Leader-Follower Stochastic Differential Game with Asymmetric Information and Applications

Jie Xiong

Department of Mathematics
University of Macau
Macau

Based on joint works with Shi and Wang

2015 Barrett Lecture, Knoxville, 14/05/2015
Outline

1 Motivation
2 Problem formulation
3 LQ Leader-Follower Stochastic Differential Game with Asymmetric Information
4 Follower’s optimization problem
5 Complete Information LQ Stochastic Optimal Control Problem of the Leader
1. A motivation

Example: Continuous Time Newsvendor Problems

$D(\cdot)$ is the demand rate

\[
\begin{cases}
 dD(t) = a(\mu - kR(t) - D(t))dt + \sigma dW(t) + \tilde{\sigma} d\tilde{W}(t), \\
 D(0) = d_0 \in \mathbb{R},
\end{cases}
\]

retail price $R(t)$.
The retailer will obtain an expected profit

\[J_1(q(\cdot), R(\cdot), w(\cdot)) \]

\[= \mathbb{E} \int_0^T \left[(R(t) - S) \min[D(t), q(t)]
- (w(t) - S)q(t) \right] dt. \]

order rate \(q(t) \); wholesale price \(w(t) \); salvaged at unit price \(S \geq 0 \).
the manufacturer has a fixed production cost per unit $M \geq 0$, an expected profit

$$J_2(q(\cdot), R(\cdot), w(\cdot)) = \mathbb{E} \int_0^T (w(t) - M)q(t)dt.$$
The information $\mathcal{G}_t^1, \mathcal{G}_t^2$ available to the retailer and the manufacturer at time t, respectively. $\mathcal{G}_t^1 \neq \mathcal{G}_t^2$.

For any $w(\cdot)$, retailer selects a \mathcal{G}_t^1-adapted processes pair $(q^*(\cdot), R^*(\cdot))$ for the retailer such that

\[
J_1(q^*(\cdot), R^*(\cdot), w(\cdot))
\equiv J_1(q^*(\cdot; w(\cdot)), R^*(\cdot; w(\cdot)), w(\cdot))
= \max_{q(\cdot), R(\cdot)} J_1(q(\cdot), R(\cdot), w(\cdot)),
\]
Manufacturer selects a G_t^2-adapted process $w^*(\cdot)$ for the manufacturer such that

$$J_2(q^*(\cdot), R^*(\cdot), w^*(\cdot))$$

$$\equiv J_2(q^*(\cdot; w^*(\cdot)), R^*(\cdot; w^*(\cdot)), w^*(\cdot))$$

$$= \max_{w(\cdot)} J_2(q^*(\cdot; w(\cdot)), R^*(\cdot; w(\cdot)), w(\cdot)),$$
Example: Cooperative Advertising and Pricing Problems

\[
\begin{aligned}
\frac{dx(t)}{dt} &= \left[\rho u(t) \sqrt{1 - x(t)} - \delta x(t) \right] dt + \sigma(x(t)) dW(t) \\
&\quad + \tilde{\sigma}(x(t)) d\tilde{W}(t), \\
x(0) &= x_0 \in [0, 1],
\end{aligned}
\]

\(u(t)\) advertisement effort rate, \(x(t)\) awareness share, \(\rho\) response constant, and \(\delta\) the rate at which potential consumers are lost.

Manufacturer decide:
wholesale price \(w(t)\), cooperative participation rate \(\theta(t)\).
Retailer decides: effort \(u(t)\), retail price \(p(t)\).
Given $w(t)$ and $\theta(t)$, retailer solves an optimization problem to maximize his expected profit

$$J_1(w(\cdot), \theta(\cdot), u(\cdot), p(\cdot)) = \mathbb{E} \int_0^T e^{-rt} \left[(p(t) - w(t)) D(p(t)) x(t) - (1 - \theta(t)) u^2(t) \right] dt,$$

D is demand function.
The manufacturer’s optimization problem is to maximize his expected profit

\[J_2(w(\cdot), \theta(\cdot), u(\cdot), p(\cdot)) \]

\[= \mathbb{E} \int_{0}^{T} e^{-rt} \left[(w(t) - c)D(p(t))x(t) - \theta(t)u^2(t) \right] dt, \]

where \(c \geq 0 \) is the constant unit production cost.
The information $\mathcal{G}_t^1, \mathcal{G}_t^2$ available to the retailer and the manufacturer at time t, respectively. \(\mathcal{G}_t^1 \neq \mathcal{G}_t^2 \).

