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Abstract. For a Hilbert space H of functions let H �H be the
space of weak products of functions in H, i.e. all functions h
that can be written as h =

∑∞
i=1 figi for some fi, gi ∈ H with∑∞

i=1 ‖fi‖‖gi‖ <∞. Let D denote the Dirichlet space of the unit
circle ∂D, i.e. the nontangential limits of functions f ∈ Hol(D)
with

∫
D |f

′|2dA < ∞ and let Dh be the harmonic Dirichlet space,
which consists of functions of the form f + g for f, g ∈ D.

In this paper we show that every real-valued function in Dh�Dh

is a single product of two functions in Dh and that the Cauchy
projection is a bounded operator from Dh � Dh onto D � D. It
follows that D�D consists exactly of the H1-functions whose real
and imaginary parts are single products of Dh-functions. The dual
space of D � D was characterized by Arcozzi, Rochberg, Sawyer
and Wick in [ARSW10] and the result implies the characterization
of the dual of Dh � Dh. We will show that the characterization
of the dual of Dh � Dh also follows from results of Mazya and
Verbitsky, [MV02]. Thus, we will establish a precise connection
between the results of [ARSW10] and [MV02].

We also prove some general results about weak product spaces
of analytic functions. For example, we show that H�H ⊆ H(k2),
where H(k2) is the space of analytic functions whose reproducing
kernel is the square of the reproducing kernel of H. Furthermore,
we will show that some of the above mentioned results for the
Dirichlet space D hold for the superharmonically weighted Dirich-
let spaces D(µ).
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1. Introduction

Let d ≥ 1, Ω ⊆ Cd be an open, connected, and nonempty set, and
let H ⊆ Hol(Ω) be a reproducing kernel Hilbert space.

That means that H consists entirely of analytic functions on Ω and
for each z ∈ Ω there is a kz ∈ H such that f(z) = 〈f, kz〉 for each
f ∈ H. The weak product of H is denoted by H�H and it is defined
to be the collection of all functions h ∈ Hol(Ω) such that there are
sequences {fi}i≥1, {gi}i≥1 ⊆ H with

∑∞
i=1 ‖fi‖‖gi‖ < ∞ and h(z) =∑∞

i=1 fi(z)gi(z) for all z ∈ Ω. Note that whenever
∑∞

i=1 ‖fi‖‖gi‖ <∞,
then

∞∑
i=1

|fi(z)||gi(z)| ≤ ‖kz‖2

∞∑
i=1

‖fi‖‖gi‖ <∞,

thus the series will converge locally uniformly to the analytic function
h.

We define a norm on H�H by

‖h‖∗ = inf{
∞∑
i=1

‖fi‖‖gi‖ : h(z) =
∞∑
i=1

fi(z)gi(z) for all z ∈ Ω}.

It is easy to see that H � H is a Banach space of analytic functions
on Ω such that point evaluations are continuous. We have included a
proof of the completeness in the next section. From the remark in the
previous paragraph it follows that

|h(z)| ≤ ‖kz‖2‖h‖∗ for all h ∈ H �H, z ∈ Ω.

Weak products first appeared in a paper by Coifman, Rochberg and
Weiss [CRW76]. They arise in connection with Hankel operators and
they have been used in an intermediate step in the proof of the H1-
BMO and the L1

a-Bergman-Bloch space duality. The paper [ARSW10]
(p. 22-24) contains an excellent motivation for the study of weak prod-
ucts and a summary of results about such spaces, also see [ARSW11].
Here we just mention that if H is the Hardy space H2 of the unit disc
D, then it follows from the Riesz factorization that H2�H2 = H1 with
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equality of norms, and in fact every h ∈ H2�H2 can be written as a sin-
gle product of functions in H2. Furthermore the paper [ARSW11] con-
tains a number of results about D�D, where D is the Dirichlet space
of the disc consisting of analytic functions f such that

∫
D |f

′|2 dA
π
<∞.

However, currently no simple description of which functions belong to
D � D is available. In particular, it appears to be unknown whether
each function in D � D can be written as a single product of two
Dirichlet functions.

As alluded to earlier the weak product spaces were introduced, be-
cause in many cases there is a simple way to express the dual space
as another space of analytic functions (see e.g. Theorem 1.3 below).
For the definition that will make the connection we need to require an-
other property of H. We write Hol(Ω) for the algebra of all functions
f on Ω such that f extends to be analytic in a neighborhood of Ω. If
H ⊆ Hol(Ω) is a reproducing kernel Hilbert space such that Hol(Ω)
is densely contained in H, then we define

X (H) = {b ∈ H : ∃C > 0 |〈ϕψ, b〉| ≤ C‖ϕ‖‖ψ‖ ∀ ϕ, ψ ∈ Hol(Ω)}

and for b ∈ X (H) write ‖b‖X for the infimum of all C > 0 such that
|〈ϕψ, b〉| ≤ C‖ϕ‖‖ψ‖ for all ϕ, ψ ∈ Hol(Ω). It is easy to see that
(X (H), ‖ · ‖X ) is a Banach space. Again we have provided some details
in Section 2.

It is clear that for each b ∈ X (H) the rule Hb(ϕ, ψ) = 〈ϕψ, b〉, ϕ, ψ ∈
Hol(Ω) extends to be a bounded bilinear form on H⊕H. This bilinear

form defines a bounded operator Hb, the Hankel operator with symbol
b. Thus, X (H) is the space of symbols for the Hankel operators on H.

It was a basic observation of Coifman, Rochberg, and Weiss ( [CRW76])
that in many cases one can identify X (H) with the dual space ofH�H.
For a vector subspace L ⊆ H let

L�̂L = {
n∑
i=1

figi, n ∈ N, f1, ..., fn, g1, ..., gn ∈ L}

be the set of finite sums of products of elements in L and define a norm
on L�̂L by

‖h‖•L = inf{
n∑
i=1

‖fi‖‖gi‖ : h =
n∑
i=1

figi, fi, gi ∈ L}.

Clearly L�̂L ⊆ H�̂H ⊆ H � H and ‖h‖∗ ≤ ‖h‖•H ≤ ‖h‖•L for
every h ∈ L�̂L. It is easy to see that L�̂L is dense in H � H with
respect to the norm ‖ · ‖∗ (see Lemma 2.3). We use (L�̂L)• to denote
the completion of L�̂L with respect to the norm ‖ · ‖•L. The above
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inequality implies that the inclusion of L�̂L into H�H extends to be
a contraction UL : (L�̂L)• → H�H.

Theorem 1.1. Let L ⊆ H be a dense vector subspace. Then UL is
onto and the induced map ŨL : (L�̂L)•/ kerUL → H�H is isometric.

It follows that ‖ϕ‖∗ = ‖ϕ‖•L for all ϕ ∈ L�̂L, if and only if UL
is 1-1. Although we know of no examples where the two norms are
actually different, we can show that the embedding of L�̂L into H�H
is isometric only under some extra hypothesis on H. In fact, in the
literature the definition of the space H�H is often taken to be what
we call (H�̂H)• (thus following the definition of the projective tensor
product). It is not clear that this space is injectively embedded in the
holomorphic functions.

We will address this issue in further detail in Section 2, and it turns
out that for the Dirichlet space and many other spaces on the unit disc
or unit ball of Cd the spaces (H�̂H)• and H�H can be identified.

For d ≥ 1 let Bd denote the open unit ball in Cd, and for 0 ≤ r < 1,
f ∈ H, and z ∈ Bd let fr(z) = f(rz).

Theorem 1.2. Let H ⊆ Hol(Bd) be a reproducing kernel Hilbert space
such that

(1.1) H contains Hol(Bd),
(1.2) if fn, f ∈ Hol(Bd) such that fn → f uniformly in some open

neighborhood of Bd, then fn → f in H,
(1.3) there is c > 0 such that, if 0 < r < 1 and if f ∈ H, then

fr ∈ H and ‖fr‖ ≤ c‖f‖.
Then Hol(Bd) is dense in H and

‖ϕ‖∗ = ‖ϕ‖•H = ‖ϕ‖•L = inf{
n∑
i=1

‖ϕi‖‖ψi‖ : ϕ =
n∑
i=1

ϕiψi, ϕi, ψi ∈ L}

for all ϕ ∈ L = Hol(Bd).

We note that (1.2) actually follows from (1.1) and the closed graph
theorem, we included it for clarity. One of the reasons we are interested
in the previous theorem is because it leads to the identification of X (H)
with the the dual of H�H.

Theorem 1.3. Let Hol(Ω) be dense in H, and suppose there is a
linear subspace L ⊆ Hol(Ω) which is dense in H and which satisfies
‖ϕ‖∗ = ‖ϕ‖•L for all ϕ ∈ L�̂L. Then (H�H)∗ = X (H).

