

where

Eij= n+2

Then we can easily compute that |E|* = 3|VH|*/(n + 2) and
<E:Jrk' Uk} (‘E!ﬂc vlh;k ijk} =4;

i.e., E and F are orthogonal components of V4. Then

(VH g;k + v Hg{k + VkH g!))

|VAI* > |E|* = |VH|?,

n+2

which proves the lemma.
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clgenvalues of M,; are nc
cigenvalues of the second
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(3)
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Z=HC -

I

YK

i<j

and the conclusion follow:

| 4]

(i) We have

|V H— O.H - by
=|vhy, - H-Yv,H
=|w,hy - H— Yv,H

= HV,H ™ hka‘_ ka
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If M;; is a symmetric tensor, we say that M, is nonnegative, M > 0, if all
eigenvalues of M, are nonnegative. In view of our main assumption that all
cigenvalues of the second fundamental form of M, are strictly positive, there is
some ¢ > 0 such that the inequality

(3) h = EHgU

holds everywhere on M,. It will be shown in §4 that this lower bound is
preserved with the same ¢ for all M, as long as the solution of (1) exists. The
relation (3) leads to the following inequalities, which will be needed in §5.
23Lemma. IfH > 0, and (3) is valid with some ¢ > 0, then
() Z > ne?H*(|4|* — H%/n).
(t) |Vihy - H— V,H - by |* > LeH? | vH|
Proof. (i) This is a pointwise estimate, and we may assume that g, = §

ij
and

In this setting we have

n n n 2
Z=HC—]A|4——-(ZKE)( xj]—(fo)
i=1 J=1 i=1

n

n
= E (K,-xﬁ - Kjxf) - Z 2x,-2xf
i<y i<j
= 2 = 2
=X K;"‘j("f = K;) = EQHzZ (x; ~ K_;') s
<j i=<j
ind the conclusion follows since
1 g 2
2 __ 2 _ i
IAr n‘H - n E (KJ" K_;') ®

i<j
(i) We have
Vihy - H— v,H - hkf’z
2
=va'hk£ ~H—~ 3(V,H-hy+ Vil - hy) - 3(v,H - hy— Vi H - hy)|

2
=IV{}’H “H = (O H - hy+ ka'hH” + 3|VH by~ Vi H - h,-,.|2

> 3| VH - by — VkH’hsAz’
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since V,h,, is symmetric in (i, k) by the Codazzi equations. Now we have or
to consider points where the gradient of the mean curvature does not vani:
Around such a point we introduce an orthonormal frame e, - -.e, such th.
e, = VH/|VH| Then

IVH|, i=1.

5
vi {0, i=2,

in these coordinates. Therefore

2
2 Y (vH-h,- v.H-h,)
ik, (=1
> 3(v\H-hy— V,H- hu): + 3(V,H - hyy - VIH"‘:ﬂ:
= 1hd,|vH| > te2H? VA,

since any eigenvalue, and thus any trace element of &, is greater than eH.

3. Evolution of metric and curvature

In this and the following sections we investigate equation (1) which is easi
to handle than the normalized equation (2). The results will be converted to th:
normalized equation in §9.

3.1 Theorem. The evolution equation (1) has a solution M, for a short iin:
with any smooth compact initial surface M = Myat t = 0.

This follows from the fact that (1) is strictly parabolic (see for example [}

111.4]). From now on we will assume that (1) has a solution on the intenz

0<t<T.
Equation (1) implies evolution equations for g and A4, which will be denv
now.
3.2 Lemma. The metric of M, satisfies the evolution equation
(4) L
ot < s i

Proof. The vectors 3F/3x, are tangential to M, and thus

(2 = 2R
JF T i ax, ’ ox; \axj'" ax, |

From this we obtain

I
YR

¢

33 Lemma. The uni
Proof. Thisis a stra

9 _(8
3’ \ar

=(,,,

Now we can prove

34 Theorem. Thes

d

-Eirt}

Proof. We use the!
a2F!
9x,0x
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d d
at T w

0x ¢

=9y
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From this we obtain

9 9 (dF BdF
0% o dx,” 9x,
(e ][ o
= (B l(uH;r) sl R J’(—Hv)
— g2, 3F)_y[3F i,,)
e ax,."' dax; | | Ox,” Ox;
= -2Hh,;.
33 Lemma. The unit normal to M, satisfies dv /3t = VH.
Proof. This is a straightforward computation:
d 0 OF)oF |, ( 0 BF) oF
- =|—p, — —g ] = J
ar ar ’ 9x; |/ dx; 9 ax
S \ OF 0 oF
— — —_—l = ——  —gl) = ry
‘\F' ax,(H")J ax’,g Bx,H a_rjg Vi

Now we can prove

34 Theorem. The second fundamental form satisfies the evolution equation

a m 2
i =0k = 2Hh,g""h,,; + A h,,.
P-oof. We use the Gauss-Weingarten relations
PF _ L8 3 . . 9F
dx,0x, ‘fEl' x, " ax;” a8 ax,,
1o conclude
0 S 9 ( 3°F
ot T ax'ax."’
_ aF Im
- ax ax, (7). » ] ‘axax ,ox, 8 )
92 9 [ mOF)
“axax it H(a (hme a_x,")
oF d aF
el s e Lo ST ||
(I‘”axk h”y’ﬂ H 3xmg )
92 0 (. OF
= axax H ~ Tigy # + Hhyug™|Lig -

= ‘C’,-V}H = Hh‘.fg "‘hmj

Then the theorem is a consequence of Lemma 2.1.

My il S
e oI L T T ¢ LS R
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3.5 Corollary. We have the evolution equations:

(i) %H = AH + |A|*H,

(i) oAl = AlA]? = 2(VAP + 214",

i) o (147 - 287 = a(1ar - 182) - 2(1va - o)

+2|Af1(|Ar2 - i—HI).

