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Linear Pseudo-Polynomials  over GF[q, x] 

By 

CART. G. W A o ~  *) 

1. Introduction. A pseudo-polynomial over the ring Z of rational integers is a function 
[ from the nonnegative integers to Z satisfying [(n + k )= / (n )  (mod/c) for all 
nonnegative n and k. In  [4] R. R. Hall proved that  the pseudo-polynomials over Z 
are precisely the functions [ given by an interpolation series 

(1.1) l (x)  = N A .  , 

where As s Z and An is divisible by the 1. e. m. of the numbers 1, 2 . . . .  , n. He also 
showed tha t  the integral domain of pseudo-polynomials over Z (with pointwise 
multiplication of functions) is not  a unique faetorization domain. 

Let  GF[q, x] denote the ring of polynomials over the finite field GF(q). Following 
I-tall, we say that  a function [: GE[q, x] ~ GE[q, x] is a pseudo-pslgnomial over 
GF [q, x] ff [ (M + K) -= [ (M) (rood K) for all M, K ~ GF [q, x]. If, in addition, ] is 
a linear operator on the G.F (q)-vector space GF [q, x] (in. which ease the aforemen- 
tioned congruence reduces to ] (K) - 0 (rood,K)) we say that  [ is a linear psevxto- 
polynomial over GF [q, x]. In  this paper we present a characterization of such opera- 
tors which is analogous to Hall's. We also show that  the linear pseudo-polynomials 
constitute a non-commutative ring L (with operator composition as the ring multi- 
plication) which is free of zero divisers. We conclude by showing that  each operator in 
L may be extended uniquely to a continuous (though not necessarily differentiable) 
linear operator on the vector space of formal power series over G_F (q), equipped with 
an x-adic absolute value. 

2. Preliminaries. Let  GF [q, x] denote the ring of polynomials over the finite field 
GE (q) of characteristic p, and let GF (q, x) denote the quotient field of G2'[q, x]. 
Following Carlitz [2], we define a sequence of polynomials ~r(t) over GE[q, x] by 

(2.1) y~r(t) = I-[  (t -- M),  ~oo(t) = t 
d e g M < r  

where the product in (2.1) extends over all M ~ GF[q, x] (including 0) of de~ee  
< r. I t  follows [2] tha t  
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(2.2) 

where 

(2.3) 

and 

i = 0  

' Z r  ' 

Fr ---- ( r )  (r  --  1)q-.- (1} q'-1 , F0 = i ,  

(2.4) Lr = (r)  (r - -  1 ) - - -  ( 1 ) ,  L0 = 1,  

( r )  = xq" - -  x .  

We remark that  ~Pr (x r) = ~r (M) = Fr for M mollie of degree r, so that 2'r is the 
product of all monie polynomials in GF [q, x] of degree r [2]. On the other hand, 
Lr may be seen to be the 1. e. m. of all polynomials in GE[q, x] of degree r [1]. 

A polynomial I(t) over GF(q, x) is called integral valued i f / ( M )  �9  x] for 
all M �9 GF [q, x] ; ] (t) is called linear ff the polynomial function which it induces 
is a linear operator on the Gi~ (q)-vector space GF(q, x). I t  is proved in [2] and [3] 
that  the sequence (%vr(t)/Fr) is an ordered basis of the GF[q, x]-module of linear 
integral valued polynomials over GF (q, x). Indeed, given any linear polynomial 

n 

/(t) --~ ~ ~ft q' (o~i �9 x)), 
i=0 

we have [2] 

(2.5) /(t) = ~ A ~ / ( 1 )  ~ ( t )  
i=0 ~ ' 

where the operators A ~ are defined recursively by 

A0/(t) =/(t), 

(2.6) All( t )  = A/(t) =- ](xt) --  x / ( t ) ,  

A~+l/(t) = A~] (xt) -- xq' A~/ (t) . 

We conclude this section with some valuation theoretic remarks. Let P �9 GF [q, x] 
be irreducible. Each nonzero ~ e GF(q, x) may be written, in essentially unique 
fashion, as m = peM/N,  where M, N �9 GF[q, x] are prime to P and to each other, 
and e �9 Z. Setting vp(~) = e yields an integer-valued valuation on GF (q, x). The 
valuation ve induces a discrete non-archimedean absolute value ] [ p  on GF(q, x) 
by [ 0 [ p = 0  and [ : ~ ] p = b  v~) (for some fixed b such that 0 < b < l )  f f : r  
As is familiar, GF (q, x) may be embedded as a dense subfield in an essentially unique 
complete field. When P = x this complete field is simply the field of formal power 
series 

o o  

(2.7) ~ =  ~ a~x ~, 

where a, �9 GF (q) and all but  a finite number of the a, 's vanish for i ~ 0 (if n is 
the least integer such that  an ~ O, we have the extended valuation vz (~) = n). 
We denote this field by GF((q, x)). I ts  valuation ring, denoted GF[[q, x]], consists 
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of all formal power series of the form 

cr ---- Z a~ x~ . 
i=O 

Obviously, GF[q, x] is a dense subring of the compact ring GFE[q, x]]. 

