WHEN CAN A PRIOR BE RECOVERED FROM A POSTERIOR?
Carl Wagner
1. Strict Conditioning.

Let A be an algebra of subsets of a set Q of possible states of the world. Suppose that you are
given a finitely additive probability measure (henceforth, “probability”) g on A, and are told that
q has come from some probability p on A by conditioning on the event E. Can you determine p?
Well, yes, if E=Q (in which case, it must be true that p=q), but not if E is a proper subset of

Q. For given the fully specified posterior g, along with E, there exist infinitely many priors that
yield q by conditioning on E. Here’s why: Choose any number v € (0,1] and any w € E°. Define
the probabilities m_ (called the point mass at @) and p, for each AeA by

(1.2) m (A)=1if e A and m_ (A)=0if we¢A, and
(1.2) p, (A) =vq(ANE)+@-v)m, (ANE®).
It is straightforward to check that m_ and p, are indeed probabilities on A. Furthermore,

_Ph.(AnE) _va(AnE)
P, (E)

(1.3) P, (Al E) =q(AnE)=q(A),

since q(E°) =0 and, hence, q(ANE®)=0.
2. Jeffrey Conditioning.

With Q and A as above, suppose that E = {E,,..., E,} is a measurable partition of Q (i.e., a set
of nonempty, pairwise disjoint events in A, with union equal to Q), where n> 2. Suppose that

you are given a probability q on A, and you are told that g has come from some probability p on
A by Jeffrey conditioning (henceforth, “JC”) on E, i.e., that for all A€ A,

@) a(A) = ep(AlE)

for some probability p suchthat p(E;)>0, i=1...,n, witheach ¢ (: q(Ei)) >0, and
e +---+e, =1. Itis easy to check that a formula of type (2.1) holds with the posited conditions if
and only if

(2.2) q(A|E)=p(A|E) forall AcA, andeach i=1..,n.



Condition (2.2) is variously termed the rigidity, sufficiency, and invariance. Can p be recovered
from q, along with knowledge of the values e,,...,e, and the fact that g has come from p by JC

on E ? Again, no. To take a simple illustration, suppose that Q ={1,2,3,4}, A = 2° (the set of
all subsets of Q, E ={1,2} and E, ={3,4}. Let q({1})=1/9, q{2})=2/9,

q({3}) =q({4}) =1/3, extending g to the remaining subsets of Q in the obvious way. We may
construct infinitely many probabilities p, on A, such that g comes from p, by JC on {E,,E,}
with q(E;)=e, =1/3 and q(E,)=e, =2/3. Foreach ve(0,1), let p,{}) =v/3,
p,{2})=2v/3 p,({3})=p,({4})=@0-v)/2. Itis easily checked that each p, has the desired
property.

Exercise. Let g be a probability on an algebra A of subsets of the set Q, and let E =
{E,,..., E.} be a measurable partition of Q, with q(E,) =¢, for i=1,...,n. Let f,..., f beany

sequence of positive real numbers such that f, +---+ f =1. Forall Ae A, let

@3) Py (A =Y. Ta(AIE).

Then g comes from p;, by JC on E, with q(E;) =¢;, i=1,...,n.

3. An Alternative Parameterization of Jeffrey Conditioning.

Let Q, A and E= {E,, ..., E } be as above, and let p be a probability on A such that p(E;)>0
for i=1..,n Letu,...,u, beanysequence of positive real numbers, and consider revising the
prior p to a posterior g by the formula

S Up(ANE)
(3.1) q(A) == ,forall Ae A.

Zui p(E;)

It is straightforward to check that the set function q is indeed a probability on A. Moreover,

initial appearances notwithstanding, formula (3.1) furnishes no new and exotic method of
probability revision. For, forall A€ A,and j=1,...,n,

_ g(An Ej) _ ujp(Am Ej) _

3.2 A|E,
(3.2) q(AlE)) 9(E) 0, p(E)

P(A[E;).



So g simply comes from p by JC on E. But what do the parameters u, represent? Recall that
if g is a revision of the probability p and A and B are events, then the Bayes factor 5] (A:B)
is simply the ratio of the new odds on Aagainst B to the old such odds, i.e.,

_9(A)/q(B)

3.3 9(A:B .
(33) Ay (A:B) p(A)/ p(B)

When g comes from p by conditioning on E, then g7 (A:B) is simply the likelihood ratio
P(EIA)/ p(E|B).

Exercise. From formula (3.1) it follows that, for all i, j e{L,...,n},

(3.4) ;’—‘=ﬁs<Ei 'E,)

Interestingly, given a posterior q, the partition E, the parameters u,,...,u,, and the fact that g
has come from some probability by JC on E, this information determines a unique prior p
satisfying formula (3.1), namely the probability p defined for all A< A by

> ulg(ANE,)
(3.5) p(A) == :
Zu; 'q(E,)

It is straightforward to check that (3.5) implies (3.1). But there is more work to be done to show
that p, as defined by (3.5), is the only prior that yields g by means of formula (3.1). For this we

must show that (3.1) implies (3.5).

From (3.1) and its consequence (3.4),

u a(E;)p(E)
3.6 J_pYE E)=— T and
(36) o P EE = EyeE)
(37) p(EJ) = M , whence

u;q(E,)

P(E;)) _ua(E)
P(E) uja(E)

(3.8)

Summing each side of (3.8) from j=1to j=n yields



1 vy u 46 3ud(E)
(3.9) E) ZaE) n _;Uiq(El) , Whence
(3.10) p(E,) = (Zn: ulq(Ei))—l ,

iz UQ(E,)

and substituting the right-hand side of (3.10) for p(E,) in (3.7) yields

(3.11) p(E,) = —u9E)

> ua(E)
i=1
which establishes (3.5) when A=E;.

Butby (3.2), p(A|E;)=q(A|E;) forall Ae Aand j=1..,n. So

iujlq(E,-)q(AI E) _

(3.12) p(A)=Zn:p(E,-)p(AIEj)=ip(Ej)Q(A|EJ):_
i i1 = ZUF1Q(Ei)

3 ua(ANE,)

> uq(E)

Remark. Special cases of formula (3.1) occur in Field (1978), where
(313) Ui :Gi = (HﬂS(EI . Ej))l/n ,
j=t

and Jeffrey and Hendrickson (1988/89) and Wagner (2002), where
(3.14) U =B = ﬂS(Ei 'E).
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Notes

1. For every finite Q={m,,...,w,}, and any probabilities p and g on 2 for which
p{@}}>0 and g{w}) >0 for i =1,...,n, itis (trivially) the case that g comes from p by JC
onE={E,...,.E}, where E ={w} and e =q({@}). That is, each positive probability q on 2°

comes from every positive probability p on 2° by JC on E. In such cases q obliterates all traces
of the prior p from which it came by JC, including any nontrivial information about the
conditional probabilities p(A|E;)=q(A|E;), which take only the values zero and one here.