Proof. We get, from Lemma 3.2,
a a i RN 4 | a ik il
_a-; =g(gjku) -_g}-a_;ht;"- ZHS thkl‘hl;j‘

and the first identity follows from Theorem 3.4. To prove the second equation.

we calculate

9 3, ,
3= L amen )

= -4Hg"g""h,,,8"h,;h,,
+2g"*g/h,,(Ah,, — 2Hh,,g""h, + |A*h,)
= 2g"“g’h,,Ah,; + 2|4%,
Al4)? = g4,/ (8798 " hymh 4n) = 28798 h AR, + 2| VA .
The last identity follows from (ii) and
9 H?>=2H(AH + |A|*H) = AH? - 2|VH|* + 2|A|’H".

ar
3.6 Corollary. (i) If du, = p,(X) dx is the measure on M,, then p = detg,

and du,/9t = —H?* - . In particular the total area |M,| of M, is decreasing.

(i1) If the mean curvature of M, is strictly positive everywhere, then it will b
strictly positive on M, as long as the solution exists.

Proof. The first part of the corollary follows from Lemma 3.2, whereas the
second part is a consequence of the evolution equation for H and the

maximum principle.

4. Preserving convexity
We want to show now that our main assumption, that is inequality (3!
remains true as long as the solution of equation (1) exists. For this purpose #:
need the following maximum principle for tensors on manifold, which wa

F

proved in [6, Theorem 9.1]
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proved in [6, Theorem 9.1]:

Let u* be a vector field and let g, , M,; and N, be symmetric tensors on a
compact manifold M which may all depend on umc t. Assume that N, = p(M, ,
g,) is a polynomial in M, formed by contracting products of M, w!lh itself
using the metric. Furthermorc let this polynomial satisfy a null -eigenvector
condition, i.e. for any null-eigenvector X of M, we have N, X'X’ > 0. Then we
have

4.1 Theorem ( Hamilton). Suppose that on 0 < t < T the evolution equation

3
a M, =AM, +u* v, M, + N,

holds, where N, = p(M,, g, ) satisfies the null-eigenvector condition above. If
M,>0att= 0 then it remains soon0 <t < T.

An immediate consequence of Theorems 3.4 and 4.1 is

42 Corollary. Ifh,, > Oatt = 0, then it remains so for 0 < t < T.

Proof. SetM, =h,, u*=0and N;;= -2Hh,g"h,, + |A| R,

We also have the follomng stronger rcsull

43 Theorem. IfeHg, <h, < BHg, . and H > 0 at the beginning for some
constants 0 < e < 1/n < B < 1, then this remains soon 0 < t < T.

Proof. To prove the first inequality, we want to apply Theorem 4.1 with

k

h,; 2
M, ——H—,—sgu u Hg 'v,H,
N;; = 2eHh;; — 2}1”,,3""7!”.

With this choice the evolution equation in Theorem 4.1 is satisfied since
9 (hu) HAh,, — h,,AH

— ml
'\ H Hz 2h, 8™,
h,\ HAh,—h AH 1 h
ki § Pt il il kt y (=i
A( H) TE Hg V,LHV,{ H )

It remains to check that N; is nonnegative on the null-eigenvectors of M, .
Assume that, for some vcclor X={X"),

h, X' = eHX,.
Then we derive
N,;X'X! = 2eHh;;X'X’ - 2h,,g™h, X'X’
=2e?HY| X|? - 262 HY X2 =0

Mhat the second inequality remains true follows in the same way after reversing

ugns.

YT Aol 10 R

£ R
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5.1 Theorem. There are constants 8 > 0 and C, < o depending only on M,
such that

|4]> — %Hl <GH ™,

for all times 0 <t < T.

Our goal is to bound the function f, = (|4|* — H?/n)/H?"° for sufficiently
small 0. We first need an evolution equation for f,.

52Lemma. Leta =2 — o. Then, for any o,

LA Aa-1) ,,
arfo_' Afu+ H g vavqfa

1HV hk.‘ V:H ) hk.‘i:

— (145 - 1) oHT +2 - Q)l4F..

Proof. We have, in view of the evolution equations for |4|* and H,

8. _AAF 1.,
arf"_B:lH“ e J
_HAJAP —aAPAH (2 -a

)Hl-aAH
Hn—-!. n

- ZlvAl +2 - Q)14

I =S ST T AR T Y R e =
v
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5. The eigenvalues of 4 Furthermore
In this section we want to show that the eigenvalues of the second fundz- Hv,A]? -
mental form approach each other, at least at those points where the mea Vi= H
curvature tends to infinity (for the unnormalized equation (1)). Following the
idea of Hamilton in [6], we look at the quantity A= HA|A)2 -
a Hu
2l 1y oy
14)° - — ng’ Tl (5) _ 2a <‘
H'a+1
which measures how far the eigenvalues k, of A4 diverge from each other. We 1=
show that | 4]> — H2/n becomes small compared to H2. n

and now the conclusion of
identity

|Vhy - H— V,H - hy

Unfortunately the absolut
positive and we cannot ac!
But from Theorem 4.3 and

5.3 Corollary. Foranyc

0 fo<an+dos

holdson0 <t < T.

The additional negative
theorem:

54 Lemma. Lerp > 2.
estimate

Elf fsz

Proof. Letusdenoteb




of the second fundz-
ints where the mean
n (1)). Following the

from each other. We

lepending only on M,

'H%*=° for sufficiently

(2 - a)|4)7f,.

"|A|* and H,

AN
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Furthermore
_HvJA? - APV, H (2-a) o
vifl'.! = HG_.I n H VJH"
Al 412 — 2 -
af, = HAAP =~ alAPAH _(2-a) .\ _,, .,
L) Hn+l n

2a
Hu-l

_12-a)1-a)
n He

'5' E I

(V,§A|2_ v,H) +ala+ 1)]—;:4—;:!va

|vH|,

und now the conclusion of the lemma follows from reorganizing terms and the
identity

ivlhu “H—- v,H - hul- = HZIVA!: + IAI-|VH'- - ( \-";IAI:- V.H}H-

Unfortunately the absolute term (2 — a)|4|%, in this evolution equation is
positive and we cannot achieve our goal by the ordinary maximum principle.
But from Theorem 4.3 and Lemma 2.3(ii) we get

53 Corollary. For any o the inequality

2(

6) ga;f, <Af, + —“T*I—)W,H. v.l.) - slﬁf"b’f: +olal’y,

widson 0 <t < T,

The additional negative term in (6) will be exploited by the divergence
theorem:

4 Lemma. Ler p > 2. Then for any v > 0 and any 0 < o < 1 we have the
“itimate

ne’ [ [7Hdp < @np +5) [ o f27 oHT du

+1(p =) [ 2% vr,| dp.