3. Linear pseudo-polynomials over GF [q, x]. We recall from the Introduction tha t  
a linear pseudo-polynomial over GF [q, x] is a linear operator ] on the GF (q)-vector 
space GF [q, x] such that  ] (K) - 0 (mod K) for all K e GF [q, x]. Obviously, each 
linear polynomial f(t) with coefficients in GF[q, x] gives rise to a linear pseudo- 
polynomial over GF[q, x]. The same is true for some (but not all) linear, integral 
valued polynomials over GF(q, x) (see Theorem 3.2). We denote the set of all linear 
pseudo-polynomials over GF [q, x] by L. For  [, g e L set ] q- g (M) ---- ] (M) + g (M) 
and [ o g(M) ---- ](g(M)) for all M e GF[q, x]. Clearly, (L, q-, o) is a noncommutative 
ring with identity. I t  follows from the next  theorem that  L is free of zero-divisors. 

Theorem 3.1. Let / be a nonzero linear operator in L. Then the null space o / [  is 
]inite dimensional and the range o / / i s  in/inite dimensional. 

P r o o f .  Suppose that  the null space of ] is infinite dimensional. Then there is an 
infinite sequence M1, M2 . . . .  of polynomials in GF[q, x] such that  for all i, 

deg M~ < deg Mi+l and / (Mt) = 0. 

Now let K e GF [q, x] be arbitrary. Then /(M~ q- K) = /(K) for all i. But since ] 
is a pseudo-polynomial, Mi q- K divides ] (K) for all i. Since the degree of M~ ~- K 
ultimately exceeds that  of ] (K), it follows that  / (K) ----- 0. This contradicts the hypo- 
thesis tha t  [ is not the zero operator. 

I t  follows immediately that  the range of ] is infinite dimensional, for it is well 
known that  the null space and range of a linear operator on an infinite dimensional 
vector space (in this case the GF(q)-veetor space GF[q, x]) cannot both be finite 
dimensional. 

Corollary. L contains no zero diviso s. 

P r o o f .  Let  ], g e L, where g is not the zero operator. I f  [ o g is the zero operator, 
then the (infinite dimensional) range of g is contained in the null space of [. Hence, 
by the previous theorem, ] is the zero operator. 

We now present a concrete characterization of the operators of L. Let  / be any 
linear operator on the GF (q)-vector space GF [q, x]. I t  follows easily from assertion 
(2.5) for linear polynomials that ,  for all M e GF[q, x], 

deg M 

(3.1) I(M) = Z A~/(1) ~(M) 
i=O ~ ~ 

where the operators Ar are defined by (2.6). Since y)t(M) ---- 0 if d e g M  < i, we 
may rewrite (3.1) as 

(3.2) ] ( t ) = ~  A ~ [ ( 1 ) ~  , 
i = 0  

25* 
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where the variable t is understood to run through GF[q, x]. From (2.6) it  is clear 
that  At/(1)EGF[q,  x] for all i. Conversely, given any sequence (A~) in GF[q, x], 
since ~i (t)/F~ is integTal valued [3], it  follows that  

(3.3) g (t) = A ,  
(t) 

i=o /~t 

defines a linear operator g on GF [q, x] for which A/gO) = A i. The following theorem 
specifies which of these linear operators are pseudo-polynomials over GF [q, x]. 

Theorem 3.2. Let the linear operator g on GF [q, x] be given by the interpolation series 
(3.3). Then g is a pseudo-polynomial over GF[q, x] i /and  only if A~ is divisible by L~ 
in G.F [q, x] /or all i, where L~ is de/ined by (2.4). 

S u f f i c i e n c y .  I t  obviously suffices to show that  

Ln y~n(K) 
(3.4) F~ -- 0 (mod K) 

for all KeGF[q ,x ] .  I f  d e g K  < n ,  then by (2.1) ~pn(K)= O. I f  d e g K  = n and 
the leading coefficient of K is c, then by the remark following (2.4) Lnv/n(K)/Fn ~- 

cL~, and since Ln is the 1. e. m. of all polynomials of degree n, (3.4) follows. 
Suppose then that  deg K > n. To establish (3.4) in this case it suffices to show 

that  if  P is a monic irreducible divisor of K such that  pe divides K but  pe+l does 
not divide K, then pe divides Ln'i~n(K)/Fn, i.e., v p ( L ~ ( K ) ] F n )  >= e. Suppose 
that  the P-adie expansion of K is 

(3.5) K = Ke pe  + . . .  + Ks ps , 

where K~ eGF[q, x], Ke, Ks + O, and deg P = d. Recall tha t  P divides (r> (see 2.4) 
exactly once ill GF [q, x] if and only ff d divides r. Hence by  (2.4) 