Given w and θ, retailer chooses $\mathcal{G}_{1,t}$-adapted pair $(u^*(\cdot), p^*(\cdot))$,

\[
J_1(w(\cdot), \theta(\cdot), u^*(\cdot), p^*(\cdot)) = \max_{u(\cdot), p(\cdot) \geq 0} J_1(w(\cdot), \theta(\cdot), u(\cdot), p(\cdot)).
\]
Select a $G_{2,t}$-adapted pair $(w^*(\cdot), \theta^*(\cdot))$ for the manufacturer

$$J_2(w^*(\cdot), \theta^*(\cdot), u^*(\cdot), p^*(\cdot))$$

$$\equiv J_2(w^*(\cdot), \theta^*(\cdot), u^*(\cdot; (w^*(\cdot), \theta^*(\cdot))),$$

$$p^*(\cdot; (w^*(\cdot), \theta^*(\cdot)))$$

$$= \max_{w(\cdot), 0 \leq \theta(\cdot) \leq 1} J_2(w(\cdot), \theta(\cdot), u^*(\cdot; (w(\cdot), \theta(\cdot))),$$

$$p^*(\cdot; (w(\cdot), \theta(\cdot)))$$,
2. Problem formulation

State equation:

\[
\begin{aligned}
 dx^{u_1,u_2}(t) &= b(t, x^{u_1,u_2}(t), u_1(t), u_2(t)) \, dt \\
 &\quad + \sigma(t, x^{u_1,u_2}(t), u_1(t), u_2(t)) \, dW(t) \\
 &\quad + \tilde{\sigma}(t, x^{u_1,u_2}(t), u_1(t), u_2(t)) \, d\tilde{W}(t), \\
 x^{u_1,u_2}(0) &= x_0,
\end{aligned}
\]

(2.1)
$G^1_t \neq G^2_t \subseteq \mathcal{F}_t$.

The admissible control

$$\mathcal{U}_1 := \left\{ u_1 \mid u_1 : \Omega \times [0, T] \to U_1 \text{ is } G^1_t\text{-adapted} \right\},$$

and $\sup_{0 \leq t \leq T} \mathbb{E}|u_1(t)|^i < \infty, \ i = 1, 2, \cdots$, \hspace{1cm} (2.2)

$$\mathcal{U}_2 := \left\{ u_2 \mid u_2 : \Omega \times [0, T] \to U_2 \text{ is } G^2_t\text{-adapted} \right\},$$

and $\sup_{0 \leq t \leq T} \mathbb{E}|u_2(t)|^i < \infty, \ i = 1, 2, \cdots$. \hspace{1cm} (2.3)
Problem of the follower. For any chosen $u_2(\cdot) \in \mathcal{U}_2$ by the leader, choose a \mathcal{G}_t^1-adapted control $u_1^*(\cdot) = u_1^*(\cdot; u_2(\cdot)) \in \mathcal{U}_1$, such that

$$J_1(u_1^*(\cdot), u_2(\cdot)) \equiv J_1(u_1^*(\cdot; u_2(\cdot)), u_2(\cdot)) = \inf_{u_1 \in \mathcal{U}_1} J_1(u_1(\cdot), u_2(\cdot)), \tag{2.4}$$

$$u_1^*(\cdot) = u_1^*(\cdot; u_2(\cdot)), \text{ (partial information) optimal control.}$$
The leader would like to choose a \mathcal{G}_t^2-adapted control $u_2^*(\cdot)$ to minimize

$$J_2(u_1^*(\cdot), u_2(\cdot)) = \mathbb{E} \left[\int_0^T g_2(t, x_1^{u_1^*, u_2}(t), u_1^*(t; u_2(t)), u_2(t)) \, dt \right] + G_2(x_1^{u_1^*, u_2}(T)) = (2.5)$$
Problem of the leader. Find a \mathcal{G}_t^2-adapted control $u_2^*(\cdot) \in \mathcal{U}_2$, such that

\[
J_2(u_1^*(\cdot), u_2^*(\cdot)) = J_2(u_1^*(\cdot; u_2^*(\cdot)), u_2^*(\cdot)) \\
= \inf_{u_2 \in \mathcal{U}_2} J_2(u_1^*(\cdot; u_2(\cdot)), u_2(\cdot)), \tag{2.6}
\]
Issacs (1954-5) differential games
Basar and Olsder (1982) Monograph to summarize
Stackelberg (1934) Leader-follower game introduced
Yong (2002) LQ, complete info.
3. LQ Leader-Follower Stochastic Differential Game with Asymmetric Information; Stochastic maximum principle under partial information.

The state equation

\[
\begin{align*}
 dx_{u_1,u_2}(t) &= \left[A(t)x_{u_1,u_2}(t) + B_1(t)u_1(t) + B_2(t)u_2(t) \right] dt \\
 &+ \left[C(t)x_{u_1,u_2}(t) + D_1(t)u_1(t) + D_2(t)u_2(t) \right] dW(t) \\
 &+ \left[\tilde{C}(t)x_{u_1,u_2}(t) + \tilde{D}_1(t)u_1(t) + \tilde{D}_2(t)u_2(t) \right] d\tilde{W}(t), \\
 x_{u_1,u_2}(0) &= x_0,
\end{align*}
\]
Given $u_2 \in \mathcal{U}_2$, follower minimizes his cost functional

$$J_1(u_1(\cdot), u_2(\cdot))$$

$$= \frac{1}{2} \mathbb{E} \left[\int_0^T \left(\langle Q_1(t)x_{u_1,u_2}(t), x_{u_1,u_2}(t) \rangle
ight.
ight.$$

$$+ \left. \langle N_1(t)u_1(t), u_1(t) \rangle \right) dt$$

$$+ \langle G_1 x_{u_1,u_2}(T), x_{u_1,u_2}(T) \rangle \right],$$

(3.8)

Info: $\mathcal{G}_t^1 = \sigma\{\widetilde{W}(s); 0 \leq s \leq t\}$
Stochastic maximum principle under partial information.