Proof.  Let us denote by h?J the trace-free second fundamental form

1
hﬂ, . hu = ;gu.




248 GERHARD HUISKEN

In view of Lemma 2.1(ii), the identity (5) may then be rewritten as

Af, —-——(h"

i_,r’

v, H) + iﬂz

— |~V H— hk:' fAH

Hu+2
ool oy Ao
Now we multiply the mequahty
Af, > (hu,v,-vjﬂ) £
_ Z(a = 1)
H

2

H*® <

<VJ‘H' vjfa) - %fn ’ AH
by 77! and integrate. Integration by parts yields

0> (p=1) [ f27vr du+ [ S 2fp " d

~2a = 1) [ 5127Vt O H)d

+2af Hﬁlf"'l(hu,v,-ijH)dp

_ L‘[ ?fup_IIVHF dy

~(p =1 f sz (WO H - 9,1, du

2 L oy
—af E;‘J’[V}fl du+ ap [ 2V H, V. f,)dp,
where we used the Codazzi equation. Now, taking the relations

(7) ab < Sa + 211] b, el

2
Py ol
fa“gH * |hfj -

(P - 5 12) = f e

into account, we derive, for any n > 0,

= f2 7 Zdu < (np +5) [~ VAT d

+1(p = 1) [ 2719 du

The conclusion then follows from Lemma 2.3(i) and Theorem 4.3.

_ 1)
= (V:H,V.f,)-

Now we can show tl
sufficiently small.

5.5 Lemma. There i
for all

(8) J

the inequality

holdson0 <t < T.
Proof. We choose

&
and it is then sufficient {

9)

To accomplish this, we 1
0 - .

o [ f7dn+p(p'
+¢?

< 2a

where the last term on t
dp as stated in Corollary

1 .-

Ae—1)pf /2
<ir(p-

and since p — 1 > 100e

3
o J 72 de+3p(p




vritten as

AH

IV:'H9 vffo)'

-AH

1. %1 u) du,

tions

fH®

H| dp

2
A dp.
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Now we can show that high L’-norms of /. are bounded, provided o is
sufficiently small.

5.5 Lemma. There is a constant C) < oo depending only on M, such that,
for all
(8) p>100e7%, o< %.63,0‘1/2,

the inequality

holdson 0 < 1t < T.
Proof. We choose

C, = (]MUH]) sup (supfa)
e€(0,1/2] * M,

and it is then sufficient to show
d
5 P
(9) arffadpgo on0<r<T.
To accomplish this, we multiply inequality (6) by pf”~! and obtain

d 4 2
a2+ p(r-1) [ £272vs  a
1 2
2 o1 2
+ep [ 7l VH dp + [ 7 ay

<S2a=1p[ F12  IVHI L+ op [ 14772 d,

where the last term on the left-hand side occurs due to the time dependence of
iuas stated in Corollary 3.6(i). In view of (7) we can estimate

Na=1)p [ 2727 H|| v du

- 2 N 2
<ip(p-1)f 1272wy du+2-Fo [ 1271 o[ dy,

ndsincep — 1 > 100672 — 1 » 4¢-2, |4]* < H?, we conclude
d _ 2 1 B 2
) 22 du+ (o= 0) [ £2vr du + 4 7/ Al dy

< opf H*fPdu.
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The assumption (8) on o and Lemma 5.4 yield

3 [ rdu+1p(p-0) [ f279nl du+ dep [ sz I dy

2l 1 o 2
<gP@np +5) [ 2 IVH 4

23 (p - p-2 B
8 P (p l)ffo |Vf,| dp

for any n > 0. Then (9) follows if we choose n = ep~'/2/4.
5.6 Corollary. If we assume

rm\2 -
o (e osforn
then we have
\1/p

([ Hzan) < c,

on0<t<T.
Proof. This follows from Lemma 5.5 since

(f mmizan)” = (f szan) "
with

5 -1/2+m-1/2” e
g pgls”’ 16

; 83 P -12 :
We are now ready to bound f, by an iteration similar to the methods used
[2], [5]. We will need the following Sobolev inequality from [7].

5.7 Lemma. For all Lipschitz functions v on M we have

n/n—1
(o ]
M

Proof of Theorem 5.1.
max( f, — k,0) for all k > k, = sup,, f,, and denote by A(k) the set uhc
f, > k. Then we derive as in the proof of Lemma 5.5 for p > 100¢™°

a—=1/n

< c(n){qu'U[dp + -[u H]v|dp).

d 1 >
= Podp+=p(p-1 vf | ff:%d
affmf,,k w+35p(p )Lmi fol f25 dp

<op[ HYP{Yf,dp.
A(k)

Multiply inequality (6) by pf?;', where f,;°

FI

On A(k) we have
ir(,
and thus we obtain with v -

d 2
= v-d
or L{t) ¥

Let us agree to denote by
Lemma 5.7 and the Holder

o) "<

where

q

Since supp v € A(k), we h

2/n
( H" dp) :
supp o
provided
P

Thus, under this assumpti‘

supf
[0.T] A'(k)

Now we use interpolation

1
(f UJQG dp)
A(k)

“:[hﬂ =

rforf

A(k)

1/q, such that 1

1,
v % dp dt)




21 vH|" dp
1
7127 vH] dy

v dp

:_1/2_

methods used in

ldp |.