This means if for b ∈ X (H) we define Lb on H by

Lb(h) = 〈h, b〉,
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then Lb extends to be bounded on H � H, and the map b → Lb is a
conjugate linear isometric isomorphism of X (H) onto (H�H)∗.

In [ARSW10], Corollary 1.2, the isomorphism between X (D) and
(D�̂D)• is shown, and their argument easily also establishes Theorem
1.3. We have repeated the short proof in Section 2, because of the
distinction between the two norms.

Of course, the representation for the dual space (respectively, the
space of Hankel symbols) as in Theorem 1.3 is most useful, if there is a
more explicit characterization of the space X (H). In many cases such a
result is known, in particular forH = H2, X (H) consists of the BMOA-
functions [Fef71] and for H = L2

a, X (H) is the Bloch space [CRW76].
It is notable that in both cases X (H) can be described by a Carleson
measure condition. Furthermore, the main result of [ARSW10] is that
for H = D, the Dirichlet space of the disc, one has

X (D) = {b ∈ D : |b′|2dA is a Carleson measure for D}.
Recall that a positive Borel measure µ on Ω is a Carleson measure for
the space H of holomorphic functions on Ω, if∫

Ω

|f |2dµ ≤ C‖f‖2 for all f ∈ H.

We also mention that the paper [ARSW11] contains a number of further
results about D �D and X (D).

In Section 3 we will prove the following theorem.

Theorem 1.4. If H = H(k) ⊆ Hol(Ω) has reproducing kernel k, then

H�H ⊆ H(k2)

with ‖h‖H(k2) ≤ ‖h‖∗ for all h ∈ H �H.

For H = H2 the inclusion H1 ⊆ L2
a was known, but we obtain the

best constant for the inclusion. The result appears new for H = D.
We refer to Section 3 for detailed comments.

Starting with Section 4 we will restrict our attention to weighted
Dirichlet spaces. For a non-negative superharmonic function w on the
unit disc D we consider spaces of the form

H = {f ∈ Hol(D) :

∫
D
|f ′(z)|2w(z)dA(z) <∞}.(1.4)

By the representation theorem for superharmonic functions (see [Lan72],
page 109) such non-negative superharmonic weights w can be repre-
sented by use of some measure µ on the closed unit disc, and one can
represent the norm on the space directly in terms of the measure µ.
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One obtains ‖f‖2 = ‖f‖2
L2(T) +

∫
|z|≤1

Dz(f)dµ(z), where Dz(f) denotes

the local Dirichlet integral of f (see Section 4 or [Ale93]). Thus we will
write H = D(µ) (see [Ale93]).

The results of Sections 2 and 3 apply to this setting. Based on the
above mentioned results for Hardy-, Bergman-, and unweighted Dirich-
let spaces one expects that the Carleson measures for these spaces will
play a role in the theory. Furthermore, some of the known charac-
terizations of Carleson measures involve capacities which can be de-
fined by considering the corresponding spaces of harmonic functions
Dh(µ) = {f + g : f, g ∈ D(µ), g(0) = 0}, ‖f + g‖2 = ‖f‖2 + ‖g‖2,
see [Cha11].

Theorem 1.5. If µ is a measure on the closed unit disc.
Then every real-valued function h ∈ Dh(µ)�Dh(µ) is a single product

of the type h = uv, where u, v ∈ Dh(µ) are real-valued functions with
u ≥ 0.

In fact, if h ∈ L1(T) is real-valued, then h ∈ Dh(µ)�Dh(µ), if and
only if h+, h− ∈ Dh(µ) � Dh(µ), where h+(eit) = max(h(eit), 0) and
h−(eit) = −min(h(eit), 0).

Furthermore, if Dh(µ) is compactly contained in L2(∂D), then for
every real-valued function h ∈ Dh(µ) � Dh(µ) there is a pair u0, v0 ∈
Dh(µ) with h = u0v0, u0 ≥ 0, |v0| ≤ u0, ‖u0‖ = ‖v0‖, and

‖u0‖‖v0‖ = inf{
∑
i≥1

‖fi‖‖gi‖ : fi, gi ∈ Dh(µ), h =
∑
i≥1

figi}.

See Theorem 4.3 for more information about the norm minimizing
pair u0, v0. As a corollary we obtain that the capacity (and hence the
class of exceptional sets) for the space Dh(µ)�Dh(µ) equal the capacity
for the space Dh(µ). We will give the details in Section 5.

Of course, Theorem 1.5 implies that every h ∈ D(µ)�D(µ) is of the
form h = u1v1+iu2v2 for some real-valued uj, vj ∈ Dh(µ), j = 1, 2. This
raises the question what exactly the real parts of D(µ)�D(µ)-functions
are. For example, if µ = 0, then D(µ) = H2 and Dh(µ) = L2(T),
Dh(µ)�Dh(µ) = L1(T), D(µ)�D(µ) = H1, and it is well-known that
not every real-valued L1-function is the real part of an H1-function. In
contrast to this we will show that for the Dirichlet space D no further
restriction is necessary. That follows from the following theorem.

Theorem 1.6. The Cauchy projection is a bounded linear operator
from Dh �Dh onto D �D.

From this it easily follows that the real and imaginary parts of D�D-
functions are exactly the single products of functions in the harmonic
Dirichlet space Dh. We will prove this result in Section 6.
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In Section 7 we establish a precise connection between the results
of [ARSW10] and [MV02] and thus give an answer to a question posed
in [ARSW10].

Section 8 contains some examples that illustrate the difficulties in
deciding whether every D�D-function is a single product of two func-
tions in D.

In various arguments of this paper we will use the notion of a multi-
plier of a space of functions. Thus recall that a function ϕ is a multiplier
for H if ϕf ∈ H whenever f ∈ H. We write M(H) for the set of all
multipliers of H and ‖ϕ‖M = ‖Mϕ‖B(H) for the multiplier norm.

We would like to thank Alexandru Aleman for help with the proof
of Lemma 2.5.

2. The general theory

Lemma 2.1. If H ⊆ Hol(Ω) is a reproducing kernel Hilbert space, then
(H�H, ‖ · ‖∗) is a Banach space of analytic functions such that point
evaluations at points of Ω are continuous.

Proof. We only show the completeness, everything else is elementary.
In particular, we note that |h(z)| ≤ ‖h‖∗‖kz‖2 for all h ∈ H�H, hence
convergence in H�H implies local uniform convergence in Ω.

Let {hn} be a Cauchy sequence in H�H.
We may choose a subsequence hnk such that ‖hnk − hnk+1

‖∗ ≤ 2−k

for each k ≥ 1. Thus for each k there are sequences {fk,i}, {gk,i} ⊆ H
such that hnk − hnk+1

=
∑∞

i=1 fk,igk,i and
∑∞

i=1 ‖fk,i‖‖gk,i‖ ≤ 2 · 2−k.
Then the function

h := hn1 −
∑
k≥1

(hnk − hnk+1
) = hn1 −

∑
k≥1

∞∑
i=1

fk,igk,i ∈ H �H

For j ≥ 1 we have h− hnj = −
∑

k≥j
∑∞

i=1 fk,igk,i and hence

‖h− hnj‖∗ ≤
∑
k≥j

∞∑
i=1

‖fk,i‖‖gk,i‖ ≤ 4 · 2−j.

This implies

‖h− hn‖∗ ≤ ‖h− hnj‖∗ + ‖hnj − hn‖∗ → 0

since {hn} is a Cauchy sequence. �

Lemma 2.2. If H ⊆ Hol(Ω) is a reproducing kernel Hilbert space, and
if Hol(Ω) is a dense subset of H, then X (H) is a Banach space of
analytic functions on Ω such that

|b(z)| ≤ ‖1‖‖kz‖‖b‖X for all b ∈ X (H), z ∈ Ω.
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Proof. The inequality is clear since Hol(Ω) is dense in H and 1 ∈
Hol(Ω) ⊆ H. In order to show the completeness we first note that
‖b‖2 = 〈1 · b, b〉 ≤ ‖1‖‖b‖‖b‖X , hence ‖b‖ ≤ ‖1‖‖b‖X . Let {bn} be a
Cauchy sequence in X (H). Then {bn} is a Cauchy sequence in H and
converges to some b ∈ H. As in the previous proof we may choose a
subsequence bnk such that ‖bnk − bnk+1

‖X ≤ 2−k for each k ≥ 1. Then
for each k ≥ 1 we have b − bnk =

∑∞
j=k bnj+1

− bnj , where the sum

converges in H. Thus for ϕ, ψ ∈ Hol(Ω) we have

|〈ϕψ, b− bnk〉| ≤
∞∑
j=k

|〈ϕψ, bnj+1
− bnj〉|

≤
∞∑
j=k

‖ϕ‖‖ψ‖‖bnj+1
− bnj‖X

≤ 2 · 2−k‖ϕ‖‖ψ‖.