Probability space \((\Omega, \mathcal{F}, \hat{P})\).

State equation: FBSDE

\[
\begin{cases}
\quad dx = b(t, x, v)dt + \sigma(t, x, v)dW + \tilde{\sigma}(t, x, v)d\tilde{W}, \\
-\quad dy = g(t, x, y, z, \tilde{z}, v)dt - zdW - \tilde{z}dY, \\
\quad x(0) = x_0, \quad y(1) = f(x(1)).
\end{cases}
\tag{3.9}
\]

Observation

\[
\begin{cases}
\quad dY = h(t, x)dt + d\tilde{W}, \\
\quad Y(0) = 0.
\end{cases}
\tag{3.10}
\]
Admissible controls $v \in \mathcal{A}$

v is \mathcal{G}_t-adapted, where $\mathcal{G}_t = \mathcal{F}_t^Y$.

Control problem: Find $u \in \mathcal{A}$ s.t.

$$J(u) = \min_{v \in \mathcal{A}} J(v),$$

where

$$J(v) = \hat{E} \left(\int_0^1 \ell(t, x^v, y^v, z^v, \tilde{z}^v, v) dt + \phi(x^v(1)) + \gamma(y^v(0)) \right).$$
Hypothesis (H1):
- Coeff. conti. diff. w/ bounded 1st order partial derivatives.
- $\tilde{\sigma}$, h bounded.

Hypothesis (H2):
- ℓ, ϕ, γ conti. diff.

$$\hat{E}\left(\int_0^1 |\ell(t, x^v, y^v, z^v, \tilde{z}^v, v)| dt + |\phi(x^v(1))| + |\gamma(y^v(0))|\right) < \infty.$$
when $b = \sigma = \tilde{\sigma} = 0$, studied by Huang-Wang-Xiong (SICON 2009)
General form by Wang-Wu-Xiong (SICON 2013).
Detail on LQ case by Wang-Wu-Xiong (IEEE TAC 2015).
Replace \(b, \ W \) in state equation by \(\tilde{b}, \ Y \), resp, where

\[
\tilde{b} = b - \tilde{\sigma} h.
\]

State equation:

\[
\begin{aligned}
\begin{cases}
 dx &= \tilde{b}(t, x, v)dt + \sigma(t, x, v)dW + \tilde{\sigma}(t, x, v)dY, \\
 -dy &= g(t, x, y, z, \tilde{z}, v)dt - zdW - \tilde{z}dY,
\end{cases}
\end{aligned}
\]

\(x(0) = x_0, \ y(1) = f(x(1)) \).

(3.11)
Let
\[
Z^v(t) = \exp \left\{ \int_0^t h(s, x^v) dY - \frac{1}{2} \int_0^t h^2(s, x^v) ds \right\}.
\]

So
\[
dZ^v = Z^v h(t, x^v) dY. \tag{3.12}
\]

Let \(\mathbb{P} \sim \hat{\mathbb{P}} \) be s.t.
\[
d\hat{\mathbb{P}} = Z^v(1) d\mathbb{P}.
\]

Then, under \(\mathbb{P} \), \((W, Y)\) is a B.M.

\[
J(v) = \mathbb{E} \left(\int_0^1 Z^v \ell(t, x^v, y^v, z^v, \tilde{z}^v, v) dt + Z^v(1) \phi(x^v(1)) + \gamma(y^v(0)) \right).
\]
Hypothesis (H3):

- For ξ bdd, G_t-measurable,

$$v(s) \equiv \xi1_{[t,t+\tau)}(s),$$

then $v \in \mathcal{A}$.

- For any $u \in \mathcal{A}$ and v being G_s-adapted and bdd, $\exists \delta > 0$, if $|\epsilon| < \delta$, then $u + \epsilon v \in \mathcal{A}$.
Adjoint equations:

\[
\begin{align*}
\frac{dp}{dt} &= (g_y(t, x, y, z, \tilde{z}, u)p - \ell_y(t, x, y, z, \tilde{z}, u)) \, dt \\
&\quad + (g_z(t, x, y, z, \tilde{z}, u)p - \ell_z(t, x, y, z, \tilde{z}, u)) \, dW \\
&\quad + (g_{\tilde{z}}(t, x, y, z, \tilde{z}, u)p - h(t, x)) \, d\tilde{W}, \\
-dq &= \left\{ (b_x(t, x, u) - \tilde{\sigma}(t, x, u)h_x(t, x))q + \sigma_x(t, x, u)k \\
&\quad + \tilde{\sigma}_x(t, x, u)k - g_x(t, x, y, z, \tilde{z}, u)p \\
&\quad - \ell_x(t, x, y, z, \tilde{z}, u) \right\} dt - kdW - \tilde{k}d\tilde{W}, \\
p(0) &= -\gamma_y(y(0)) \\
q(1) &= -f_x(x(1))p(1) + \phi_x(x(1)),
\end{align*}
\]
(3.13)
and

\[
\begin{align*}
-dP &= \ell(t, x, y, z, \tilde{z}, u)dt - QdW - \tilde{Q}d\tilde{W} \\
P(1) &= \phi(x(1)).
\end{align*}
\]

(3.14)

