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Appendix K Eclcer'
# Begoanity ﬂzony for Mean

Corvotire Flows
A. Geometry of Hypersurfaces.

In this section we list standard definitions and well-known geometric facts for hypersurfaces
in R™"*!. We consider only smooth embedded hypersurfaces M contained in some open
set U € R™"*!. Let the embedding map be denoted by F : Q@ — R™**! with F(Q) =
where Q C R™ is open. M is called properly embedded if F~!(K) C Q is compact whenever
K C U is compact.

The coordinate tangent vectors 9;F(p) = — ), 1 <4 < n provide a basis of the tangent
space T, M at x = F(p) at every p € Q. The metric on M is given by gi; = O;F - 0;F
for 1 < 7,5 < n, the inverse metric by (¢*) = (gi;) and the area element of M by
V9 = y/detg;;. We are able to integrate compactly supported functions h : M — R over
a properly embedded hypersurface. The integral is defined by

[MthM hid "Eth(x) dH"(x)z];Zh(F(p))\/ng)dp.

Here H™ denotes the n - dimensional Hausdorff measure on M (see section C). Note in
particular that

H'(MNK) < oo
for any compact K C U.

The tangential gradient of a function h : M — R (which we may think of as a function on
2 via the embedding) is defined by

VMh = ¢"9;h0;F

w_}:_lere we sum over repeated indices. For a smooth tangent vectorfield X = Xi9;F =
97 X; 0;F on M (note that X; = X - 9;F) we define the covariant derivative tensor by

VMXI =9, X7 + T X* = ¢ (8; X; — T5 X)
where the Christoffel symbols I‘ are given by
(0:0;F)T =T§;04F
(here T denotes the tangential component of a vector) or in terms of the metric by
F?j = 1 “ (31;9;! i 3j9££ = 319:‘;‘) .
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The tangential divergence of X on M is defined by
divaeX = VI X = g9VHX,; = %ai (V997 X;)

and the Laplace-Beltrami operator of h on M by
it

. M i k
Aprh = divyy V" h= g4 (aia_.,-h - Fijﬁkh) = T

8; (/99 9;h) .

For a smooth vectorfield X : M — R™*! which is not necessarily tangent to M we can
also define the divergence with respect to M by

divyr X = gijSiX . BjF
which reduces to the above expression if X is tangent to M.

Let v be a choice of unit normal field to M. In particular, this satisfies v - 0;F =0 on M
for 1 < i < n and since v has unit length, 9;v is a tangent vector field to M for 1 <1 < n.

The second fundamental form of M is defined by
Aij = 83‘1/ . 6JF = -V 81831?

The eigenvalues k1, .. ., ki of the Weingarten map (which is a map from the tangent space

to itself) given by A = g¢*Ay; are called the principal curvatures of M. The mean
curvature can then be expressed in various forms by

H=Y) &i=Al=g"4;;=g"%0w ;F = divy v.

The mean curvature vector of M is given by H = —Hv. One checks the identity
(A]-) AMF = E E\ See L"JDFCG{LLZ Eyufi)

In the special case where M = graphwu, u : Q — R (so F(p) = (p, u(p)), the upward unit

normal vector v is given by
(=Du,1)

Vv1+ |Dul?

and the mean curvature of M by

e |
v/ 1+ |Dul?
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where D and div denote the gradient and the divergence on R™.
The Riemann curvature tensor of M is defined by
VMV X, - VEVY X, = Rl X

where X is a tangent vectorfield on M. The Gauss equations express this tensor in terms
of the second fundamental form by

Rl = Agdyi— Agds.

The Codazzi equations state that the 3-tensor of covariant derivatives of the second fun-
damental form VM A = (VM Aji) is totally symmetric.

One defines covariant derivatives and the Laplacian of tensors analogously as in the case of
vectorfields. Interchanging second derivatives for the second fundamental form and using
the Gauss and Codazzi equations leads to Simons’ identity

(A.2) /—\AMAz'j = VSJV?{H + HA@;CA? - ’A|2Az‘j

(see [S] for the details of this computation). Here |A|* = A;-Ag = g"g* A;Aji. Contracting
this identity with A = g**git Ay, yields the Bochner type formula

(A.3) AmlAl? =2 AYVMVYH + 2|VMAP® + 2 HA;j A Axj — 2|A*
where |[VM A|2 denotes the squared norm of the tensor VM A = (V3 A;;).

A calculation involving the Codazzi equations also implies the important identity
(A.4) Apv =—|APv+VMH

(see for example [S] or [EH1]) which in integrated form yields the second variation formula
for hypersurfaces.

Derivatives of functions and vector fields on hypersurfaces can also be defined in terms of
projections from R™*! to the tangent space of M. This is the framework used in geometric
measure theory where coordinate systems are not available. The notions defined below
carry over to n-rectifiable subsets of R™*1:

For z € M we define the projection pr_pr : R — T, M by
pr,m(w) = w — (v(z) - w)r(z).

