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Linear Pseudo-Polynomials over GF'[g, x]

By

CarL G. WAGNER ¥)

1. Introduction. A pseudo-polynamial over the ring Z of rational integers is a function
{ from the nonnegative integers to Z satisfying f(n + k) = f(n) (mod k) for all
nonnegative n and k. In [4] R. R. Hall proved that the pseudo-polynomials over Z
are precisely the functions f given by an interpolation series

W @ =34(7).

where 4, € Z and A, is divisible by the 1. ¢. m. of the numbers 1, 2, ..., n. He also
showed that the integral domain of pseudo-polynomials over Z (with pointwise
multiplication of functions) is not a unique factorization domain.

Let GF (g, z] denote the ring of polynomials over the finite field GF (¢). Following
Hall, we say that a function f: GF[q, ] — GF[g, x] is a pseudo-polynomial over
GFlq, x] if f(M + K) = f(M) (mod K) for all M, K € GF|[q, 2]. If, in addition, f is
a linear operator on the GF (g)-vector space GF[q, x] (in which case the aforemen-
tioned congruence reduces to f(K) = 0 (mod.K)) we say that f is a linear pseudo-
polynomial over GF [g, z]. In this paper we present a characterization of such opera-
tors which is analogous to Hall’s. We also show that the linear pseudo-polynomials
constitute a non-commutative ring L (with operator composition as the ring multi-
plication) which is free of zero divisers. We conclude by showing that each operator in
L may be extended uniquely to a continuous (though not necessarily differentiable)
linear operator on the vector space of formal power series over GF (g), equipped with
an z-adic absolute value.

2. Preliminaries. Let GF[g, 2] denote the ring of polynomials over the finite field
GF(g) of characteristic p, and let GF (g, z) denote the quotient field of GF[g, x].
Following Carlitz [2], we define a sequence of polynomials y, (f) over GF[q, z] by

(2-1) v@=[]¢—M), wpit)=t
deg M<r

where the product in (2.1) extends over all M € GF[q, «] (including 0) of degree
<r. It follows [2] that
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(2.2) ’ll)r(t) = i (—- I)T—i [::'} tq" ‘
=0

r F, r F, |r
e i) =zg o) -2 ]~
Fr=<{ry{r— 1217, Fo=1,
(2.4) Ly =) r—1>-- (1>, Ly=1,
(ry=af —x.

We remark that y,(2") = ¢, (M) = F, for M monic of degree r, so that F, is the
product of all monic polynomials in G'F[gq, ] of degree r [2]. On the other hand,
L, may be seen to be the 1. ¢. m. of all polynomials in GF{q, «] of degree r [1].

A polynomial f(f) over GF(q, ) is called integral valued if f(M)eGF[g, x] for
all M eGFlq, z]; {{t) is called linear if the polynomial function which it induces
is a linear operator on the GF (g)-vector space GF(q, z). It is proved in {2] and [3]
that the sequence (y,(¢)/F,) is an ordered basis of the GF[g, z}-module of linear
integral valued polynomials over GF (g, x). Indeed, given any linear polynomial

) =Sutt  (qeGF(g2)),
i=0
we have [2]

(2.5) 110) =§Aif(1)£@_,
i=0 F;

K]

where the operators A? are defined recursively by

A%f(5) = f(B),
(2.6) Arf(@) = 4f () = fxt) — 2/ (D),
AL = Aif (xt) — % A% (2).

We conclude this section with some valuation theoretic remarks. Let P € GF [q, z]
be irreducible. Each nonzero « € GF (g, ) may be written, in essentially unique
fashion, as « = P¢M|N, where M, N € GF[q, z] are prime to P and to each other,
and eeZ. Setting vp(a) = ¢ yields an integer-valued valuation on GF(g, ). The
valuation vp induces a discrete non-archimedean absolute value | |p on GF (g, x)
by |0]p = 0 and |a|p = 5" (for some fixed b such that 0 < b < 1) if « 5 0.
As is familiar, GF (g, ) may be embedded as a dense subfield in an essentially unique
complete field. When P = z this complete field is simply the field of formal power
series -

2.7) o = z a; 2%,

i=—o00
where a; € GF (g) and all but a finite number of the @;’s vanish for ¢ << 0 ({if » is
the least integer such that a, == 0, we have the extended valuation v;{(«) = n).
We denote this field by GF ((g, x)). Its valuation ring, denoted GF[[q, «]], consists
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of all formal power series of the form

a = aat.
i=0
Obviously, GF [g, =] is a dense subring of the compact ring GF[[g, «]].