Hamitonian

\[
H(t, x, y, z, \tilde{z}, v; p, q, k, \tilde{k}, \tilde{Q}) = bq + \sigma k + \tilde{\sigma} \tilde{k} + h\tilde{Q} + \ell - (g - h\tilde{z})p.
\]
Theorem

If u is a local minimum for $J(\cdot)$, then

$$
\mathbb{E} \left(H_u(t, x, y, z, \tilde{z}, v; p, q, k, \tilde{k}, \tilde{Q}) \bigg| \mathcal{G}_t \right) = 0.
$$

Idea of proof Set

$$
\frac{d}{d\epsilon} J(u + \epsilon v) \bigg|_{\epsilon=0} = 0.
$$
Remark

- (3.14) is for $Z^v(t)$. If $h = 0$, this eq. is not needed.
- Suppose $h = b = \sigma = \tilde{\sigma}$, it is proved in Huang-Wang-Xiong (2008, SICON)
4. Follower’s optimization problem

Step 1. (Optimal control)

Hamiltonian function:

\[
H_1(t, x, u_1, u_2; q, k, \tilde{k}) = \langle q, A(t)x + B_1(t)u_1 + B_2(t)u_2 \rangle \\
+ \langle k, C(t)x + D_1(t)u_1 + D_2(t)u_2 \rangle \\
+ \langle \tilde{k}, \tilde{C}(t)x + \tilde{D}_1(t)u_1 + \tilde{D}_2(t)u_2 \rangle \\
- \frac{1}{2} \langle Q_1(t)x, x \rangle - \frac{1}{2} \langle N_1(t)u_1, u_1 \rangle.
\]
Then,
\[
0 = N_1(t)u_1^*(t) - B_1^\top(t)\mathbb{E}[q(t)|\mathcal{G}_t^1] - D_1^\top(t)\mathbb{E}[k(t)|\mathcal{G}_t^1] - \tilde{D}_1^\top(t)\mathbb{E}[\tilde{k}(t)|\mathcal{G}_t^1], \ a.e. t \in [0,T],
\]
where \mathcal{F}_t-adapted $(q(\cdot), k(\cdot), \tilde{k}(\cdot))$ satisfies the BSDE
\[
\begin{aligned}
-dq(t) &= \left[A^\top(t)q(t) + C^\top(t)k(t) + \tilde{C}^\top(t)\tilde{k}(t) - Q_1(t)x^{u_1^*, u_2}(t) \right] dt \\
&\quad - k(t)dW(t) - \tilde{k}(t)d\tilde{W}(t), \\
q(T) &= - G_1 x^{u_1^*, u_2}(T).
\end{aligned}
\]
Step 2. (Optimal filtering)

Let

$$\hat{f}(t) := \mathbb{E}[f(t)|G^1_t], \quad f = q, k, \tilde{k}.$$

How to derive filtering equation? Direct from (4.17) is impossible.

Solve (4.17) first!

Guess:

$$q(t) = -P_1(t)x^{u_1^*, u_2}(t) - \varphi(t), \quad t \in [0, T],$$

(4.18)

Set

$$\left\{ \begin{array}{l}
 d\varphi(t) = \alpha(t)dt + \beta(t)d\tilde{W}(t), \\
 \varphi(T) = 0.
\end{array} \right.$$

(4.19)
Applying $dq(t)$ and comparing, we get

$$k(t) = -P_1(t) \left[C(t)x_{u_1, u_2}(t) + D_1(t)u_1^*(t) + D_2(t)u_2(t) \right], \quad (4.20)$$

$$\tilde{k}(t) = - P_1(t) \left[\tilde{C}(t)x_{u_1, u_2}(t) + \tilde{D}_1(t)u_1^*(t) + \tilde{D}_2(t)u_2(t) \right] - \beta(t), \quad (4.21)$$

$$\alpha(t) = \left[- \dot{P}_1(t) - P_1(t)A(t) - A^\top(t)P_1(t) - Q_1(t) \right] x_{u_1, u_2}(t) - P_1(t)B(t)u_1^*(t) - P_1(t)B_2(t)u_2(t) - A^\top(t)\varphi(t) + C^\top(t)k(t) + \tilde{C}^\top(t)\tilde{k}(t). \quad (4.22)$$
Hence,

\[\hat{q}(t) = -P_1(t) \hat{x}^{u_1^*, \hat{u}_2(t)} - \varphi(t), \]
\[\hat{k}(t) = -P_1(t) \left[C(t) \hat{x}^{u_1^*, \hat{u}_2(t)} + D_1(t) u_1^*(t) + D_2(t) \hat{u}_2(t) \right], \]
\[\hat{k}(t) = -P_1(t) \left[\tilde{C}(t) \hat{x}^{u_1^*, \hat{u}_2(t)} + \tilde{D}_1(t) u_1^*(t) \right. \]
\[\left. + \tilde{D}_2(t) \hat{u}_2(t) \right] - \beta(t) \]

with \(\hat{u}_2(t) := \mathbb{E}[u_2(t)|G_{1,t}] \).
Using filtering technique (Lemma 5.4 in Xiong (2008)), we get