Thus b ∈ X (H) and ‖b − bnk‖X ≤ 2 · 2−k. It now follows easily that
bn → b in X (H). �

Lemma 2.3. If L ⊆ H is a dense vector subspace, if h ∈ H �H, and
if ε > 0, then there are fi, gi ∈ L such that

∑∞
i=1 ‖fi‖‖gi‖ < ‖h‖∗ + ε

and h =
∑∞

i=1 figi.
In particular, L�̂L is dense in H�H in the ‖ · ‖∗-norm and

‖h‖∗ = inf{
∞∑
i=1

‖fi‖‖gi‖ : h =
∞∑
i=1

figi, fi, gi ∈ L}.

for every h ∈ H �H.

Proof. First note that if f ∈ H and δ > 0, then there is a sequence un
in L such that un → f in H and ‖un − un+1‖ < 2−n. Then for all N
we have f = uN +

∑∞
n=N(un+1 − un) where the sum converges in H.

For sufficiently large N we have ‖uN‖+
∑∞

n=N ‖un+1− un‖ ≤ ‖f‖+ δ.
Thus, f =

∑∞
j=1 fj, fj ∈ L and

∑∞
j=1 ‖fj‖ < ‖f‖+ δ.

Now let h ∈ H �H and ε > 0. Then there are fi, gi ∈ H such that
h =

∑∞
i=1 figi and

∑∞
i=1 ‖fi‖‖gi‖ < ‖h‖∗ + ε/2. Choose a sequence

δi > 0 with
∑∞

i=1 δi(‖fi‖ + ‖gi| + δi) < ε/2. It is easy to see that this
can be done. By the first part of the proof for each i there are sequences
fij, gij in L such that

∑∞
j=1 ‖fij‖ < ‖fi‖+δi and

∑∞
j=1 ‖gij‖ < ‖gi‖+δj.
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Then
∞∑
i=1

∞∑
j,k=1

‖fij‖‖gik‖ ≤
∞∑
i=1

(‖fi‖+ δi)(‖gi‖+ δi)

≤ ‖h‖∗ + ε

and h =
∑∞

i=1

∑∞
j,k=1 fijgik is of the required form.

The density of L�̂L in H �H follows, because the partial sums of
any representation of h converge in ‖ · ‖∗. �

Proof of Theorem 1.1. Let h ∈ H �H and let ε > 0.
Then by Lemma 2.3 there are {fi}, {gi} ⊆ L with

∑∞
i=1 ‖fi‖‖gi‖ <

‖h‖∗ + ε and h(z) =
∑∞

i=1 fi(z)gi(z) for all z ∈ Bd.
Set hn =

∑n
i=1 figi, then {hn} ⊆ L�̂L is a Cauchy sequence in ‖·‖•L

and hence there is a h0 ∈ (L�̂L)• such that ‖hn − h0‖•L → 0. Then
ULhn → ULh0 in H�H and hn(z) = ULhn(z)→ ULh0(z) for all z ∈ Ω.
This implies ULh0 = h, so that UL is onto.

We also see that

‖h‖∗ = ‖ULh0‖∗ ≤ ‖h0‖•L
= lim

n→∞
‖hn‖•L

≤ lim
n→∞

n∑
i=1

‖fi‖‖gi‖

≤ ‖h‖∗ + ε.

Since ε > 0 was arbitrary, this implies that the induced map ŨL :
(L�̂L)•/ kerUL → H�H is isometric. �

Next we turn to the proof of Theorem 1.2. The following lemma is
elementary.

Lemma 2.4. If H satisfies conditions (1.1)-(1.3) of Theorem 1.2, then
Hol(Bd) is dense in H and for every f ∈ H we have ‖fr − f‖ → 0 as
r → 1.

Proof. Condition (1.3) easily implies that for all f ∈ H we have fr → f
at least weakly. Thus Hol(Bd) is dense in H.

Now let f ∈ H and ε > 0. By the above we may choose g ∈ Hol(Bd)
such that ‖f − g‖ < ε. Then

‖fr − f‖ ≤ ‖fr − gr‖+ ‖gr − g‖+ ‖g − f‖
≤ (1 + c)ε+ ‖gr − g‖
≤ (2 + c)ε
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for all sufficiently large r < 1 (by condition (1.2)). �

The following lemma is the key for the proof of Theorem 1.2.

Lemma 2.5. Let L = Hol(Bd) and suppose that H satisfies (1.1)-
(1.3). If {hn} ⊆ L�̂L is a Cauchy sequence in the norm ‖ · ‖•L, and if
hn(z)→ 0 for all z ∈ Bd, then ‖hn‖•L → 0.

Proof. For 0 ≤ r < 1 define Tr on L�̂L by Trh = hr, hr(z) = h(rz).
Then the definition and hypothesis implies that for h =

∑n
i=1 figi,

fi, gi ∈ L, we have

‖Trh‖•L ≤
n∑
i=1

‖fi,r‖‖gi,r‖ ≤ c2

n∑
i=1

‖fi‖‖gi‖.

Thus ‖Trh‖•L ≤ c2‖h‖•L for every h ∈ L�̂L. Hence it follows that for
each r, 0 ≤ r < 1, Tr extends to be bounded on (L�̂L)• with norm
≤ c2. Lemma 2.4 and the inequality ‖g‖•L ≤ ‖1‖‖g‖ for g ∈ L = L�̂L
implies that

‖Trf − f‖•L ≤ ‖1‖‖Trf − f‖,
hence Trf → f on the dense set L�̂L ⊆ (L�̂L)•, hence Trh → h in
‖ · ‖•L for every h ∈ (L�̂L)•.

Since {hn} is a Cauchy sequence in ‖ · ‖•L there is an h ∈ (L�̂L)•
such that ‖hn − h‖•L → 0. We need to show that h = 0 as an element
of (L�̂L)• and we know that hn(z)→ 0 for all z ∈ Bd. Since Trh→ h
it will be enough to show that Trh = 0 for every 0 ≤ r < 1. But for
each r < 1 and n ∈ N we have

‖Trh‖•L ≤ ‖Tr(h− hn)‖•L + ‖Trhn‖•L
≤ c2‖h− hn‖•L + ‖1‖‖hn,r‖.

The hypothesis implies that hn converges to 0 locally uniformly in Bd.
This implies that hn,r → 0 uniformly in a neighborhood of Bd. Hence
it follows from condition (1.2) that ‖hn,r‖ → 0. Since we also have
‖h− hn‖•L → 0 it follows that Trh = 0. �

Proof of Theorem 1.2. By Theorem 1.1 we have to show that UL is 1-1,
and this follows easily from the previous lemma. Indeed, if h ∈ (L�̂L)•
with Uh = 0, then there is a sequence hn ∈ L�̂L such that hn → h
in ‖ · ‖•L. Then hn(z) = Uhn(z) → Uh(z) = 0 for each z ∈ Bd, hence
Lemma 2.5 implies that ‖hn‖•L → 0. This means h = 0. �
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Proof of Theorem 1.3. Let b ∈ X (H) and let h ∈ L�̂L ⊆ H. Then
h =

∑n
i=1 figi for some f1, ..., fn, g1, ..., gn ∈ L and

| Lb(h)| = |〈
n∑
i=1

figi, b〉|

≤
n∑
i=1

|〈figi, b〉|

≤
n∑
i=1

‖b‖X‖fi‖‖gi‖.

This implies |Lb(h)| ≤ ‖b‖X‖h‖•L = ‖b‖X‖h‖∗ for every h ∈ L�̂L. By
Lemma 2.3 it follows that Lb extends to be bounded on H � H with
‖Lb‖ ≤ ‖b‖X .

If L ∈ (H�H)∗, then for f ∈ H we have

|L(f)| ≤ ‖L‖‖f‖∗ ≤ ‖L‖‖f‖‖1‖

since f = 1 · f . Thus there is a b ∈ H such that L(f) = 〈f, b〉 = Lb(f)
for all f ∈ H. Furthermore, if ϕ, ψ ∈ Hol(Ω), then

|〈ϕψ, b〉| = |L(ϕψ)| ≤ ‖L‖‖ϕψ‖∗ ≤ ‖L‖‖ϕ‖‖ψ‖.