1, where f,, =
¢) the set where
e ?
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b

On A(k) we have
B 2 2
bp(p = DAV 2| vr?d]
and thus we obtain with v = f#{?
d 5 = )
ar vt dp + vuvl du <o Hf?dy.
at Lm 2 A(K) Ivel d thA, /7 dp

Let us agree to denote by ¢, any constant which only depends on n. Then
Lemma 5.7 and the Holder inequality lead to

[, eean) e tooldn+ o

\ 'supp v

\2/B \Va
o ([ o) :
) M /

where

q={n/(n—2), n=>2

< o0, n=2.
Since supp v € A(k). we have in view of Corollary 5.6 :
f \2/n f y2/n . j_'l'
(f Hﬂdﬂ-) g k-zp/n( Hafopd#' -<~.. k—)_p'/nc‘l;lp_-n-
supp v A(k) J -_-
provided e
P> 2%, . _1%53‘0-1/2_ &

Thus, under this assumption we conclude for k > k, = k(kg, C,, n, €) that

f yv1/9
] T e
sup vedp + c,,f l[ v? dp) dr
[0.7] “A(k) 0 A(k) }

< opfuT L(H HfPdp dr.

Now we use interpolation inequalities for L?-spaces

v 1

(f 29 du
A(k) |

1

a
T a
do 94 ( )
witha = 1 /g, such that 1 < g, < g. Then we have
1/40
T T
v?% d| dr] <cpo H2f?dp dt
U; L{k} B J P']{') L(k} 1 dp

1/r
1-1/r T o
< copla(k)]| (fo L“_)HIVJ’ d#dr) :
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where r > 1 is to be chosen and

laGeyl=[" [ dwar

A(k)

Again using the Holder inequality we obtain

T, 2-1/q0-1/r| (T - \
[[ ] freanas < copla®f ™\ [T [ Hpdua
0 <“A(k) 0 YA(k)

1/r

If we now choose r so large that 2 — 1/g, — 1/r = y > 1, then r only depends
on n and we may take

(10) pare®2®, esxf2% 2
such that by Corollary 5.6
b — kI’ |4(h)] < C(n, €y, )4 (K]
for all h > k > k,. By a well-known result (see e.g. [8, Lemma 4.1]) we
conclude

[

fo<k +d,  d?=Cr A Va(k)|

for some p and o satisfying (10). Since
A(ky)

by Corollary 3.6(i), it remains only to show that T is finite.
58Lemma. 7T < .
Proof. The mean curvature H satisfies the evolution equation
%H =AH + H|A|' > AH + %H’.

Then let @ be the solution of the ordinary differential equation
da
F=—¢,  9(0)=Hy,l0)>0.

If we consider ¢ as a function on M X [0, T'), we get
%(H -9)>A(H-9)+ %(H’ - 9¢’)
such that by the maximum principle
H>¢ on0<t<T.
On the other hand g is explicitly given by
H s (0)

TR —@/mHL0)

o(1)

And since ¢ = oo as ¢ -
case that M, is a sphe:
curvature and so the bo
proof of Theorem 5.1.

In order to compare tl
M,. we bound the gradien
6.1 Theorem. For any

[t
Proof. First of all we

mean curvature.
6.2 Lemma. We havet

d
glVHIZ = A|vE
+2(x
3 1
5 |VHI < AlvA[-

Proof of Lemma 6.2. U

Ry
arIVH'I=§

=2h

+2

The result then follows fro
AlVH =24
A(v,H)=vw

6.4 Lemma. We have 1/

3 (|vHl’ |
a:( H )QA("




1/r
HYfP dy dt

, then r only depends

‘Y
8, Lemma 4.1]) we

I

uation

tion
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And since @ — o0 as 1 = (n/2)H;2(0), the result follows. Moreover, in the
case that M, is a sphere, ¢ describes exactly the evolution of the mean

curvature and so the bound 7T < (n/2)H;2(0) is sharp. This completes the
proof of Theorem 5.1.

6. Abound on |vH|

In order to compare the mean curvature at different points of the surface
M,, we bound the gradient of the mean curvature as follows.
6.1 Theorem. For any m > 0 there is a constant C (n, My, n) such that

2
IVH" < nH* + C(n, My, n).

Proof.  First of all we need an evolution equation for the gradient of the
mean curvature,

6.2 Lemma. We have the evolution equation
a
o | VHI" = AlVHI = 2|98 + 24| va]?

+(VH by, GHR,,) + 2H( ,H, vial’).
6.3 Corollary.
2 VI < AIGHT = 29 + 4| onf + 2H( 9, H, v)al’).

Proof of Lemma 6.2. Using the evolution equations for & and g we obtain

d 2_ 9, .
5| VA == (g/v,Hv H)

=2H(h,;,V,H - v,H) + 2gVv,(AH) - v,H
+2g"v,(H|4l") v,H.
The result then follows from the relations
AIVHI' = 2g¥A(vV,H) - v, + 2|9 8]
A(ViH) = v (AH) + g/ v,H(Hh,, - himg8™"h, ;).
64 Lemma. We have the inequality

2 2 2
2 [ |vH| \vH| o |vH )
a:(T)“‘EA(T i +2(v,H, V,-|A|>-




1
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Proof. We compute
2 2 2
3 ( |vH| HA|lvH| —|vH|AH _ 2, _,,.2
== — —I% -H
a:( H ) = H? H'\- l
2
+3]4 f('—v}f—l) +2( vH, vjAl’),
2 2 2
i I° —|o ¥ :
A(!wﬂ ]= HA|vH| JvHI AH | 2\ op
H H? e

4
- I_{?<Hv'v’H' v,HV,H),

and the result follows from Schwarz' inequality. We need two more evolution

equations.
6.5 Lemma. We have
(i) %H’ — AH? - 6H|H|" + 34" - H?,

0 3~ ) <o - L)) - 2 Do
+ G|l + 3|4 H{jaf* - ;l;H:).

with a constant Cy depending on n, Cyand 8, i.e., only on M,
Proof. The first identity is an easy consequence of the evolution equation
for H. To prove the inequality (ii), we derive from Corollary 3.5(ii)