Let f : U — R be differentiable where U is an open subset of R"*! containing M.
We could alternatively also consider f : M — R and require that is has a differentiable
extension into an open neighbourhood of M in R™*! (recall that derivatives of f in the
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direction of tangent vectors to M are independent of the particular extension of f). We
define the tangential gradient of f with respect to M by

V¥ f(z) = pr.m(Df(z)) = Df(z) - v(z) - Df(z) v(z)

for z € M where Df(z) denotes the usual gradient of f (or of its extension into R**1) in
R™*1, This can also be written as

T
VM f(@) =) Drf(@)m
i=1
where D, f(z) denotes the directional derivative with respect to 7; and 71,...,7, form an

orthonormal basis of T, M.

For a differentiable vectorfield X : U — R™*! (or X : M — R™*"1) the derivative in the
direction w € R™*! is given by

w
8X; !

)
Oz, 1<i,5<n+1

Dy X(z) = (

Wn+1

The tangential divergence of X with respect to M is then defined by
(A.5) diVMX(.’L’) — diVRn-HX(ﬁS) — V(:E) e Dy(w)X(:E)

Alternatively,
divy X (z) = > 7+ Dy, X (z) = trace (pr, ;- DX (1))
=1

which is equivalent to the intrinsic formulation given above. The dot is used both for the
dot product of vectors and composition of linear maps. It is usually clear from the context
which one is meant. The Laplace-Beltrami operator on M of a twice differentiable function
f is defined by

Apf =divaa VM.

From the identity
H = —-Hv = —(divgv)v

we calculate using (A.5)

Apyf=divyDf —divy((v-Df)v) =divyDf — Hv - Df

(A.6) _ } ) B
=divyDf + H-Df = Agns:f — D2f(v,v) + H - Df

where D?f(v,v) = v- D, Df is the second derivative of f in normal direction to M.
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If f(z) = z; for 1 <14 < n+1 then one calculates from (A.6) that Ayrz; = H-e; (e; is the
ith basis vector in R™*1) which implies the identity

AM:E = ﬁ
stated as (A.1) above.

The Divergence Theorem for smooth, properly embedded hypersurfaces states that for any
C-vectorfield X : M — R™*! with compact support

(A.7) / divye X = — / H-X.
M M

For a function ¢ € C2(R™"!) the divergence theorem implies

(A.8) j divy Do = — / H- D¢
M M
or equivalently
(A.9) / Rl
M
in view of (A.6). For ¢ € C2(R"*!) and n € C%(R™*!) one also checks that

(4.10) /M il == /M VM. gy = fM 0 B

B. Evolution Equations for Mean Curvature Flow.

In this section we recall the derivation of the evolution equations for most of the geometric
quantities used in chapter 2. These were first derived in [Hul], see also [GH] for the case
of curves.

We will only have to calculate the time derivative of these quantities and then combine
this with the identities for the Laplacian stated in section A. For ease of notation during
calculations we will denote time derivatives by 0;.

We start with expressions involving the metric and calculate
(B.l) 8;391‘3‘ = 28¢8,-F 4 63‘F - 2(9-;(9gF : ajF

where we have used the fact that coordinate derivatives of F(p,t) commute. Since 0,F =
—Hv this becomes
af_gz‘j =2 ai(—HV) e BjF = -2 Haﬂ/ z BjF
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where we used v - 9;F = 0 for 1 < j < n. This implies

(B.2)

6ggz'j = -2 HA,;_:_,‘.

One easily checks that the inverse metric and the area element then satisfy

(B.3) dig" = 2 HAY
and
(B.4) d/g=-H*/g=—|HP/g

since the derivative of g is given by 8,9 = g ¢/ 9;9:;. Note that (B.1) also implies the more

general formula

(B.5) 0i\/9 = /997 0:0,F - 0;F = \/gdivy, e

oF

We continue with the time derivative of the second fundamental form. For convenience,
we will calculate in geodesic normal coordinates on M; that is assume (0;0;F (p, t)F =0
(T stands for the tangential component) at the point z = F(p,t) € M; where we do the
calculation. Since A;; = —9;0;F - v we compute at z = F(p,t)

6314.,;3; ==

since 0y is tangent and 0;0; F has
and again use J;v - v = 0 to obtain

—0,(8;0;F - v)
~61:8j8¢F V= aa'ajF < atV
—3183@}:' -V

no tangential component. We substitute 0;f" = —Hv

BtAij = 0;0;H + HO;0;v - v

and therefore

atA.gj = 31'83-1-1 - Hc’it—v ' 8_1-;/.

Since in normal coordinates V2 V?’{‘H = 0;0;H we conclude that

(B.6) O0sAi; = VIV H — HAj A,

The identities (B.6), (B.3) and H = g% A;;, therefore yield

(B.7) (8, — Ang,) H = H|A|

Moreover, one easily derives the evolution equation for A% and then checks that

(B.8) OA2 =2AYVMVMH L 2 HA AR AY
T 7 )
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