Hence ‖b‖X ≤ ‖L‖ = ‖Lb‖. �

3. Inclusion of H�H into a Hilbert space

Theorem 3.1. If H = H(k) ⊆ Hol(Ω) has reproducing kernel k, then

H�H ⊆ H(k2)

with ‖h‖H(k2) ≤ ‖h‖∗ for all h ∈ H �H.

Notice that for each z ∈ Ω we have ‖k2
z‖H(k2) = kz(z) = ‖kz‖2 ≥

‖k2
z‖∗ ≥ ‖k2

z‖H(k2) and hence it follows that the norm of the inclusion
equals one.

Proof. Let f, g ∈ H. We will begin by showing that fg ∈ H(k2) and
‖fg‖H(k2) ≤ ‖f‖‖g‖. The statement is clearly true if either f = 0 or
g = 0, thus we may assume that ‖f‖ = ‖g‖ = 1.

It is well-known that if uλ(z) and vλ(z) are reproducing kernels for
Hilbert spacesH(u) andH(v), thenH(u) ⊆ H(v) with ‖h‖v ≤ ‖h‖u for
all h ∈ H(u) if and only if vλ(z)−uλ(z) is a positive definite kernel (see

[Aro50]). If we apply this with uλ(z) = h(λ)h(z) we see that h ∈ H(v)

with ‖h‖v ≤ 1 if and only if vλ(z)− h(λ)h(z) is positive definite. Thus
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our hypothesis implies that kλ(z)− f(λ)f(z) and kλ(z)− g(λ)g(z) are
positive definite and we must show that

k2
λ(z)−f(λ)g(λ)f(z)g(z)

= kλ(z)
(
kλ(z)− f(λ)f(z)

)
+ f(λ)f(z)

(
kλ(z)− g(λ)g(z)

)
is positive definite. This follows immediately from the Schur product
Theorem and the obvious fact that the sum of positive definite kernels
is positive definite.

If h ∈ H�̂H, then h =
∑n

i=1 figi for some f1, .., fn, g1, .., gn ∈ H. By
the above and the fact that H(k2) is a normed vector space we have
h ∈ H(k2) with

‖h‖H(k2) ≤
n∑
i=1

‖figi‖H(k2) ≤
n∑
i=1

‖fi‖‖gi‖.

This implies ‖h‖H(k2) ≤ ‖h‖•H for all h ∈ H�̂H.
Now let h ∈ H � H, and let fi, gi ∈ H such that h =

∑∞
i=1 figi.

We set hn =
∑n

i=1 figi, then hn → h in H � H and hn is a Cauchy
sequence in ‖ · ‖•H. By what we have shown it follows that hn is a
Cauchy sequence in H(k2). Since convergence in norm implies local
uniform convergence in both H�H and H(k2) we see that hn → h in
H(k2), and

‖h‖H(k2) = lim
n→∞

‖hn‖H(k2) ≤ lim sup
n→∞

‖hn‖•H ≤
∞∑
i=1

‖fi‖‖gi‖.

The result follows by taking the infimum of the right hand side over
such representations of h. �

By taking H = H2, kλ(z) = 1
1−λz we recover the known fact that

H1 ⊆ L2
a. We learned this fact from [BS84], p. 275, where it is

attributed to Harold Shapiro, and where the proof uses the Hardy-
Littlewood-Fejer inequality and only gives the inequality ‖f‖L2

a
≤
√
π‖f‖H1 .

If H = D, the Dirichlet space, then kλ(z) =
∑∞

n=0
1

n+1
λ
n
zn. One

calculates k2
λ(z) =

∑∞
n=0

an
n+2

λ
n
zn, where

an =
n∑
k=0

n+ 2

(k + 1)(n− k + 1)
=

n∑
k=0

1

k + 1
+

1

n− k + 1

=
n∑
k=0

2

k + 1
∼ log(n+ 2).
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It follows that there is a c > 0 such that if h(λ) =
∑∞

n=0 ĥ(n)λn ∈
D �D, then

∞∑
n=0

n+ 1

log(n+ 2)
|ĥ(n)|2 ≤ c‖h‖2

∗.(3.1)

In particular, this implies that D �D ⊆ Dα for all α < 1. Shuaibing
Luo has pointed out to us that the inequality (3.1) can be seen to
be equivalent to a result of Brown and Shields, [BS84], p. 299. In
fact, the Brown-Shields result is dual to (3.1). They prove that if

b(z) =
∑

n b̂(n)zn and if
∑

n(n+1) log (n+ 2)|b̂(n)|2 <∞, then |b′|2dA
is a Carleson measure for D, and hence b ∈ X (D). Also see [ARSW11],
Theorem 4, condition 2(b).

4. Weighted Harmonic Dirichlet spaces

In this section and the next we will discuss weighted Dirichlet spaces
with superharmonic weights, i.e. we will be interested in the case where

H = {f ∈ Hol(D) :

∫
D

|f ′(z)|2w(z)dA(z) <∞}

for some non-negative superharmonic function w. By the work of
[RS91] and [Ale93] one knows that every such space is of the form
H = D(µ), where µ is a non-negative measure on the closed unit disc
and

D(µ) = {f ∈ H2(D) :

∫
D

Dλ(f)dµ(λ) <∞},

with Dλ(f) = the local Dirichlet integral of f at λ ∈ D which will
be defined below. For the study of boundary behaviour and Carleson
measures it is useful to also consider the corresponding spaces of har-
monic functions Dh(µ) which consist of functions of the form f+g with
f, g ∈ D(µ).

If f ∈ L1(∂D) and λ ∈ D we write f(λ) =
∫
∂D

1−|λ|2
|w−λ|2f(w) |dw|

2π
for the

Poisson integral of f and define

Dλ(f) =

∫
w∈∂D

∣∣∣∣f(w)− f(λ)

w − λ

∣∣∣∣2 |dw|2π
.

Clearly Dλ(f) <∞ if and only if f ∈ L2(∂D).
If λ = z ∈ ∂D we need a little preparation to define Dz(f). Let

α ∈ C, then for w ∈ ∂D we have

|f(w)|2 ≤ 2(|f(w)− α|2 + |α|2) ≤ 8

∣∣∣∣f(w)− α
w − z

∣∣∣∣2 + 2|α|2.
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Thus, if
∫
|w|=1

∣∣∣f(w)−α
w−z

∣∣∣2 |dw|2π
< ∞, then f ∈ L2(∂D) and one checks

that the Poisson extension of f has nontangential limit f(z) = α at z,
see [RS91]. Thus we can define the local Dirichlet intgral of f at z by

Dz(f) =

∫
|w|=1

∣∣∣∣f(w)− f(z)

w − z

∣∣∣∣2 |dw|2π
,

if f has a nontangential limit f(z) at z and Dz(f) =∞ otherwise. We
remark for clarity that we will always assume that for any f ∈ L1(∂D)
the quantity f(z) denotes the nontangential limit of f at z for any
point z ∈ ∂D where this limit exists.

Lemma 4.1. If f, g ∈ H2 and |λ| ≤ 1, then Dλ(f+g) = Dλ(f)+Dλ(g).

Proof. We will first do the case λ = 1. Set h = f + g.
If D1(f) <∞ and D1(g) <∞, then both f and g have nontangential

limits at 1 and so does h with h(1) = f(1)+g(1). Furthermore, f(w)−f(1)
w−1

and g(w)−g(1)
w−1

are in H2. Thus the identity easily follows from

h(w)− h(1)

w − 1
=
f(w)− f(1)

w − 1
− wg(w)− g(1)

w − 1
.(4.1)

Now suppose the L2-function h has nontangential limit h(1) at 1 and

D1(h) =

∫
|w|=1

∣∣∣∣h(w)− h(1)

w − 1

∣∣∣∣2 |dw|2π
<∞.

Then h(w)−h(1)
w−1

= u(w) + v(w) for some u, v ∈ H2. This implies

h(w) = h(1) + (w − 1)(u(w) + v(0)) + (1− w)
v(w)− v(0)

w
.

Next let λ ∈ D, substitute h = f + g, and take the L2 inner product
with (1−λw)−1. Thus f(λ)+g(0) = h(1)+(λ−1)(u(λ)+v(0))+v′(0),

and it follows that f has nontangential limit f(1) = h(1) + v′(0)− g(0)
at 1 and D1(f) = ‖u‖2

H2 <∞.
Similarly D1(g) < ∞, and the result follows from the first part of

the proof.
For general |λ| = 1 the lemma now follows by a rotation, and for

|λ| < 1 the result easily follows from an identity analogous to (4.1). �

This enables us to use many of the results from [RS92] and [RS91].
For example, we have Dz(f) = nt-limλ→zDλ(f) for all f ∈ L2(∂D) and
all z ∈ ∂D. For later reference we also note that Dλ(f) = Dλ(u) +
Dλ(v), whenever f = u + iv for real-valued functions u and v. This is
elementary since |f(z)− f(λ)|2 = |u(z)− u(λ)|2 + |v(z)− v(λ)|2.
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Lemma 4.2. Let {fi} ⊆ L2(∂D) with
∑

i≥1 ‖fi‖2
L2 <∞ and define

f =

√∑
i

|fi|2.