%(('Ai: - %H:)H) = A[[IAJ: - %Hl)H) — 2H(!\"-Af - %w;{ﬁ

—2( v,H, \-:,(iAl2 - %H3)>

+34 H |4 - 1y ).
! n
Now, using Theorem 5.1 and (7) we estimate
1.,
2]( v.H, vl - ;H-]>] = 4|(v,H-hY, vkl
< 4|vH||h | | vA4|
< 4nClPH' 3w Al
2An—1 2
<212V o al + C(n. G, 8)| Al

E 3n
and the conclusion follows from Lemma 2.2(i1).

e it M S -...-_»'u'—!;'__

FI

We are now going to bou
2
_ lvH|
f==—f+
for some large N dependin
6.5 we obtain
2

af
Ve Af + 3|4|

+6nH|VH

+2NG,|A|

Since (1/n)H* < |A]> < F
depending only on 7 so lary
of
Y < Af+ 2N

By Theorem 5.1 we have

INC,H* + 3NH’(

and hence df/3r < Af + (

This implies that max f
have a bound for T, f i
C(n, M,). Therefore

B '
|VH|" < nH
which proves Theorem 6.1

.

As in [6] we write S*
contraction on S and T by
T will be denoted by ¥
derivative of the Christoffe

9., 1,
grjkzigf{vj(

= *gd{ VJ('




~ gV
2
7;'H1 VJIA] >’

+ Ezgwar‘

v,H),

' need two more evolution

2

- H,

_2n :——1)H| val
i)

l Ll

on M.

of the evolution equation
rollary 3.5(ii1)

1 2
!H(lVAIZ ~[wH]

+ C(n,C,, 8)|vAl"
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We are now going to bound the function

|vH|"

2 1
f=T+N(rAr =

2
;HQ)H + NGJA| - qH?

for some large N depending only on » and 0 < 1 < 1. From Lemmas 6.4 and
6.5 we obtain

§i(‘:AMHA[Z M’—z +2(v,H v]AIQ>
ar = H ( Tty

=1
+6nH|vH| - N—(%I—lH| val®

+2NGyl4|* + 3N|A!2H(1A|2 = %Hz) — 3|4’ H>.

Since (1/n)H? < |4|> < H?, |VH|? < n|VA|? and 7 <
depending only on n so large that
%{—rs Af+2NGH* + 3NH3([A[2 B %Hz) - %nﬂi

By Theorem 5.1 we have

1 we may choose N

2NC,H* + 3NH3([A]2 ~ %‘-Hl) < 2NGH® + 3NC,H*™?

< %nHS Sl a6 0.
ind hence 9f/3r < Af + C(n, M,).
This implies that max f(1) < max f(0) + C(n, M;)1, and since we already

nave a bound for 7, f is bounded by some (possibly different) constant
((n, M,). Therefore

I VHI" < nH* + C(n, Mo)H < 20 + &(n, M,)
shich proves Theorem 6.1 since 7 is arbitrary.

7. Higher derivatives of 4

As in [6] we write S* T for any linear combination of tensors formed by
“niraction on S and T by g- The mth iterated covariant derivative of a tensor

-‘\_*‘ill be denoted by v™T. With this notation we observe that the time
“Mvative of the Christoffel symbols T, is equal to

3., 1, 9 3 9
0= 23]+ ) - o B

= g7 v, (Hh,,) + Vi(Hh,) - v(Hh, )} = a4xva4,
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in view of the evolution equation for g = {g;;}. Then we may proceed exactl
as in [6, §13] to conclude
7.1 Theorem. For any m we have an equation

a 4
EE'V““”Z — Alvmdf = 2lvmuf

+* X

i+j+k=m

VA VA%V A%V, A

Now we need the following interpolation inequality which is proven in [t.

§12].
7.2 Lemma. If T is any tensor and if 1 <i<m—1, then with a constan
C(n, m) which is independent of the metric g and the connection T we have th:

estimate
i mii— 2
[ 19T dp < € max| 70 [ 9T d.

This leads to
7.3 Theorem. We have the estimate

d il a2 ) 2 e
d{f‘%lv Al dp+2[ [v" 4l dp< C max 4] fM|v Al dy,

where C only depends on n and the number of derivatives m.
Proof. By integrating the identity in Theorem 7.1 and using the generalised

Holder inequality we derive

d L] 2 m+1 2
= f,w,iv A dp.+2fM,1V A|° dp

S i/2m a5 \J-/zm
b C{f” |vid|™ d#} {fM |v 4| Jduf

1/2
2m/k ..
[, 1osar ) ([ tomalan)
M, M,

with i + j + k = m. The interpolation inequality above gives

k/2m

if2m

' I/lm )
{ oAl | <Comaal | f vl du
M, M,

and if we do the same with j and k, the theorem follows.

8.

we already stated that
short time interval if the u
M, is smooth enough. Mor
8.1 Theorem. The solui
0<t<T < o0 andmaxy
Proof. Let 0<t<T
exists. We showed in Len
ma:(r,,,,‘lAl2 <Cfort—T
M,. We could then use t
later times in contradictiol
In the following we sup]

(11) u

and assume that as in th
for € Uc R" and 0
obtain

|F(x

for 0 < 6 < p < T. Since
limit F(-, T)ast = T. |
In order to conclude th
142].
8.2 Lemma. Ler g, be
0 <t < T < oo. Suppose

Then the metrics g, (t) foi
1 = T uniformly to a pos
and also equivalent.

Here we used the notat

d

0

In our case all the surfac
in view of Lemma 3.2,
only to show that M is




: may proceed exactly

*v,.A.

vhich is proven in [6,

, then with a constant
nection I’ we have the

2
"T|" du.

I
:

2. 2
{ V74| dp,
IfMi |" du

! using the generalised

2m/j e
| ’””’du}

1/2
‘A|2 dp} ;
ives

if2m
5 /
7"A|" dp
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8. The maximal time interval

We already stated that equation (1) has a (unique) smooth solution on a
short time interval if the uniformly convex, closed and compact initial surface
M, is smooth enough. Moreover, we have

8.1 Theorem. The solution of equation (1) exists on a maximal time interval
0<1<T < oo and max,, |A|* becomes unbounded as t approaches T.

