WHEN CAN A PRIOR BE RECOVERED FROM A POSTERIOR?

Carl Wagner

1. Strict Conditioning.

Let A be an algebra of subsets of a set Ω of possible states of the world. Suppose that you are given a finitely additive probability measure (henceforth, “probability”) q on A, and are told that q has come from some probability p on A by conditioning on the event E. Can you determine p?

Well, yes, if $E=\Omega$ (in which case, it must be true that $p=q$), but not if E is a proper subset of Ω. For given the fully specified posterior q, along with E, there exist infinitely many priors that yield q by conditioning on E. Here’s why: Choose any number $\nu \in (0,1]$ and any $\omega \in E^c$. Define the probabilities

$$m_\omega (A) = 1 \text{ if } \omega \in A \text{ and } m_\omega (A) = 0 \text{ if } \omega \not\in A,$$

and

$$p_\nu (A) = \nu q(A \cap E) + (1-\nu)m_\omega (A \cap E^c).$$

It is straightforward to check that m_ω and p_ν are indeed probabilities on A. Furthermore,

$$p_\nu (A \mid E) = \frac{p_\nu (A \cap E)}{p_\nu (E)} = \frac{\nu q(A \cap E)}{\nu} = q(A \cap E) = q(A),$$

since $q(E^c) = 0$ and, hence, $q(A \cap E^c) = 0$.

2. Jeffrey Conditioning.

With Ω and A as above, suppose that $E = \{E_1, \ldots, E_n\}$ is a measurable partition of Ω (i.e., a set of nonempty, pairwise disjoint events in A, with union equal to Ω), where $n \geq 2$. Suppose that you are given a probability q on A, and you are told that q has come from some probability p on A by Jeffrey conditioning (henceforth, “JC”) on E, i.e., that for all $A \in A$,

$$q(A) = \sum_{i=1}^n e_i p(A \mid E_i)$$

for some probability p such that $p(E_i) > 0$, $i = 1, \ldots, n$, with each $e_i (= q(E_i)) > 0$, and $e_1 + \cdots + e_n = 1$. It is easy to check that a formula of type (2.1) holds with the posited conditions if and only if

$$q(A \mid E_i) = p(A \mid E_i) \text{ for all } A \in A, \text{ and each } i = 1, \ldots, n.$$
Condition (2.2) is variously termed the rigidity, sufficiency, and invariance. Can \(p \) be recovered from \(q \), along with knowledge of the values \(e_1, \ldots, e_n \) and the fact that \(q \) has come from \(p \) by JC on \(\mathcal{E} \)? Again, no. To take a simple illustration, suppose that \(\Omega = \{1,2,3,4\} \), \(\mathcal{A} = 2^\Omega \) (the set of all subsets of \(\Omega \), \(E_1 = \{1,2\} \) and \(E_2 = \{3,4\} \). Let \(q(\{1\}) = 1/9 \), \(q(\{2\}) = 2/9 \), \(q(\{3\}) = q(\{4\}) = 1/3 \), extending \(q \) to the remaining subsets of \(\Omega \) in the obvious way. We may construct infinitely many probabilities \(p_v \) on \(\mathcal{A} \), such that \(q \) comes from \(p_v \) by JC on \(\{E_1, E_2\} \) with \(q(E_1) = e_1 = 1/3 \) and \(q(E_2) = e_2 = 2/3 \). For each \(\nu \in (0,1) \), let \(p_v(\{1\}) = \nu / 3 \), \(p_v(\{2\}) = 2\nu / 3 \), \(p_v(\{3\}) = p_v(\{4\}) = (1-\nu) / 2 \). It is easily checked that each \(p_v \) has the desired property.\(^1\)

Exercise. Let \(q \) be a probability on an algebra \(\mathcal{A} \) of subsets of the set \(\Omega \), and let \(\mathcal{E} = \{E_1, \ldots, E_n\} \) be a measurable partition of \(\Omega \), with \(q(E_i) = e_i \) for \(i = 1, \ldots, n \). Let \(f_1, \ldots, f_n \) be any sequence of positive real numbers such that \(f_1 + \cdots + f_n = 1 \). For all \(A \in \mathcal{A} \), let

\[
(2.3) \quad p(f_j)(A) = \sum_{i=1}^n f_i q(A \mid E_i).
\]

Then \(q \) comes from \(p(f_j) \) by JC on \(\mathcal{E} \), with \(q(E_i) = e_i \), \(i = 1, \ldots, n \).