In/d] 

(3.6) vp(Ln) = ~, 1 = [n/d] 
] = i  

and 
[nlg] 

(3.7) vp (Fn) = ~ qn-j~. 
i=1 

To evaluate vp(v2n(K)), let Sn = (MeGF[q ,  x] : d e g M  < n)  and, for each ] >= 1, 
let ay = card {M c Sn : M =- K (rood P0) .  Then by (2.2) 

(3.8) vp(vn(K)) = ~ v p ( K  -- M) = ~ i(aj -- aj+l) = ~ a j ,  
M ~S,, j= l j= l 

where, in the last two sums of (3.8) all but  a finite number of terms vanish. Indeed, 
it is clear from (3.5) and the fact that  deg K > n that  aj = 0 when ~ > s. On the 
other hand, ff 1 ~ ] ~ In/d], then since Sn contains precisely qn-ia complete residue 
systems (rood PJ), a i = qn-la for such 7'. For  In~d] < ~ <= s, however, a1 ~ 1, since 
in such cases Sn contains only a fragment of a complete residue system (mod pi). 
Along with (3.6), (3.7}, and (3.8) the foregoing remarks yield the prellmiaary formula 



Vol. XXV, 1974 Pseudo-Polynomials 389 

( Ln ~pn(K) ) _~ [n/d] + ~ ai, 
(3.9) vp , ~ n  ]= [n/d] + 1 

where 0 < a i < 1. I f  [n/d] > e, the desired result follows immediately. Suppose 
then tha t  In~d] = e -- r for some r > 1.. Since 0 e Sn and K = 0 (mod PJ) for j < e, 
we have a i - ~ 1  for e - - r ~ - l < j < e .  Hence by  (3.9) 

(LnyJn(K) =(e--r)+ ~ aj>(e--r)+ 1----e vp \ _vn = 
j = e - - r §  j = e - - r §  

N e c e s s i t y .  We are given that  K divides 9(K) for all K ~ G.F[q, x]. We show by 
induction on i tha t  Li divides Ai for all i. By (2.4), L0 = 1 and so L0 divides Ao. 
Suppose tha t  Li divides A~ for all i < n. Let  K ~ G.F[q, x] be an arbi t rary monic 
polynomial of degTee n. Then 

n A n - I  g (K) = ~. , ~p* (K) ~p~ (K) -- ~ Ai + A n .  
i=o 2'~ ~=0 

Since Lt divides Ai for i < n, then by the preceding proof of sufficiency, K divides 
A~vt(K)/F~ for i < n. Since K also divides g(K), K divides An. Hence An is di. 
visible by Ln, the 1. c. m. of all polynomials in GF [q, x] of degTee n. 

4. Extensions to GF[[q, x]]. In  [4] Hall remarks tha t  it would be of interest to 
find an interpolation formula for the function ] given in (1.1) "which would extend 
its definition to all real or even complex values of x". While this would appear to 
be a task of some difficulty, it may be of interest to note tha t  the aforementioned 
function ] extends by  the very same formula to a continuous function on the ring Zp 
of T-adic integers for any  prime p. Indeed, Mahler [5] has shown tha t  a series of the 
form (1.1), where An e Zp, represents a continuous funetion on Zv precisely when 
l imAn = 0 for the p-adic topology, and Hall 's  divisibility conditions on the An 

~ --> o o  

clearly insure tha t  (An) is a p-adic null sequence. On the other hand, this extension 
of a pseudo-polynomial to Zv may  not yield a differentiable function, for Mahler [5] 
has proved, among other things, that  the extended function ] of (1.1) is differentiable 
a t  0 if  and only ff (An/n) is a p-adic null sequence. Thus ff we set An = 1.c.m. 
{1, 2 . . . . .  n}, / is not  differentiable a t  0 since the subsequence (Avr/~ r) is not a 
T-adic null sequence. 

Analogously, the linear pseudo-polynomial g given by (3.3) extends by  the very 
same formula to a continuous linear operator on the G$'(q)-vector space G.F[[q, x]]. 
For it  is known [6] tha t  a series of the form (3.3), where A l ~  G$'[[q, x]] represents 
a continuous linear operator on G.F[[q, x]] (for the x-adie topologsr) precisely when 
(Ai) is an x-adic null sequence, and the divisibility conditions on A~ insure this 
when g is an extension of a linear pseudo-polynomial. On the other hand, g is dff- 
ferentiable at  0 (hence everywhere) if  and only if (A~/Li) is an x-adic null sequence 
[6]. Hence if we set Ai = L~ in (3.3), this yields a linear pseudo-polynomial over 
GF [q, x], the unique continuous extension of which to GF [[q, x]] is nowhere dff- 
ferentiable. 
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