\[
\begin{cases}
\hat{d}\hat{x}^{\hat{u}_1,\hat{u}_2}(t) \\
= \left[A(t)\hat{x}^{\hat{u}_1,\hat{u}_2}(t) + B_1(t)\hat{u}_1(t) + B_2(t)\hat{u}_2(t) \right] dt \\
+ \left[\tilde{C}(t)\hat{x}^{\hat{u}_1,\hat{u}_2}(t) + \tilde{D}_1(t)\hat{u}_1(t) + \tilde{D}_2(t)\hat{u}_2(t) \right] d\tilde{W}(t),
\end{cases}
\tag{4.26}
\]

\[
\hat{x}^{\hat{u}_1,\hat{u}_2}(0) = x_0,
\]

and

\[
\begin{cases}
-d\hat{q}(t) = \left\{ A^\top(t)\hat{q}(t) + C^\top(t)\hat{k}(t) + \tilde{C}^\top(t)\tilde{k}(t) \\
- Q_1(t)\hat{x}^{\hat{u}_1,\hat{u}_2}(t) \right\} dt - \hat{k}(t)d\tilde{W}(t),
\end{cases}
\tag{4.27}
\]

\[
\hat{q}(T) = - G_1\hat{x}^{\hat{u}_1,\hat{u}_2}(T),
\]
Step 3. (Optimal state feedback control)

By (4.16) we arrive at

\[u_1^*(t) = -\tilde{N}_1(t)^{-1} \left[\left(B_1^T(t)P_1(t) + D_1^T(t)P_1(t)C(t) \right. \right. \]
\[\left. + \tilde{D}_1^T(t)P_1(t)\tilde{C}(t) \right) \hat{x}_{u_1,\hat{u}_2}(t) \]
\[\left. + \left(D_1^T(t)P_1(t)D_2(t) + \tilde{D}_1^T(t)P_1(t)\tilde{D}_2(t) \right) \hat{u}_2(t) \right. \]
\[\left. + B_1^T(t)\varphi(t) + \tilde{D}_1^T(t)\beta(t) \right] , \]

where

\[\tilde{N}_1(t) := N_1(t) + D_1^T(t)P_1(t)D_1(t) + \tilde{D}_1^T(t)P_1(t)\tilde{D}_1(t) \tag{4.29} \]
Substituting (4.28) into (4.22), we obtain Riccati equation

\[
\begin{align*}
\dot{P}_1(t) + P_1(t)A(t) + A^\top(t)P_1(t) + C^\top(t)P_1(t)C(t) \\
+ \tilde{C}^\top(t)P_1(t)\tilde{C}(t) + Q_1(t) \\
- \left(P_1(t)B_1(t) + C^\top(t)P_1(t)D_1(t) \\
+ \tilde{C}^\top(t)P_1(t)\tilde{D}_1(t) \right) \tilde{N}_1^{-1}(t) \left(B_1^\top(t)P_1(t) \\
+ D_1^\top(t)P_1(t)C(t) + \tilde{D}_1^\top(t)P_1(t)\tilde{C}(t) \right) = 0,
\end{align*}
\]

\(P_1(T) = G_1. \)

Suppose it admits a unique differentiable solution \(P_1(\cdot) \)
\[\alpha(t) = \left[A^\top(t) - \tilde{S}_1(t)\tilde{N}_1(t)^{-1}B_1^\top(t) \right] \varphi(t) \]
\[\quad + \left[\tilde{C}^\top(t) - \tilde{S}_1(t)\tilde{N}_1(t)^{-1}\tilde{D}_1^\top(t) \right] \beta(t) \]
\[\quad + \left[-\tilde{S}_1(t)\tilde{N}_1(t)^{-1}\tilde{S}(t) + \tilde{S}_2(t) \right] \hat{u}_2(t), \]

which is \(G_t^1 \)-adapted, where

\[\tilde{S}(t) := D_1^\top(t)P_1(t)D_2(t) + \tilde{D}_1^\top(t)P_1(t)\tilde{D}_2(t), \]
\[\tilde{S}_1(t) := P_1(t)B_1(t) + \tilde{C}^\top(t)P_1(t)D_1(t) \]
\[\quad + \tilde{C}^\top(t)P_1(t)\tilde{D}_1(t), \]
\[\tilde{S}_2(t) := P_1(t)B_2(t) + \tilde{C}^\top(t)P_1(t)D_2(t) \]
\[\quad + \tilde{C}^\top(t)P_1(t)\tilde{D}_2(t), t \in [0, T]. \]
Then,

\[
-d\varphi(t) = \begin{cases}
 \left[A^\top(t) - \tilde{S}_1(t)\tilde{N}_1(t)^{-1}B_1^\top(t) \right] \varphi(t) \\
 + \left[\tilde{C}^\top(t) - \tilde{S}_1(t)\tilde{N}_1(t)^{-1}\tilde{D}_1^\top(t) \right] \beta(t) \\
 + \left[-\tilde{S}_1(t)\tilde{N}_1(t)^{-1}\tilde{S}(t) + \tilde{S}_2(t) \right] \hat{u}_2(t) \\
 - \beta(t)d\tilde{W}(t), \\
 \varphi(T) = 0,
\end{cases}
\]