3. Linear pseudo-polynomials over GF [q, z]. We recall from the Introduction that
a linear pseudo-polynomial over GF{g, ] is a linear operator f on the GF (g)-vector
space GF[g, ] such that f(K) = 0 (mod K) for all K € @F[q, x]. Obviously, each
linear polynomial f(¢) with coefficients in GF[q, 2] gives rise to a linear pseudo-
polynomial over GF{q, z]. The same is true for some (but not all) linear, integral
valued polynomials over GF (g, x) (see Theorem 3.2). We denote the set of all linear
pseudo-polynomials over GF{g, z] by L. For f, ge L set f + ¢(M) = f(M) + g(M)
and f o g(M) = f(g(M)) for all M € GF[g, z]. Clearly, (L, -, o) is a noncommutative
ring with identity. It follows from the next theorem that L is free of zero-divisors.

Theorem 3.1. Let f be a nonzero linear operator in L. Then the null space of f is
finite dimensional and the range of f is infinite dimensional.

Proof. Suppose that the null space of f is infinite dimensional. Then there is an
infinite sequence M1, Mo, ... of polynomials in G¥{g, 2] such that for all ¢,

degMi<degMz-+1 and f(M,):O

Now let K € GF[gq, ] be arbitrary. Then f(M; 4+ K) = f(K) for all ¢. But since f
is a preudo-polynomial, M; + K divides f(K) for all <. Since the degree of M; + K
ultimately exceeds that of f(K), it follows that f(K) = 0. This contradicts the hypo-
thesis that f is not the zero operator.

It follows immediately that the range of f is infinite dimensional, for it is well
known that the null space and range of a linear operator on an infinite dimensional
vector space (in this case the GF(g)-vector space GF[g, #]) cannot both be finite
dimensional.

Corollary. L confains no zero diviso's.

Proof. Let f, g € L, where g is not the zero operator. If f o g is the zero operator,
then the (infinite dimensional) range of g is contained in the null space of f. Hence,
by the previous theorem, f is the zero operator.

We now present a concrete characterization of the operators of L. Let f be any
linear operator on the GF (g)-vector space GF [g, z]. It follows easily from assertion
(2.5) for linear polynomials that, for all M € GF[g, z],

(3.1) ﬂm=%ﬂwmwf“
i=0 1

where the operators A? are defined by (2.6). Since y;(M) =0 if deg M < ¢, we
may rewrite (3.1) as

2

(=]

(3.2) =3 iy 29
i=0 Fy

25%
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where the variable ¢ is understood to run through GF[g, ). From (2.6) it is clear
that Af(1) e GF|[g, =] for all 7. Conversely, given any sequence (4;) in GF[g, ],
since y;(f)/F; is integral valued [3), it follows that

o . t
(3.3) gty => 4; "’1’7( )
i=0 i
defines a linear operator g on GF[g, x] for which A% (1) = A;. The following theorem
specifies which of these linear operators are pseudo-polynomials over GF (g, z].

Theorem 3.2. Let the linear operator g on GF [q, ] be given by the interpolation series
(3.3). Then g is a pseudo-polynomial over GF [q, z] if and only if A; is divisible by L;
in GF g, z] for all i, where L; is defined by (2.4).

Sufficiency. It obviously suffices to show that
(3.4) —t—— = (} (mod K)

for all K eGF{q, «]. If deg K < m, then by (2.1) p,(K) = 0. If deg K = n and
the leading eoefficient of K is ¢, then by the remark following (2.4) Ly, (K)/Fp=
= ¢Ly, and since Ly is the L. ¢. m. of all polynomials of degree =, (3.4) follows.