Proof. Let 0 <t < T be the maximal time interval where the solution
exists. We showed in Lemma 5.8 that T < co. Here we want to show that if
1113.:{,.,,r|A|2 < Cfor 1 — T, the surfaces M, converge to a smooth limit surface
M. We could then use the local existence result to continue the solution to
later times in contradiction to the maximality of T.

In the following we suppose

(1) max A< C on0<<T,
Mf
and assume that as in the introduction M, is given locally by F(X, 1) defined

for x€ UCR" and 0 <7< T. Then from the evolution equation (1) we
abtain

IF(%.p) = F(%,0)| < ["H(%.7) dr

a

r0<o < p<T. Since H is bounded, F(-, ¢) tends to a unique continuous
imit F(-, TYyast — T.

In order to conclude that F(-, 1) represents a surface M, we use [6, Lemma
142].

82 Lemma. Let 8;; be a time dependent metric on a compact manifold M for
I<t < T < o0. Suppose

T
f max
0 M

Then the metrics g, ;1) for all different times are equivalent, and they converge as

=T uniformly to a positive definite metric tensor 8:;(T') which is continuous
-1d also equivalent.

Here we used the notation

dt € C < o0.

a
arga'j

]i R Y]
31 Sis g8 3 i (a;gkf)'
Tour case all the surfaces M, are diffeomorphic and we can apply Lemma 8.2

“View of Lemma 3.2, assumption (11) and the fact that T < oo. It remains
v to show that M7 is smooth. To accomplish this it is enough to prove that
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all derivatives of the second fundamental form are bounded, since the evoly.
tion equations (1) and (4) then imply bounds on all derivatives of F.

83 Lemma. If(11)holdson0 <1< TandT < o, then|V"4| < C, foru.
m. The constant C,, depends on n, M, and C.

Proof. Theorem 7.3 immediately implies

[ |vm4l du<C,,
M,

since the inequality 9g/dt < cg on a finite time interval gives a bound on g1
terms of its initial data. Then Lemma 7.2 yields

fw, Iv4|” du < Cai

for all m and p < oc. The conclusion of the lemma now follows if we apply :
version of the Sobolev inequality in Lemma 5.7 to the functions g, = |V "4/~

Thus the surfaces M, converge to My in the C*-topology as r = T. B
Theorem 3.1 this contradicts the maximality of T and proves Theorem 8.1.

We now want to compare the maximum value of the mean curvature H_, 10
the minimum value H_,_ as  tends to T. Since |4|* < H? we obtain from
Theorem 8.1 that H_,, is unbounded as ¢ approaches T.

84 Theorem. Wehave H , /H_ ., — last > T.

Proof. We will follow Hamiltons idea to use Myer's theorem.

8.5 Theorem (Myers). If R, > (n — 1)Kg,, along a geodesic of length u
least mK ~1/* on M, then the geodesic has conjugate points.

To apply the theorem we need

8.6 Lemma. Ifh, > eHg, holds on M with some0 < e < 1/n, then

R, > (n—1)H%,,
Proof of Lemma 8.6. This is immediate from the identity
Ri} = th_lf . hlmg”,ﬂhﬂ}"

Now we obtain from Theorem 6.1 that for every 7 > 0 we can find 2
constant c¢(n) with |VH| < i H?*+ C(n) on 0 < ¢ < T. Since H_,, becomes

unbounded as 1 — T, there is some 8 < T with C(9) < in*H2, att = 6. Then |

(12) |VH| < 7°Hzox

at time 1 = 8. Now let x be a point on M,, where H assumes its maximum
Along any geodesic starting at x of length at most 77 'H_}, we have H>
(1 —m)H_,,. In view of Lemma 8.6 and Theorem 8.5 those geodesics then
reach any point of My if n is small and thus

(13) Hypn > (1 —m)Hy, on M,

i
l_

FLs

since H ;, is nondecreasing
Hoo(t

and hence the inequalities
proves Theorem 8.4.

We need the following cor
8.7 Theorem. We have |
Proof. Look at the ordir
98
o1
We get a solution since HZ_
(]
=
and therefore
d
3 (H &

So we obtain H < g for 0 «
r = T. But now we have

jo’ H2_(7)d=

which proves Theorem 8.7.
8.8 Corollary. If,asint
curvature

then

Proof. This follows fron

8.9 Corollary. We have |

Proof. This is a consequ
84.

Obviously M, stays in
I} > t, since the surfaces a
tends to zero as t — T. Thi




bounded, since the evoly-
erivatives of F.
o, then |V "A| < C,, for all

val gives a bound on g in

10w follows if we apply a
 functions g, = |V "4|%.
“-topology as t = T. By
proves Theorem 8.1.

€ me-~ curvature H_ 1o

2< , we obtain from
’s theorem.

g a geodesic of length ai
s,

<e<x 1/n, then

lentity

ry 7 > 0 we can find 2
< T. Since H_,,, become:
< $1°H2, att = 4. Then

1 assumes its maximum
t v 'H_l we have H>
8.5 those geodesics then
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Since H.,;, is nondecreasing we have
H..(t) > {H_,(8) onf<t<T,

and hence the inequalities (12) and (13) are true on all of § <t < T which
proves Theorem 8.4.

We need the following consequences of Theorem 8 4.
8.7 Theorem. We have [H?2_ (7)dT = o.

Proof. Look at the ordinary differential equation

0
3 = Hing  8(0) = H,.

We get a solution since H_?2, is continuous in 7. Furthermore we have

%H =AH +|4'H < AH + H2_H,

and therefore

%(H—g) <A(H-g)+ HL,(H-g).

S0 we obtain H < g for 0 <

t < T by the maximum principle, and ¢ - = as
i = T. But now we have

j; H2 (7)dr= log{g(1)/8(0)} - o0 as:— T,

which proves Theorem 8.7.
8.8 Corollary. If, as in the introduction, h is the average of the squared mean

wirvature
J o= sz/ du.,

then

frh('r] dr = 0.