3. An Alternative Parameterization of Jeffrey Conditioning.

Let \(\Omega, \mathcal{A}, \) and \(\mathcal{E}= \{E_1, \ldots, E_n\} \) be as above, and let \(p \) be a probability on \(\mathcal{A} \) such that \(p(E_i) > 0 \) for \(i = 1, \ldots, n \). Let \(u_1, \ldots, u_n \) be any sequence of positive real numbers, and consider revising the prior \(p \) to a posterior \(q \) by the formula

\[
(3.1) \quad q(A) = \frac{\sum_{i=1}^n u_i p(A \cap E_i)}{\sum_{i=1}^n u_i p(E_i)}, \text{ for all } A \in \mathcal{A}.
\]

It is straightforward to check that the set function \(q \) is indeed a probability on \(\mathcal{A} \). Moreover, initial appearances notwithstanding, formula (3.1) furnishes no new and exotic method of probability revision. For, for all \(A \in \mathcal{A} \), and \(j = 1, \ldots, n \),

\[
(3.2) \quad q(A \mid E_j) = \frac{q(A \cap E_j)}{q(E_j)} = \frac{u_j p(A \cap E_j)}{u_j p(E_j)} = p(A \mid E_j).
\]
So \(q \) simply comes from \(p \) by JC on \(E \). But what do the parameters \(u_i \) represent? Recall that if \(q \) is a revision of the probability \(p \) and \(A \) and \(B \) are events, then the Bayes factor \(\beta_p^q(A:B) \) is simply the ratio of the new odds on \(A \) against \(B \) to the old such odds, i.e.,

\[
(3.3) \quad \beta_p^q(A:B) = \frac{q(A)}{q(B)} \cdot \frac{p(A)}{p(B)}.
\]

When \(q \) comes from \(p \) by conditioning on \(E \), then \(\beta_p^q(A:B) \) is simply the likelihood ratio \(p(E|A)/p(E|B) \).

Exercise. From formula (3.1) it follows that, for all \(i, j \in \{1, \ldots, n\} \),

\[
(3.4) \quad \frac{u_i}{u_j} = \beta_p^q(E_i:E_j).
\]

Interestingly, given a posterior \(q \), the partition \(E \), the parameters \(u_1, \ldots, u_n \), and the fact that \(q \) has come from some probability by JC on \(E \), this information determines a unique prior \(p \) satisfying formula (3.1), namely the probability \(p \) defined for all \(A \in \mathcal{A} \) by

\[
(3.5) \quad p(A) = \frac{\sum_{i=1}^n u_i^{-1}q(A \cap E_i)}{\sum_{i=1}^n u_i^{-1}q(E_i)}.
\]

It is straightforward to check that (3.5) implies (3.1). But there is more work to be done to show that \(p \), as defined by (3.5), is the only prior that yields \(q \) by means of formula (3.1). For this we must show that (3.1) implies (3.5).

From (3.1) and its consequence (3.4),

\[
(3.6) \quad \frac{u_j}{u_i} = \beta_p^q(E_j:E_i) = \frac{q(E_j)p(E_i)}{q(E_i)p(E_j)}, \quad \text{and so}
\]

\[
(3.7) \quad p(E_j) = \frac{u_iq(E_j)p(E_i)}{u_jq(E_i)}, \quad \text{whence}
\]

\[
(3.8) \quad \frac{p(E_j)}{p(E_i)} = \frac{u_iq(E_j)}{u_jq(E_i)}.
\]

Summing each side of (3.8) from \(j = 1 \) to \(j = n \) yields
\[
\frac{1}{p(E_i)} = \sum_{j=1}^{n} \frac{u_j}{q(E_i)} q(E_j) = \sum_{i=1}^{n} u_i q(E_i), \quad \text{whence}
\]
\[
p(E_i) = \left(\sum_{i=1}^{n} u_i q(E_i)^{-1} \right)^{-1},
\]
and substituting the right-hand side of (3.10) for \(p(E_i) \) in (3.7) yields
\[
p(E_j) = \frac{u_j^{-1} q(E_j)}{\sum_{i=1}^{n} u_i^{-1} q(E_i)},
\]
which establishes (3.5) when \(A = E_j \).

But by (3.2), \(p(A \mid E_j) = q(A \mid E_j) \) for all \(A \in \mathbf{A} \) and \(j = 1, ..., n \). So
\[
p(A) = \sum_{j=1}^{n} p(E_j) p(A \mid E_j) = \sum_{j=1}^{n} p(E_j) q(A \mid E_j) = \sum_{j=1}^{n} \frac{u_j^{-1} q(E_j) q(A \mid E_j)}{\sum_{i=1}^{n} u_i^{-1} q(E_i)} = \]
\[
\frac{\sum_{j=1}^{n} u_j^{-1} q(A \cap E_j)}{\sum_{i=1}^{n} u_i^{-1} q(E_i)}.
\]

Remark. Special cases of formula (3.1) occur in Field (1978), where
\[
u_i = G_i := (\prod_{j=1}^{n} \beta_x^p(E_j : E_j))^{
u_u},
\]
and Jeffrey and Hendrickson (1988/89) and Wagner (2002), where
\[
u_i = B_i := \beta^q_p(E_i : E_i).
\]

References

Notes

1. For every finite $\Omega = \{\omega_1, \ldots, \omega_n\}$, and any probabilities p and q on 2^Ω for which $p(\{\omega_i\}) > 0$ and $q(\{\omega_i\}) > 0$ for $i = 1, \ldots, n$, it is (trivially) the case that q comes from p by JC on $E = \{E_1, \ldots, E_n\}$, where $E_i = \{\omega_i\}$ and $e_i = q(\{\omega_i\})$. That is, each positive probability q on 2^Ω comes from every positive probability p on 2^Ω by JC on E. In such cases q obliterates all traces of the prior p from which it came by JC, including any nontrivial information about the conditional probabilities $p(A \mid E_i) = q(A \mid E_i)$, which take only the values zero and one here.