Then f ∈ L2(∂D) and for every λ ∈ D we have Dλ(f) ≤
∑

iDλ(fi).

Note that it is a consequence of this that for any f ∈ L2 we have
Dλ(|f |) ≤ Dλ(f).

Proof. It is clear that f ∈ L2(∂D), thus we only need to prove the
inequality. We assume that

∑
iDλ(fi) <∞.

Note that∫
∂D
|f(w)|2 |dw|

2π
=

∫
∂D

∑
i

|fi(w)|2 |dw|
2π

=
∑
i

‖fi‖2
L2 <∞.

Hence the hypothesis implies that S = {w ∈ ∂D :
∑

i≥1 |fi(w)|2 <
∞} has full measure in ∂D. For w ∈ S define the sequence F (w) =
{fi(w)}i≥1 so that f(w) = ‖F (w)‖l2 <∞ for all w ∈ S.

We first do the case λ = z ∈ ∂D. For any g ∈ L2 with Dz(g) < ∞
we have

|g(z)|2 ≤ 2(|g(z)− g(w)|2 + |g(w)|2) ≤ 2(4Dz(g) + ‖g‖2
L2).

Thus
∑

iDz(fi) <∞ implies that z ∈ S.
For w ∈ S the reverse triangle inequality

|‖F (z)‖l2 − ‖F (w)‖l2| ≤ ‖F (z)− F (w)‖l2
implies ∣∣∣∣f(z)− f(w)

z − w

∣∣∣∣2 ≤∑
i

∣∣∣∣fi(z)− fi(w)

z − w

∣∣∣∣2 .
Thus the result follows in the case λ = z ∈ ∂D.

Now let |λ| < 1. A short calculation shows that for any g ∈ L2

Dλ(g) =
1

1− |λ|2

(∫
Pλ(w)|g(w)|2 |dw|

2π
− |g(λ)|2

)
.

Note that

‖
∫
Pλ(w)F (w)

|dw|
2π
‖l2 ≤

∫
Pλ(w)‖F (w)‖l2

|dw|
2π

and this implies that ∑
i≥1

|fi(λ)|2 ≤ |f(λ)|2.

Thus
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∫
Pλ(w)|f(w)|2 |dw|

2π
−|f(λ)|2 ≤

∑
i≥1

(∫
Pλ(w)|fi(w)|2 |dw|

2π
− |fi(λ)|2

)
.

The result follows. In fact, the boundary result follows from the |λ| < 1
result by taking nontangential limits. �

If µ is a finite nonnegative measure supported in D, then we see that

Dh(µ) = {f ∈ L2 :

∫
D
Dλ(f)dµ <∞}.

The norm on Dh(µ) is

‖f‖2
µ = ‖f‖2

L2 +

∫
D
Dλ(f)dµ.

Generally we will think of f ∈ Dh(µ) ⊆ L2(∂D) as a function defined
on ∂D. Such a function f has a harmonic extension inside D given
by the Poisson integral P [f ](λ). When we write expressions like fg
for f, g ∈ Dh(µ), then we are multiplying boundary values, which of
course generally may satisfy P [fg](λ) 6= P [f ](λ)P [g](λ). Later we will
explain that in the case of the classical Dirichlet space this difference
is not significant for our purposes (see the remark after Theorem 7.2).

We now define the corresponding weak product space. Since ‖f‖L2 ≤
‖f‖µ we note that h =

∑
i≥1 figi converges in L1, whenever∑
i≥1

‖fi‖µ‖gi‖µ <∞.

Thus we set

Dh(µ)�Dh(µ) = {
∑
i≥1

figi : fi, gi ∈ Dh(µ) with
∑
i≥1

‖fi‖µ‖gi‖µ <∞},

with norm

‖h‖1,µ = inf{
∑
i≥1

‖fi‖µ‖gi‖µ : fi, gi ∈ Dh(µ), h =
∑
i≥1

figi a.e.}.

Exactly as in the proof of Lemma 2.1 one shows that Dh(µ) � Dh(µ)
is a Banach space, and clearly Dh(µ)�Dh(µ) ⊆ L1 for each µ.

Note that since ‖g‖µ = ‖g‖µ we may always assume that h =∑
i≥1 figi with

∑
i≥1 ‖fi‖µ‖gi‖µ <∞.We also observe that h ∈ Dh(µ)�

Dh(µ) with ‖h‖1,µ = ‖h‖1,µ, whenever h ∈ Dh(µ) � Dh(µ). This im-
plies that h ∈ Dh(µ) � Dh(µ) if and only if both Reh and Imh ∈
Dh(µ)�Dh(µ) and ‖h‖1,µ ≤ ‖Reh‖1,µ + ‖Imh‖1,µ ≤ 2‖h‖1,µ.
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We also note that if h ∈ D(µ)�D(µ), then h ∈ Dh(µ)�Dh(µ) and
‖h‖1,µ ≤ ‖h‖∗. We will see that for the classical Dirichlet space one has
equivalence of norms, so that D �D is a closed subspace of Dh �Dh.

Theorem 4.3. If h ∈ Dh(µ) � Dh(µ) is real-valued, then there are
real-valued functions u, v ∈ Dh(µ), u ≥ 0, such that h = uv and

‖h‖1,µ = inf{‖u‖µ‖v‖µ : u, v ∈ Dh(µ), u ≥ 0, |v| ≤ u, h = uv}.
If Dh(µ) is compactly contained in L2, then the infimum is attained.

Furthermore, if the infimum is attained, then one can choose an
infimizing pair (u, v) with u ≥ 0, |v| ≤ u and ‖u‖µ = ‖v‖µ. It will
satisfy 〈ϕu, u〉µ = 〈ϕv, v〉µ for all Dh(µ)-multipliers ϕ.

In Section 8 we will see examples which show that it is possible
that even for nonnegative functions h it may happen that any norm
minimizing pair satisfies u 6= v.

Proof. Let h ∈ Dh(µ) � Dh(µ) be real-valued and pick any fi, gi ∈
Dh(µ) with

∑
i≥1 ‖fi‖µ‖gi‖µ < ∞ and such that h =

∑
i≥1 figi. We

may assume that for each i we have ‖fi‖µ = ‖gi‖µ. By the parallelo-
gram law we observe

‖fi‖µ‖gi‖µ = ‖fi + gi
2
‖2
µ + ‖fi − gi

2
‖2
µ

and since h is real-valued, we have

h =
∑
i≥1

Refigi =
∑
i≥1

∣∣∣∣fi + gi
2

∣∣∣∣2 − ∣∣∣∣fi − gi2

∣∣∣∣2 .
Let f =

√∑
i≥1

∣∣fi+gi
2

∣∣2 and g =
√∑

i≥1

∣∣fi−gi
2

∣∣2, then Lemma 4.2

implies that

‖f‖2
µ + ‖g‖2

µ ≤
∑
i≥1

‖fi + gi
2
‖2
µ + ‖fi − gi

2
‖2
µ =

∑
i≥1

‖fi‖µ‖gi‖µ.

Note that h = f 2 − g2 = (f + g)(f − g) and a short calculation shows
that ‖f + g‖µ‖f − g‖µ ≤ ‖f‖2

µ + ‖g‖2
µ. Furthermore, f and g are non-

negative. Thus u = f+g is nonnegative and v = f−g satisfies |v| ≤ u.
Hence

‖h‖1,µ = inf{‖u‖µ‖v‖µ : h = uv, u, v real-valued , u ≥ 0, |v| ≤ u}.
Note that it follows that

‖h‖1,µ = inf{‖u‖µ‖v‖µ : h = uv, u, v real-valued , u ≥ 0, ‖u‖µ = ‖v‖µ}.
Now suppose Dh(µ) is compactly contained in L2. Let un, vn ∈

Dh(µ) be real-valued, h = unvn, un ≥ 0, ‖un‖µ = ‖vn‖µ such that
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‖un‖µ‖vn‖µ → ‖h‖1,µ. By possibly dropping to a subsequence we may
assume that un → u and vn → v weakly in Dh(µ). The hypothesis
then implies that un → u, vn → v in the L2-norm, and hence h = uv.
We clearly have u ≥ 0 and ‖u‖µ ≤ lim inf ‖un‖µ, ‖v‖µ ≤ lim inf ‖vn‖µ,
and ‖u‖µ‖v‖µ ≤ ‖h‖1,µ. Thus ‖h‖1,µ = ‖u‖µ‖v‖µ and this also implies
that ‖u‖µ = ‖v‖µ.