Proof.  This follows from Theorems 8.4 and 8.7 since Ha b o H2

89 Corollary.  We have |A|2/H? — 1/n—>0ast— T.

Proof. This is a consequence of Theorem 5.1 since H,;, — o by Theorem

‘-4.
Obviously M, stays in the region of R"*! which is enclosed by M, for

" >1, since the surfaces are shrinking. By Theorem 8.4 the diameter of M,

<nds to zero as r — T. This implies the first part of Theorem 1.1.
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9. The normalized equation

As we have seen in the last sections, the solution of the unnormaliz: |

equation
d
(1) 'a?F =AF=—-Hv
shrinks down to a single point © after a finite time. Let us assume from nc:
on that © is the origin of R**!. Note that O lays in the region enclosed by !

for all times 0 < t < T. We are going to normalize equation (1) by keepin;

some geometrical quantity fixed, for example the total area of the surfaces }f

We could as well have taken the enclosed volume which leads to a slighii:
different normalized equation. As in the introduction multiply the solution /

of (1) at each time 0 < ¢ < T with a positive constant ¥(1) such that the tou
area of the surface M, given by

F(-.0)=y(1)- F(-, 1)
is equal to the total area of M,

(14) f di=|M,] on0<t<T.
M,

Then we introduce a new time variable by
i(e) = [(¥3(r)dr
0
such that 3r/9t = y>. We have
guzzngu' i‘?;:‘ibhlj‘
H=vy'H,
and so on. If we differentiate (14) for time 7, we obtain

A3y _ 1 [Hdp 1
o) v o n [dp -nh'

Now we can derive the normalized evolution equation for F on a differer

maximal time interval 0 < 7 < T:

z=¢-z{a_4‘},—+¢_aa_f}

FrE FY;

- -Hb + LKF
n

FI

as stated in (2). We can a
geometric quantities.

9.1 Lemma. Suppose th
dp/at=AP+ Q,and P i
(e —2)and

Proof. We calculate wi
ap
of

The results in Theorem 4.

1o the normalized equatio

dilated by a constant fact«
9.2 Lemma. We have

(i)

(i

(iii
Now we prove
93 Lemma. There are
0 <

Proof. The surface M
theorem

Sinoe‘lhc origin isin t
that F7 is everywhere po

v




1 of the unnormalized

et us assume from now
> region enclosed by M,
quation (1) by keeping
area of the surfaces M,
hich leads to a slightly
multiply the solution F
J (1) such that the total

n for F on a different

T
L
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as stated in (2). We can also compute the new evolution equations for other
geometric quantities.

9.1 Lemma. Suppose the expressions P and Q, formed from g and A, satisfy
4P/3t = AP + O, and P has ‘degree’ a, that is, P = {°P. Then Q has degree
(@ — 2) and

¥ —kp+0+

3 hP.

~ e
a|p

Proof. We calculate with the help of (15)
aP d apP
'1£’ { ‘Pa 1 ‘PP ‘lba }
= \b‘z{%hf’ + AP + ,,L“Q}

-2
n

el

+ AP+ Q.

The results in Theorem 4.3, Theorem 8.4 and Corollary 8.9 convert unchanged
o the normalized equation, since at each time the whole configuration is only
dilated by a constant factor.

9.2 Lemma. We have

(i) h Eﬁgug
(i) HAp/H, -1 asi->T,
A2 1 - &
(]_L‘l) 7;(—2 b ; ast = T

Now we prove
93 Lemma. There are constants C, and Cs such that for0 < f < T

0<CsHy < H,,.<C < w.

Proof.  The surface M encloses a volume ¥ which is given by the divergence
theorem

since the origin O is in the region enclosed by M: for all times as well, we have
hat F7 is everywhere positive on M:. By the isoperimetric inequality we have

An— 1) An—=1)
H’lM_r nIMO!n ’ -
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On the other hand we get from the first variation formula

(Mo| =188 = L [ B(F5) du < Bl - 7

max r?

which proves the first inequality in view of Lemma 9.2(ii). To obtain the uppe
bound we observe that in view of h sng! the enclosed volume ¥ can b
estimated by the volume of a ball of rad1us 037
V- < ¢ (el o) (’Hn.
The first variation formula yields

& -
s e (P s
which proves the upper bound again in view of Lemma 9.2(ii).
9.4 Corollary. T = .
Proof. We havedt/dt = y*and A2 = ~2H? such that

j:?z(f)d%= "';Th('r)d'r= 53

by Corollary 8.8. But by Lemma 9.3 we have » < A2__
T = .

A LM

< C{ and therefore

10. Convergence to the sphere

We want to show that the surfaces M: converge to a sphere in the C*-
topology as 1 — 0. Let us agree in this section to denote byd>0and C < x
various constants depending on known quantities. We start with

10.1 Lemma. There are constants § > 0 and C < oo such that

[ \ar* - a2 ap < co¥i
l‘:f; n

Proof. Let f be the function f = |4|>/H? — 1/n which has degree 0. Then
we conclude as in the proof of Lemma 5.5 that, for some large p and a small §
depending on &,

%fﬁ’dﬁ <-8f felal di+ [ (h- B2 dp,

since 3/9¢dji = (h — H*)dj. In view of Lemma 9.2(ii) and Lemma 9.3 we
have for all times 7 larger than some 7,

fras

-8 [ /7 di

with a different 8. Th

where C now depend
from the Holder ineg
Now let us denote

10.2 Lemma. We

/

Proof. In view |
[ |vH|*dji decrease
inequality can be ¢
curvature in Lemma

where N is a large c
from the results in §¢

[

of

for all times larger tt
< v.H,

becomes small cor
H?/n)*tends to ze

forf > 1,
d 1o
ale
Since (h — H*) = 0
some 2,

and therefore




V;

re

To obtain the upper
sed volume ¥ can be

i< €, und therefore

i

t sphere in the C>-
)yd >0and C < x
t with
h that

1 has degree 0. Then
‘arge p and a small 8

Vf? dji,

and Lemma 9.3 we
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with a different §. Thus
ffP dji < Ce™%,

where C now depends on 7, as well. The conclusion of the lemma then follows
from the Holder inequality |M;| = | M| and Lemma 9.3.
Now let us denote by s the mean value of the mean curvature on M:

S

10.2 Lemma. We have

f{ﬁ—&)zdp=fﬁ2—iﬁdps_ Ce~ .