(4.32)

which admits a unique \mathcal{G}_t^1-adapted solution $(\varphi(\cdot), \beta(\cdot))$.
Finally,

\[d\hat{x}^{u_1^*, \hat{u}_2}(t) = \left[\tilde{A}(t)\hat{x}^{u_1^*, \hat{u}_2}(t) + \tilde{F}_1(t)\varphi(t) \right. \]

\[+ \tilde{B}_1(t)\beta(t) + \tilde{B}_2(t)\hat{u}_2(t) \] \[dt \]

\[+ \left[\tilde{C}(t)\hat{x}^{u_1^*, \hat{u}_2}(t) + \tilde{B}_1^\top(t)\varphi(t) \right. \]

\[+ \tilde{F}_3(t)\beta(t) + \tilde{D}_2(t)\hat{u}_2(t) \] \[d\tilde{W}(t), \]

\[\hat{x}^{u_1^*, \hat{u}_2}(0) = x_0, \]

solves \(\hat{x}^{u_1^*, \hat{u}_2} \), where
\[
\begin{align*}
\tilde{A}(t) &:= A(t) - B_1(t)\tilde{N}_1(t)^{-1}\tilde{S}_1^\top(t), \\
\tilde{B}_2(t) &:= B_2(t) - B_1(t)\tilde{N}_1(t)^{-1}\tilde{S}(t), \\
\tilde{F}_1(t) &:= -B_1(t)\tilde{N}_1(t)^{-1}B_1^\top(t), \\
\tilde{B}_1(t) &:= -B_1(t)\tilde{N}_1(t)^{-1}\tilde{D}_1^\top(t), \\
\tilde{C}(t) &:= \tilde{C}(t) - \tilde{D}_1(t)\tilde{N}_1(t)^{-1}\tilde{S}_1^\top(t), \\
\tilde{F}_3(t) &:= -\tilde{D}_1(t)\tilde{N}_1(t)^{-1}\tilde{D}_1^\top(t), \\
\tilde{D}_2(t) &:= \tilde{D}_2(t) - \tilde{D}_1(t)\tilde{N}_1(t)^{-1}\tilde{S}(t) \\
\tilde{F}_4(t) &:= -\tilde{S}_1(t)\tilde{N}_1(t)^{-1}\tilde{S}(t) + \tilde{S}_2(t).
\end{align*}
\]
Theorem 3.1 Let Riccati equation admit a differentiable solution $P_1(\cdot)$ and let matrix be convertible. For chosen $u_2(\cdot)$ of the leader, Problem of the follower admits an optimal control $u_1^*(\cdot)$ of the state feedback, where processes triple $(\hat{x}^u_1, \hat{u}_2(\cdot), \varphi(\cdot), \beta(\cdot))$ is the unique \mathcal{G}^1_t-adapted solution to the FBSDE (4.32)-(4.33).
5. Complete Information LQ Stochastic Optimal Control Problem of the Leader

The leader knows the complete information \mathcal{F}_t at any time t. The state equations faced by the leader consist of BSDE (4.32) and the SDE (3.7). By (4.28), it can be written as
\[
\begin{align*}
\dot{x}^{u_2}(t) &= \left[A(t)x^{u_2}(t) + (\tilde{A}(t) - A(t))\dot{x}^{\hat{u}_2}(t) + \tilde{F}_1(t)\varphi(t) \\
&\quad + \tilde{B}_1(t)\beta(t) + B_2(t)u_2(t) + (\tilde{B}_2(t) - B_2(t))\dot{u}_2(t) \right] dt \\
&\quad + \left[C(t)x^{u_2}(t) + \tilde{F}_5(t)\dot{x}^{\hat{u}_2}(t) + \tilde{B}_1(t)^\top\varphi(t) + \tilde{D}_1(t)\beta(t) \\
&\quad + D_2(t)u_2(t) + \tilde{F}_2(t)\dot{u}_2(t) \right] dW(t) \\
&\quad + \left[\tilde{C}(t)x^{u_2}(t) + (\tilde{C}(t) - \tilde{C}(t))\dot{x}^{\hat{u}_2}(t) + \tilde{B}_1(t)^\top\varphi(t) \\
&\quad + \tilde{F}_3(t)\beta(t) + \tilde{D}_2(t)u_2(t) + (\tilde{D}(t) - \tilde{D}(t))\dot{u}_2(t) \right] d\tilde{W}(t),
\end{align*}
\]
\[-d\varphi(t) = \left[\tilde{A}^\top(t)\varphi(t) + \tilde{C}^\top(t)\beta(t) \\
&\quad + \tilde{F}_4(t)\dot{u}_2(t) \right] dt - \beta(t)d\tilde{W}(t),
\]
\[x^{u_2}(0) = x_0, \quad \varphi(T) = 0. \tag{5.34}\]
The leader’s cost functional

$$\tilde{J}_2(u_2(\cdot)) := J_2(u_1^*(\cdot), u_2(\cdot))$$

$$= \frac{1}{2} \mathbb{E} \left[\int_0^T \left(\langle Q_2(t)x^{u_1^*, u_2}(t), x^{u_1^*, u_2}(t) \rangle + \langle N_2(t)u_2(t), u_2(t) \rangle \right) dt + \langle G_2x^{u_1^*, u_2}(T), x^{u_1^*, u_2}(T) \rangle \right]$$

(5.35)