Next we prove that if u, v ∈ Dh(µ) are real-valued with ‖uv‖1,µ =
‖u‖µ‖v‖µ, then an infimizing pair with further properties can be chosen.
We may assume that ‖u‖µ = ‖v‖µ. Set

u1 = |u+ v

2
|+ |u− v

2
|, v1 = |u+ v

2
| − |u− v

2
|.

Then u1, v1 ∈ Dh(µ) since ‖|w|‖µ ≤ ‖w‖µ as follows from the remark
after Lemma 4.2. Furthermore u1v1 = (u+v

2
)2− (u−v

2
)2 = uv and by the

parallelogram law

‖u1‖µ‖v1‖µ ≤
‖u1‖2

µ + ‖v1‖2
µ

2

= ‖|u+ v|
2
‖2
µ + ‖|u− v|

2
‖2
µ

≤ ‖u+ v

2
‖2
µ + ‖u− v

2
‖2
µ = ‖u‖µ‖v‖µ

Hence we must have equality throughout which implies that ‖u1‖µ =
‖v1‖µ. Thus (u1, v1) is a real-valued infimizing pair with u1 ≥ 0, |v1| ≤
u1 and ‖u1‖µ = ‖v1‖µ.

Now write M(Dh(µ)) for the set of multipliers for Dh(µ), and ‖ · ‖M
for the multiplier norm.

Let f, g ∈ Dh(µ) be real-valued with ‖f‖µ = ‖g‖µ and ‖f‖µ‖g‖µ ≤
‖u‖µ‖v‖µ for all u, v ∈ D(µ) with fg = uv.

Let ϕ ∈M(Dh(µ)) and let α ∈ C with |α|‖ϕ‖M < 1. Then 1
(1−αϕ)

=

1 + αϕ + O(|α|2) ∈ M(Dh(µ)), and u = f(1 − αϕ), v = g/(1 − αϕ) ∈
Dh(µ) satisfy fg = uv. Thus

‖f‖2
µ‖g‖2

µ ≤ ‖u‖2
µ‖v‖2

µ

= (‖f‖2
µ − 2Re α〈ϕf, f〉+O(|α|2))(‖g‖2

µ + 2Re α〈ϕg, g〉+O(|α|2))

= ‖f‖2
µ‖g‖2

µ + ‖f‖2
µ(2Re α(〈ϕg, g〉 − 〈ϕf, f〉)) +O(|α|2),

since ‖f‖µ = ‖g‖µ. Since this inequality holds for all small enough α
the result follows easily. �

Example 4.4. Let µ = δλ for some |λ| < 1, take h(z) = |z − λ|2,
and un(z) = (z − λ)zn, vn = un. Then h = unvn for each n, but
un, vn → 0 weakly in Dh(δλ). This example shows that in the previous
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proof without any extra argument or hypothesis one could not have
concluded that h equals the product of the weak limits of un and vn.

If h is a real-valued function, then write h+ = max{h, 0} = |h|+h
2

,

h− = −min{h, 0} = |h|−h
2

.

Corollary 4.5. If h ∈ L1(∂D), then h ∈ Dh(µ) � Dh(µ) if and only
if both Re h, Im h ∈ Dh(µ) � Dh(µ). If h is real-valued, then h ∈
Dh(µ)�Dh(µ) if and only if both h+, h− ∈ Dh(µ)�Dh(µ).

In particular, if h ∈ Dh(µ)�Dh(µ) is real-valued, then |h| ∈ Dh(µ)�
Dh(µ)

Proof. We have already noted the statement of the first sentence. If
h ∈ Dh(µ) � Dh(µ) is real-valued, then by Theorem 4.3 h = uv for
u, v ∈ Dh(µ) with u ≥ 0. Thus h+ = uv+ and h− = uv− and v+, v− ∈
Dh(µ) by the remark following Lemma 4.2. The converse is trivial. �

Question 4.6. If h ∈ Dh(µ)�Dh(µ) is complex-valued, then is |h| ∈
Dh(µ)�Dh(µ)?

5. Capacities for weighted Dirichlet spaces

It is easy to check that for each measure µ on D the real parts of
functions in Dh(µ) ⊆ L2(∂D) form a ”Dirichlet space” in the sense of
Beurling-Deny [BD59]. Each such space is associated with a Markov
process and an extensive general potential theory of such spaces has
been developed. For the specific case of the spaces Dh(µ) we recall the
definition of capacity. First if U ⊆ ∂D is open, then

capU = inf{‖f‖2
µ : f ∈ Dh(µ), f ≥ 1 a.e. on U},

and for arbitrary sets E ⊆ ∂D one sets

capE = inf{ capU : E ⊆ U,U open }.
This capacity turns out to be a Choquet capacity ( [Cho54]) and as a
consequence one has

capE = sup{ capK : K ⊆ E,K compact }
for every Borel set E ⊆ ∂D. A property hold quasi-everywhere (q.e.)
if it holds except perhaps on a set of capacity 0. We refer the reader to
Chapter 2 of [FOT11] for the results mentioned above and further basic
results about these capacities and exceptional sets. For measures µ that
are supported in ∂D the paper [Gui12] also contains a nice overview.
Furthermore we mention that Chacon [Cha11] showed that the nontan-
gential maximal function is bounded on Dh(µ) for µ supported in ∂D,
and it follows that the harmonic extensions of Dh(µ)-functions have
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nontangential limits q.e. Chacon went on to use this result to give a
capacitary characterization of the Carleson measures for D(µ).

We also note that the capacity one obtains this way for the Dirichlet
space Dh = Dh(m), m normalized Lebesgue measure on ∂D, is compa-
rable to classical logarithmic capacity restricted to ∂D. In this case it is
also well-known that Dh = {k ∗f : f ∈ L2(T)} for k(eit) = |1−eit|−1/2,
and that ‖k ∗f‖Dh is comparable to ‖f‖L2 (see e.g. [RRS94], Section 2,
and the references therein). This leads to another way to define the ca-
pacity of open sets U as inf{‖f‖2

L2 : f ∈ L2, f ≥ 0, k∗f ≥ 1 a.e. on U}.
Of course, by the equivalence of norms this quantity is comparable to
the quantity that we have defined. This is the approach that is carried
out e.g. in [AH96]. It generalizes to spaces other than Hilbert spaces,
although it is not clear that the spaces Dh(µ) could be treated this way
for all µ.

The following proposition shows that the capacity concept does not
need to be changed for Dh(µ)�Dh(µ).

Proposition 5.1. Let U ⊆ ∂D be open, then

inf{‖h‖1,µ : h ∈ Dh(µ)�Dh(µ), h real-valued, h ≥ 1 a.e. on U} = cap U.

Proof. If f ∈ Dh(µ) with f ≥ 1 a.e. on U , then f 2 ∈ Dh(µ) � Dh(µ)
and f 2 ≥ 1 a.e. on U . Thus it is clear that

inf{‖h‖1,µ : h ∈ Dh(µ)�Dh(µ), h real-valued, h ≥ 1 a.e. on U} ≤ cap U.

Now let h ∈ Dh(µ)�Dh(µ) be real-valued and h ≥ 1 a.e. on U . Then
by Theorem 4.3 we have

‖h‖1,µ = inf{‖u‖µ‖v‖µ : h = uv, u, v real-valued u ≥ 0}.
Thus let h = uv for real-valued u, v ∈ Dh(µ), u ≥ 0. We may assume
‖u‖µ = ‖v‖µ. Then f = u+v

2
≥
√
uv ≥ 1 a.e. on U and hence

cap U ≤ ‖f‖2
µ = ‖u+ v

2
‖2
µ ≤ ‖u‖µ‖v‖µ.

This implies cap U ≤ ‖h‖1,µ for any real-valued h ∈ Dh(µ) � Dh(µ)
with h ≥ 1 a.e. on U . �

6. The projection theorem for D

We now restrict our attention to the classical Dirichlet space. We
will write D = D(m), Dh = Dh(m), and ‖ · ‖ = ‖ · ‖m will be the norm
of D, ‖·‖∗ the norm of D�D, and ‖·‖1 = ‖·‖1,m the norm of Dh�Dh.

We know from the results of Section 4 that for any measure µ
and any analytic h ∈ D(µ) � D(µ), there are real-valued functions
u1, u2, u3, u4 ∈ Dh(µ) such that h = u1u2 + iu3u4. We will now see that
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for D the converse holds, namely that whenever u1, u2, u3, u4 ∈ Dh are
real-valued such that h = u1u2 + iu3u4 ∈ H1, then h ∈ D�D. We also
note that D satisfies the conditions (1.1), (1.2), (1.3) of Theorem 1.2,
thus (D �D)∗ = X (D).