Proof. In view of the Poincaré inequality it is enough to show that
[ |VH|?dii decreases exponentially. Note that the constant in the Poincaré
mequality can be chosen independently of 7 since we got control on the
curvature in Lemma 9.2 and Lemma 9.3. Look at the function

IvA|?
- H

where N is a large constant depending only on n. The degree of g is -3, and
from the results in §6 we obtain

+ N(|A} - lH )H

3_ <Az +3N4] (|A'f- %HJ - :”-;}g

‘or all times larger than some 7,. Here we used that the term
. - 1 - S -
(vt wi(1Af - L82)) =20 B, wie)

hecomes small compared to H|vA|® as r— oo since |kl = (J4]® -
'R /n)'/*tends to zero. Now using Lemma 10.1 and C, < H< < G we conclude
\‘l'f = ,|"l

%f gdi < -sf gdji + Ce™% + f (h— H*)g dji.

Smce (h — H?) — 0 as 7 — oo by Lemma 9.2(ii), we have for all  larger than
Nme 7,

gr:{e"'f gdji — r::‘} <0,

nd therefore

f W’le < Ce-¥
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with some constants C and 8 depending on 7, and the conclusion follows fron
Ml L o

To bound higher derivatives of the curvature, we need another interpolatios
inequality [6, 12.7].

10.3 Lemma. If T is any tensor on M, then with a constant C = C(n,m)
independent of the metric g and the connection I we have the estimate

fomrtascl el (Lo

for0 <i<m.
We start with Theorem 7.3. The estimate

d - -
—_f' IV"‘Alld,&+2f I+ 14| dp
dt Jyy a
(16)
-2 -2
< C- max |4] fﬁ[v’"Al dji
Y] v

carries over to the normalized equation since both sides stretch by the same
factor, and we have max|4| < CZ2. Let us now introduce the tensor £ = {E,
given by

= - 1.
El;'hu_ ;égu‘
Then v™4 = v™E for all m > 0 and the right-hand side of (16) can be

estimated by Lemma 10.3:

= ! " \lm/{m+l]{ . ]ll/(m-ll
mA" - m,i'-d_ \ | 2
fﬁfv | d#sleqlV A g lf;;'

By Young’s inequality this is less than
cnf \vm il dp+ o [ |E di
nf_q, |"di + Cnq j;,’] | d
for any n > 0. Choosing 7 such that Cn < 2 we derive from (16)
d -2 =3
—= | |v™| di < C| _|E| dp.
d;f_*i I"dp fql | dp
But

JIEF g = [14F - 2k + 2han

o =2 l"z = l “_‘*1 2
= [JA" - SAraR+ < [ (- B) i,

and both integrals decres
have proven
10.4 Lemma. For eve
constant depending on m.
From Lemma 7.2 we d
bounded as well:

and a version of the Sob
E_=|v™A|? yields max
Now we can prove

10.5 Theorem. There

Proof. We denote by
such that ]A:|2 = |A]? -
Lemma 10.3

7.2 |
[ Ivmdl dg
v}

in view of Lemma 10.1. 1

and the conclusion follov
Theorem 10.5 is the cn
Hamiltons paper [6, §17]
10.6 Lemma. There a

(
(

All surfaces M; stay in
a bound on the diamete




onclusion follows from
1 another interpolation

constant C = C(n, m)
he estimate

1—i/m
2
r| d#}

dp

s stretch by the same
>the  sor E = (E,)

1 side of (16) can be

= 1/(m+1)
I£] dﬁ}

om (16)
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and both integrals decrease exponentially by Lemmas 10.1 and 10.2. Thus we
have proven

104 Lemma. For every m we have [ |V"A|*dii < Con 0 < i < oo with a
constant depending on m.

From Lemma 7.2 we deduce immediately that higher L ”-norms of | v ™A| are
bounded as well:

f_ |vmdl” dip < Gy
M

and a version of the Sobolev inequality in Lemma 5.7 applied to the function
E, = |v™d)? yields max ;; |V "4| < C for a constant C < oo depending on m.
Now we can prove

10.5 Theorem. There are constants 8 > 0 and C < oo such that

JAF - A7 < ce ¥,

Proof. We denote by A the traceless second fundamental form

= - . 1
4= [hﬂ'] = {hu_ ;ng'f}

such that |A:]2 =|A|> = H?/n. Since !v”’A:i is bounded we conclude from
Lemma 10.3

£ G oW

m

fwlv”’A:fdﬁg Cm{fu'f Ly-Epn

1Am+1)
n }

in view of Lemma 10.1. Then we have from Lemma 7.2

| Iv4f di < c, e,
Y]
4nd the conclusion follows once again from the Sobolev inequality.
Theorem 10.5 is the crucial estimate from where we can proceed exactly as in
Hamiltons paper [6. §17] to conclude
10.6 Lemma. There are constants 8 > 0 and C < oo such that
@) Hon~HusCe™,

(i)

(i) max|v™4| < Ce %, m>0.
M

5 = e e
h,H — 78| < Ce,

All surfaces M: stay in a bounded region around £ since Lemma 9.3 implies
¢bound on the diameter of M:. Moreover, by Lemma 9.2(ii) and (iii) we can
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pinch M:; arbitrarily close between an interior and an exterior sphere if 7 is
large. This already shows that M; converges to a sphere in some weak sense.
We have the evolution equation

d _ 25 L
ﬁg;j = ;hgu - ZHhus

and we conclude from Lemma 10.6(ii) and Lemma 8.2 that the metrics g, (1)
converge uniformly to a positive definite metric gi;(c0) as f = . By Lemma
10.6(iii) the metrics also converge in the C*-topology and thus &,(c0) is
smooth. Finally, & (o) is the metric of a sphere by Theorem 10.5. This
completes the proof of Theorem 1.1.
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