This complete info conditional mean-field LQ problem with state (5.34) and cost (5.34) can be solved explicitly using a general result.
General conditional mean-field SMP. State

\[
\begin{align*}
 \frac{dx_{u2}(t)}{dt} &= b(t)dt + \sigma(t)dW(t) + \tilde{\sigma}(t)d\tilde{W}(t), \\
 -dq(t) &= \left\{ b_x(t)q(t) + \sum_{j=1}^{d_1} \sigma^j_x(t)k^j(t) \\
 &\quad + \sum_{j=1}^{d_2} \tilde{\sigma}^j_x(t)\tilde{k}^j(t) - g_{1x}(t) \right\} dt \\
 &= k(t)dW(t) - \tilde{k}(t)d\tilde{W}(t), \\
 x_{u2}(0) &= x_0, \quad q(T) = -G_{1x}(x_{u2}(T)),
\end{align*}
\]

where \(b\) is a function of \((t, x, \hat{x}, u_2, \hat{u}_2, q, k, \tilde{k}, \hat{k}, \tilde{k})\).
Cost:

\[J_2(u_2(\cdot)) = \mathbb{E}\left[\int_0^T g_2(t) dt + G_2(x^{u_2}(T)) \right] \]

Problem of the leader. Find a \(G^2_t \)-adapted control \(u_2^*(\cdot) \in \mathcal{U}_2 \), such that

\[J_2(u_2^*(\cdot)) = \inf_{u_2 \in \mathcal{U}_2} J_2(u_2(\cdot)), \tag{5.37} \]

subject to (5.36).
Define Hamiltonian

\[H_2(t, x, u_2, \hat{x}, \hat{u}_2, q, k, \tilde{k}; y, z, \tilde{z}, p) \]
\[= \langle y, b() \rangle + \text{tr}\{z^\top \sigma(t)\} + \text{tr}\{\tilde{z}^\top \tilde{\sigma}(t)\} + g_2(t) \]
\[- \langle p, b_x(t)q + \sum_{j=1}^{d_1} \sigma^j_x(t)k^j + \sum_{j=1}^{d_2} \tilde{\sigma}^j_x(t)\tilde{k}^j - g_{1x}(t) \rangle. \]
Let \((y(\cdot), z(\cdot), \tilde{z}(\cdot), p(\cdot))\) be the unique \(\mathcal{F}_t\)-adapted solution to the adjoint conditional mean-field FBSDE of the leader

\[
dp(t) = \left\{ b_x^*(t)p(t) + \mathbb{E} \left[b_x^*(t)p(t) \middle| \mathcal{G}_t^1 \right] \right\} dt \\
+ \sum_{j=1}^{d_1} \left\{ \sigma_{x}^{*j}(t)p(t) + \mathbb{E} \left[\sigma_{x}^{*j}(t)p(t) \middle| \mathcal{G}_t^1 \right] \right\} dW^j(t) \\
+ \sum_{j=1}^{d_2} \left\{ \tilde{\sigma}_{x}^{*j}(t)p(t) + \mathbb{E} \left[\tilde{\sigma}_{x}^{*j}(t)p(t) \middle| \mathcal{G}_t^1 \right] \right\} d\tilde{W}^j(t),
\] (5.39)
\[-dy = \left\{ b_{xy} + \mathbb{E}[b_{\hat{x}y} | \mathcal{G}_t^1] + \sum_{j=1}^{d_1} \left[\sigma^j_x z^j + \mathbb{E}[\sigma^j_{\hat{x}} z^j | \mathcal{G}_t^1] \right] \right. \\
+ \sum_{j=1}^{d_2} \left[\tilde{\sigma}^j_x(t) z^j(t) + \mathbb{E}[\tilde{\sigma}^j_{\hat{x}}(t) z^j(t) | \mathcal{G}_t^1] \right] \\
- \sum_{i=1}^{n} \left\{ \frac{\partial b_x}{\partial x_i}(t) q(t)p_i(t) + \mathbb{E}\left[\frac{\partial b_x}{\partial \hat{x}_i}(t) q(t)p_i(t) | \mathcal{G}_t^1 \right] \right\} \\
- \sum_{i=1}^{n} \left\{ \frac{\partial}{\partial x_i} \left(\sum_{j=1}^{d_1} \sigma^j_x k^j \right) p_i + \mathbb{E}\left[\frac{\partial}{\partial \hat{x}_i} \left(\sum_{j=1}^{d_1} \sigma^j_{\hat{x}} k^j \right) p_i | \mathcal{G}_t^1 \right] \right\} \\
- \sum_{i=1}^{n} \left\{ \frac{\partial}{\partial x_i} \left(\sum_{j=1}^{d_1} \tilde{\sigma}^j_x \tilde{k}^j \right) p_i + \mathbb{E}\left[\frac{\partial}{\partial \hat{x}_i} \left(\sum_{j=1}^{d_1} \tilde{\sigma}^j_{\hat{x}} \tilde{k}^j \right) p_i | \mathcal{G}_t^1 \right] \right\} \\
+ g_{1xx} p + \mathbb{E}\left[g_{1\hat{x}x} p | \mathcal{G}_t^1 \right] + g_{2x} + \mathbb{E}\left[g_{2\hat{x}} | \mathcal{G}_t^1 \right] \right\} dt - zdW - \tilde{z}d\tilde{W} ,\]
with boundary

\[p(0) = 0, \]
\[y(T) = G_{1xx}(x^*(T))p(T) + G_{2x}(x^*(T)), \]

(5.41)

where we have used \(\phi \equiv \phi(t, x^*(t), \hat{x}^*(t), u_2^*(t), \hat{u}_2^*(t)) \) for \(\phi = b, \sigma, \tilde{\sigma}, g_1, g_2 \) and all their derivatives.