In this section we use P denote the Cauchy projection. Note that in
other sections P has also been used to denote the Poisson kernel. It
should be possible to distinguish these from the context.

Lemma 6.1. There is a c > 0 such that

‖Pfg‖∗ ≤ c‖f‖‖g‖

for all f, g ∈ D.

Proof. We start by noting that 〈p, q〉D = 〈p, (zq)′〉H2 and 〈p, q〉H2 =
〈(zp)′, q〉L2

a
for all polynomials p and q. We combine these two equalities

to obtain

|〈Pfg, b〉D| = |
∫
|z|=1

fg(zb)′
|dz|
2π
| = |〈(zf)′, g(zb)′〉L2

a
| ≤ ‖f‖D‖g(zb)′‖L2

a

for all polynomials f , g, and b. It follows that the inequality

|〈Pfg, b〉D| ≤ ‖f‖D‖g(zb)′‖L2
a

holds whenever f and g are polynomials and b ∈ D.
Now recall that we used X (D) ⊆ D to denote the dual space ofD�D.

It is easy to check that zb ∈ X (D), whenever b ∈ X (D). Further-
more, as we mentioned in Section 1, a theorem of Arcozzi, Rochberg,
Sawyer, and Wick characterizes the functions b ∈ X (D) as the analytic
functions such that the measure |b′|2dA is a Carleson measure for the
Dirichlet space (see [ARSW10], also see [CO12] for an alternate proof).
Thus there is a c > 0 such that

|〈P (fg), b〉D| ≤ c‖f‖D‖g‖D‖b‖X .

By taking the supremum of this inequality over all unit vectors b ∈ X
we see that the lemma follows for all polynomials f and g.

Now if f, g ∈ D and if fn, gn are polynomials with fn → f and
gn → g in D, then the inequality easily implies that {Pfngn} is a
Cauchy sequence in D�D and hence it converges to some h ∈ D�D.
Similarly, it is clear that fngn converges to fg in L1(T). By comparing
Fourier coefficients we see that h = P (fg). The lemma follows. �

Theorem 6.2. There is a c > 0 such that for all h ∈ Dh �Dh

‖Ph‖∗ ≤ c‖h‖1.
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In particular, if h ∈ D �D then h = Ph and hence ‖h‖1 ≤ ‖h‖∗ ≤
c‖h‖1. Hence the norms ‖ · ‖∗ and ‖ · ‖1 are equivalent on D �D and
D �D is a closed subspace of Dh �Dh.

Proof. Since ‖Reh‖1 + ‖Imh‖1 ≤ 2‖h‖1 it will be sufficient to establish
the theorem for real-valued functions.

Note that if u ∈ Dh is real-valued, then u = f + f for some f ∈
D, f(0) ∈ R. Thus, if h ∈ Dh � Dh is real-valued, then it follows
from the results of Section 4 that there are f and g ∈ D such that
f(0), g(0) ∈ R, h = (f+f)(g+g), and ‖h‖1 = ‖f+f‖‖g+g‖ ≥ ‖f‖‖g‖.
Then Ph = fg + P (fg) + P (gf) + f(0)g(0) and Lemma 6.1 implies

‖Ph‖∗ ≤ ‖fg‖∗ + ‖P (fg)‖∗ + ‖P (gf)‖∗ + |f(0)g(0)|
≤ (2 + 2c)‖f‖‖g‖ ≤ (2 + 2c)‖h‖1.

�

Corollary 6.3. D�D = H1∩(Dh�Dh) and if h ∈ H1, then h ∈ D�D
if and only if both Reh and Imh ∈ Dh �Dh.

7. A connection to a paper by Mazya and Verbitsky

In their paper [ARSW10], Sec. 1.2 the authors mention similarities
and analogies between their results characterizing the space of analytic
functions X (D) and results of Mazya and Verbitsky, [MV02], which
are real variable type results. It turns out that one of the Mazya-
Verbitsky results implies a characterization of X (Dh), and hence is
related to topics discussed in this paper. We will now present a precise
connection between these two types of results.

Recall that a non-negative measure µ on the open unit disc is called
a Carleson measure for the Dirichlet space, if there is a constant c > 0
such that ∫

D
|f |2dµ ≤ c‖f‖D

for all f ∈ D. There are several intrinsic characterizations of such
Carleson measures available, see e.g. [Ste80] or [KS88]. Since every
function f ∈ Dh is of the form f = f1 + f 2 with f1, f2 ∈ D and
f2(0) = 0, ‖f‖2

Dh
= ‖f1‖2

D + ‖f2‖2
D, it is clear that µ satisfies the above

(analytic) Carleson measure condition, if and only if µ is a Carleson
measure for Dh, i.e. if∫

D
|Pz[f ]|2dµ(z) ≤ c‖f‖2

Dh

for all f ∈ Dh. Here Pz[f ] denotes the Poisson integral of f at z ∈ D.
If b = b1 + b2 ∈ Dh with b1, b2 ∈ D and b2(0) = 0, then |∇Pz[b]|2dA =
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2(|b′1|2+|b′2|2)dA is a Carleson measure for D, if and only if both |b′1|2dA
and |b′2|2dA are Carleson measures for D.

We start by restating the main result of [ARSW10].

Theorem 7.1. ( [ARSW10]) Let b ∈ D. Then the following two con-
ditions are equivalent:

(a) b ∈ X (D), i.e. there is a constant c > 0 such that |〈ϕψ, b〉D| ≤
c‖ϕ‖D‖ψ‖D for all ϕ, ψ ∈ Hol(D).

(b) |b′|2dA is a Carleson measure for D.

Note that the implication (b)⇒(a) follows easily from the product
rule and the Cauchy-Schwarz inequality. The reverse implication is
harder to prove and it is the main result of [ARSW10]. The analogue
of this theorem for the harmonic Dirichlet space is the following.

Theorem 7.2. Let b ∈ Dh. Then the following two conditions are
equivalent:

(a) b ∈ X (Dh), i.e. there is a constant c > 0 such that |〈ϕψ, b〉Dh| ≤
c‖ϕ‖Dh‖ψ‖Dh for all ϕ, ψ ∈ C∞(T).

(b) |∇Pz[b]|2dA(z) is a Carleson measure for D.

Again the implication (b)⇒(a) is elementary, although there is a
minor subtlety due to the fact that in general Pz[ϕψ] 6= Pz[ϕ]Pz[ψ] for
z ∈ D. However, it follows from Green’s first identity

∫
D(∆u)v +∇u ·

∇vdA =
∫
∂D v

∂u
∂n
ds that for all C∞(T)-functions b, ϕ, ψ we have∫

D
∇Pz[b] · ∇ (Pz[ϕψ]− Pz[ϕ]Pz[ψ]) dA(z) = 0.

By an approximation argument it follows that∫
D
∇Pz[b] · ∇Pz[ϕψ]dA =

∫
D
∇Pz[b] · ∇ (Pz[ϕ]Pz[ψ]) dA(z)

for all b ∈ Dh and ϕ, ψ ∈ C∞(T). Hence

〈ϕψ, b〉Dh =

∫
T
ϕψb
|dz|
2π

+

∫
D
∇ (Pz[ϕψ]) · ∇Pz[b]

dA(z)

π

=

∫
T
ϕψb
|dz|
2π

+

∫
D
∇ (Pz[ϕ]Pz[ψ]) · ∇Pz[b]

dA(z)

π

=

∫
T
ϕψb
|dz|
2π

+

∫
D

(Pz[ϕ]∇Pz[ψ] + Pz(ψ)∇Pz[ϕ]) · ∇Pz[b]
dA(z)

π

and now the implication (b)⇒(a) follows as in the analytic case by an
application of the Cauchy-Schwarz inequality (the first summand poses
no problem in either case).
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We also remark that the implication (a)⇒(b) of Theorem 7.2 follows
easily from the corresponding implication of Theorem 7.1. Indeed if
b ∈ Dh, then b = b1 + b2 for b1 and b2 ∈ D. Furthermore, if b satisfies
condition (a) of Theorem 7.2, then both b1 and b2 satisfy condition (a)
of Theorem 7.1. Thus by Theorem 7.1 both |b′1|2dA and |b′2|2dA are
Carleson measures for D and we have already noted that this implies
(b) of Theorem 7.2.