Suppose then that deg K > n. To establish (3.4) in this case it suffices to show
that if P is a monic irreducible divisor of K such that Pe¢ divides K but Pe+l does
not divide K, then Pe¢ divides Lnyn(K)[Fyp, i.e., vp{Lyyn{X)[Fy) = e. Suppose
that the P-adic expansion of K is

(3.5) K=K3Pe+"'+KsPs,

where K;eGF[q,z], K., K;+ 0, and deg P = d. Recall that P divides {r)> (see 2.4)
exactly once in GF[g, z] if and only if d divides 7. Hence by (2.4)

[n/d]
(3.6) vp(Ly) = 211 = [n/d]
and ”

ma
@) we(Fa) =2

i=

To evaluate vp(yy(K)), let Sy = {M € GF|[g, z]: deg M < n} and, for each j = 1,
let a; = card{M € S, : M = K (mod P/)}. Then by (2.2)

(3.8) vp (Yo (K)) = 2 vp(K — M) = 3 jla; — ajs1) = 2 aj,
MeSn 7=1 J=1

where, in the last two sums of (3.8) all but a finite number of terms vanish. Indeed,
it is clear from (3.5) and the fact that deg K > = that a; = 0 when j > s. On the
other hand, if 1 < j < [n/d], then since 8, contains precisely ¢7—/¢ complete residue
systems (mod P4}, @; = ¢n~7¢ for such j. For [n/d] < § =< s, however, o; = 1, since
in such cases S, contains only a fragment of a complete residue system (mod FP7).
Along with (3.6), (3.7}, and (3.8) the foregoing remarks yield the preliminary formula
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L K d
39 (—"’—(—)) D+ S e,
Fy j=nd)+1
where 0 < a; < 1. If [n/d] = e, the desired result follows immediately. Suppose
then that [2/d] = ¢ — r for some r > 1. Since 0 € 8, and K = 0 (mod P/) for j < e,
we have @;j=1 for e —r 4+ 1 < j < e. Hence by (3.9)

$ e
vp(——L”w”‘K))=(e—r)+ S gze—n+ 3 1=¢
Fn j=e—r+1 j=e—r+1
Necessity. We are given that K divides g(K) for all K € GF[g, x]. We show by
induction on ¢ that L; divides A4; for all . By (2.4), Lo = 1 and so Ly divides 4.
Suppose that L; divides 4; for all i < n. Let K € GF [q, ] be an arbitrary monic
polynomial of degree n. Then

n (K n—1 (K
g(K) =ZA,.E%£_) =5 4 vilk) 4.
<o i o F
Since L; divides 4; for 7 << n, then by the preceding proof of sufficiency, K divides
A;wi(K)|F; for i < n. Since K also divides g(K), K divides 4,. Hence A4, is di-
visible by Ly, the 1. c. m. of all polynomials in GF[g, x] of degree =.

4. Extensions to GF[[q, z]]. In [4] Hall remarks that it would be of interest to
find an interpolation formula for the function f given in (1.1) ““which would extend
its definition to all real or even complex values of «”. While this would appear to
be a task of some difficulty, it may be of interest to note that the aforementioned
funection f extends by the very same formula to a continuous function on the ring Z,
of p-adic integers for any prime p. Indeed, Mahler [5] has shown that a series of the
form (1.1), where A, € Z,, represents a continuous funetion on Z; precisely when
lim 4, = 0 for the p-adic topology, and Hall’s divisibility conditions on the 4,

n—>00

clearly insure that (4,) is a p-adic null sequence. On the other hand, this extension
of a pseudo-polynomial to Z, may not yield a differentiable function, for Mahler [5]
has proved, among other things, that the extended function f of (1.1) is differentiable
at 0 if and only if (4,/n) is a p-adic null sequence. Thus if we set 4, = l.c.m.
{1,2,...,n}, { is not differentiable at O since the subsequence (Ap,/jwr) is not a
p-adic null sequence. ’

Analogously, the linear pseudo-polynomial g given by (3.3) extends by the very
same formula to a continuous linear operator on the GF (g)-vector space GF[[q, x]].
For it is known [6] that a series of the form (3.3), where A; € GF[[q, x]] represents
a continuous linear operator on GF[[q, x]] (for the z-adic topology) precisely when
(44} is an z-adic null sequence, and the divisibility conditions on A; insure this
when g is an extension of a linear pseudo-polynomial. On the other hand, g is dif-
ferentiable at 0 (hence everywhere) if and only if (4;/L;) is an z-adic null sequence
[6]. Hence if we set 4; = L; in (3.3), this yields a linear pseudo-polynomial over
GF[q, z], the unique continuous extension of which to GF[[q, #]] is nowhere dif-
ferentiable.
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