Related work: Anderson and Djehiche (2011), Li (2012), Yong (2.13).
Proposition (Maximum principle of conditional mean-field FBSDE with partial information)

Let $u^*_2(\cdot) \in \mathcal{U}_2$ be the optimal control for Problem of the leader and $(x^*(\cdot), q^*(\cdot), k^*(\cdot), \tilde{k}^*(\cdot))$ be the corresponding optimal state which is the unique \mathcal{F}_t-adapted solution to (5.36). Let $(y(\cdot), z(\cdot), \tilde{z}(\cdot), p(\cdot))$ be the unique \mathcal{F}_t-adapted solution to the adjoint equation. Then

$$
\mathbb{E} \left\{ \frac{\partial H_2}{\partial u_2} + \mathbb{E} \left[\frac{\partial H_2}{\partial \hat{u}_2} \bigg| \mathcal{G}^1_t \right] \bigg| u_2 = u^*_2(t) \right\} \bigg| \mathcal{G}^2_t \right\} = 0, \ a.e. t \in [0, T], \ (5.42)
$$
Now, we come back to LQ problem. Define Hamiltonian

\[
H_2(t, x^{u_2}, u_2, \varphi, \beta; y, z, \tilde{z}, p)
\]

\[
= \langle y, A(t)x^{u_2} + (\tilde{A}(t) - A(t))\hat{x}^{\hat{u}_2} + \tilde{F}_1(t)\varphi \\
+ \tilde{B}_1(t)\beta + B_2(t)u_2 + (\tilde{B}_2(t) - B_2(t))\hat{u}_2 \rangle \\
+ \langle z, C(t)x^{u_2} + \tilde{F}_5(t)\hat{x}^{\hat{u}_2} + \tilde{B}_1(t)\varphi \\
+ \tilde{D}_1(t)\beta + D_2(t)u_2 + \tilde{F}_2(t)u_2 \rangle \\
+ \langle \tilde{z}, \tilde{C}(t)x^{u_2} + (\tilde{C}(t) - \tilde{C}(t))\hat{x}^{\hat{u}_2} + \tilde{B}_1(t)\varphi \\
+ \tilde{F}_3(t)\beta + \tilde{D}_2(t)u_2 + (\tilde{D}_2(t) - D_2(t))\hat{u}_2 \rangle \\
+ \langle p, \tilde{A}^\top\varphi + \tilde{C}^\top\beta + \tilde{F}_4\hat{u}_2 \rangle + \frac{1}{2} [\langle Q_2x^{u_2}, x^{u_2} \rangle + \langle N_2u_2, u_2 \rangle].
\]

(5.43)
Applying the general thm, if there exists an \mathcal{F}_t-adapted optimal control $u_2^*(\cdot) \in \mathcal{U}_2$ for the leader, then

$$0 = N_2(t)u_2^*(t) + \tilde{F}_4^\top(t)\hat{p}(t) + B_2^\top(t)y(t)$$

$$+ (\tilde{B}_2(t) - B_2(t))^\top\hat{y}(t) + D_2^\top(t)\tilde{z}(t)$$

$$+ \tilde{F}_2^\top(t)\hat{z}(t) + \tilde{D}_2^\top(t)\tilde{\tilde{z}}(t)$$

$$+ (\tilde{D}_2(t) - \tilde{\tilde{D}}_2(t))^\top\tilde{\tilde{z}}(t), \text{ a.e. } t \in [0, T],$$

(5.44)

where \mathcal{F}_t-adapted processes quadruple $(p(\cdot), y(\cdot), z(\cdot), \tilde{\tilde{z}}(\cdot))$ satisfies the conditional mean-field FBSDE
\[
\begin{aligned}
dp(t) &= \left[\tilde{A}(t)p(t) + \tilde{F}_1^\top(t)y(t) + \tilde{B}_1(t)z(t) + \tilde{B}_1(t)\tilde{z}(t) \right] dt \\
&\quad + \left[\tilde{C}(t)p(t) + \tilde{B}_1^\top(t)y(t) \\
&\quad \quad + \tilde{D}_1(t)z(t) + \tilde{F}_3^\top(t)\tilde{z}(t) \right] d\tilde{W}(t), \\
-dy(t) &= \left[A^\top(t)y(t) + (\tilde{A}(t) - A(t))^\top \hat{y}(t) \\
&\quad + C^\top(t)z(t) + \tilde{F}_5^\top(t)\hat{z}(t) + \tilde{C}^\top(t)\tilde{z}(t) \\
&\quad + (\tilde{C}(t) - \tilde{C}(t))^\top \hat{z}(t) + Q_2(t)x^*(t) \right] dt \\
&\quad - z(t)dW(t) - \tilde{z}(t)d\tilde{W}(t),
\end{aligned}
\]

\[p(0) = 0, \quad y(T) = G_2x^*(T). \]

(5.45)
Thanks!