It appears that Theorem 7.1 is stronger than Theorem 7.2. Indeed,
if b ∈ D satisfies condition (a) of Theorem 7.1, then one sees that
it will automatically satisfy (a) of Theorem 7.2 if we also assume the
inequality ‖h‖∗ ≤ c‖h‖1 for all h ∈ D �D. However, we note that we
have established this inequality in Theorem 6.2 by use of Theorem 7.1.

Finally, we mention that in the case when b ∈ D, then the implication
(a) ⇒(b) of Theorem 7.2 can be shown by elementary means. Indeed,
by a calculation similar to the one in the proof of Lemma 6.1 the
hypothesis implies that

|
∫
D
(zψ)′ϕ(zb)′

dA

π
| = 〈Pϕψ, b〉D

= 〈ϕψ, b〉Dh
≤ C‖ψ‖Dh‖ϕ‖Dh
= C‖ψ‖D‖ϕ‖D

for all analytic polynomials ϕ and ψ. Here P was used to denote the
Cauchy projection. Now taking the sup over all analytic polynomials
ψ with ‖ψ‖2

D =
∫
D |(zψ)′|2 dA

π
= 1 we obtain

∫
D |ϕ(zb)′|2 dA

π
≤ C2‖ϕ‖2

D

for all polynomials ϕ and this implies condition (b) of either of the two
theorems.

We will now show that one of the results of [MV02] implies Theorem
7.2. We mention that Cascante and Ortega [CO12] established a dif-
ferent kind of connection between the papers [ARSW10] and [MV02]:
They used the proofs of [MV02] as inspiration to reprove the main
theorem of [ARSW10].

We will use the notation as in [MV02]. Let n ∈ N. We write L2 =
L2(Rn) = L2(Rn), and for u ∈ C∞(Rn) we use ‖u‖L1

2
= ‖∇u‖L2 , and

‖u‖2
W 1

2
= ‖u‖2

L2
+ ‖∇u‖2

L2
. Let Ω ⊆ Rn a bounded region with smooth

boundary and write L̊1
2(Ω) for the closure of C∞c (Ω) in the ‖ · ‖L1

2
-

norm. Finally we use GΩ(x, y) and GΩ[·] for the Green’s function and
Green’s operator for Ω. Hence if u ∈ C∞c (Ω), then f(x) = GΩ[u](x) =∫

Ω
GΩ(x, y)u(y)dy satisfies −∆f = u in Ω and f = 0 on ∂Ω.
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For the next Theorem and its application we need to define GΩ[V ]
where V is a compactly supported distribution. In order to do this we
consider the Riesz potential Kn(x) = cn|x|−(n−2) for n ≥ 3, K2(x) =
1

2π
log 1

|x| , andK1(x) = − |x|
2

. If V ∈ C∞c (Rn)′ has compact support in Ω,

then the convolution Kn∗V defines a harmonic function off the support
of V , see e.g. [Rud91]. Let h ∈ C∞(Ω) be the harmonic function on Ω
with h = Kn ∗ V on ∂Ω, then we define GΩ[V ] = Kn ∗ V − h. Thus
GΩ[V ] is a distribution on Ω such that 〈GΩ[V ], (−∆w)〉 = 〈V,w〉 for
all w ∈ C∞c (Ω) and such that GΩ[V ] is a smooth function on Ω\ spt
V , harmonic in Ω\ spt V , and 0 on ∂Ω.

Similarly, if V is a distribution, and if we say that GΩ[V ] is a W 1
2 -

function, then we mean that there is a vectorfield F = (F1, ..., Fn),
Fi ∈ L2

loc such that F = ∇GΩ[V ], i.e.∫
Ω

F · ∇wdx = 〈GΩ[V ], (−∆w)〉 = 〈V,w〉

for all w ∈ C∞c (Ω).
Mazya and Verbitsky’s paper contains various types of related re-

sults that apply in different contexts. Section 2 contains homogeneous
results (involving L̊1

2(Ω) and the ‖ · ‖L1
2
-norm), and the theorems are

valid only for n ≥ 3, because of the existence in n = 1 and n = 2
of functions u that are 1 on an arbitrary compact set and such that
‖∇u‖L2 is arbitrarily small. We will thus use the results of Section 4
of [MV02]. However, those results are all stated only for the operator
(I − ∆)−1 rather than for (−∆)−1 which is needed for our purposes.
This is a minor point as we will see. Thus, we will first derive an easy
Corollary to the work of [MV02], and then see how it implies Theorem
7.2.

Theorem 7.3. ( [MV02]) Suppose V ∈ C∞c (Rn)′ has compact support
in Ω and there is a c > 0 such that

|〈V, uw〉| ≤ c‖∇u‖L2‖∇w‖L2 ∀ u,w ∈ C∞c (Ω).

Then GΩ[V ] is a W 1
2 -function and there is a C > 0 such that∫

Ω

|∇GΩ[V ]|2|u|2dx ≤ C2‖u‖2
W 1

2
∀u ∈ C∞c (Ω).

Proof. We’ll just work with n = 2, dx = dA(x). For n ≥ 3 one can
skip most of the proof and use Theorem I of [MV02] to directly deduce
inequality 7.3 below, or else one could follow the whole proof below
substituting higher order Riesz and Bessel potentials as appropriate
(thus using Theorem 4.4 of [MV02]).
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Fix η ∈ C∞c (R2) with 0 ≤ η ≤ 1, spt η ⊆ Ω, η = 1 in a neighborhood
of spt V . Then for u,w ∈ C∞c (R2) we have

|〈V, uw〉 = |〈V, η2uw〉|
≤ c‖∇(ηu)‖L2‖∇(ηw)‖L2

≤ c(‖u∇η‖L2 + ‖η∇u‖L2)(‖w∇η‖L2 + ‖η∇w‖L2)

≤ C‖u‖W 1
2
‖w‖W 1

2
.

Then Theorem 4.4 of [MV02] tells us that (I−∆)−1V is a W 1
2 -function

and ∫
R2

|∇(I −∆)−1V |2|u|2dA ≤ C2‖u‖2
W 1

2
(7.1)

for all u ∈ C∞c R2, where (I −∆)−1 is convolution with

J(x) =
1

2

∫ ∞
0

e−
|x|2
4δ e−δ

dδ

δ
.(7.2)

This is a Bessel potential, a fundamental solution for I−∆ (see [Ste70],
V.3).

We want to replace (I −∆)−1 by GΩ and in order to do this we will
first replace (I −∆)−1 by(−∆)−1, which is the convolution with

K(x) = K2(x) =
1

2π
log

1

|x|
.

K is the corresponding Riesz potential, a fundamental solution for −∆.
It is easy to see from (7.2) that J ∈ L1(R2), that J is C∞ away from

0, and J and all its derivatives decay exponentially at ∞. This plus
the compactness of spt V is more than enough to justify the following
manipulations:

∇(−∆)−1V−∇(I −∆)−1V

= ∇
[
(−∆)−1((I −∆)− (−∆))(I −∆)−1

]
V

= ∇
[
(−∆)−1(I −∆)−1

]
V

= ∇[K ∗ (I −∆)−1]V

= K ∗ [∇(I −∆)−1V ]

= K+ ∗ [∇(I −∆)−1V ]−K− ∗ [∇(I −∆)−1V ]

The second term is bounded, because of the exponential decay of∇(I−
∆)−1V at ∞. Hence it is clear that∫

R2

|K− ∗ [∇(I −∆)−1V ]|2|u|2dA ≤ ‖K− ∗ [∇(I −∆)−1V ]‖2
∞‖u‖2

W 1
2
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for all u ∈ C∞c (R2). Next we note that since inequality (7.1) holds for
all u ∈ C∞c (R2) it holds for all translates of ∇(I −∆)−1V . Thus it will
hold for all convex combinations of translates of ∇(I−∆)−1V and this
easily implies∫

Ω

|K+ ∗ [∇(I −∆)−1V ]|2|u|2dA ≤ ‖K+‖2
L1(R2)C

2‖u‖2
W 1

2
∀u ∈ C∞c (R2).

Hence (−∆)−1V is a W 1
2 -function and there is a constant C > 0 such

that ∫
R2

|∇(−∆)−1V |2|u|2dA ≤ C2‖u‖2
W 1

2
(7.3)

for all u ∈ C∞c (R2).
Now recall that (−∆)−1V = K ∗ V and GΩ[V ] = K ∗ V − h, where

h is smooth on Ω. The result follows. �

In the proof of (a)⇒(b) of Theorem 7.2 by use of Theorem 7.3 we
will replace the disc D by the annulus

A = {z ∈ C : 1/2 < |z| < 2}.
For u ∈ L2(T) define û in Ω by û is harmonic in A\T, û = u on T, and
û = 0 on ∂A. Of course this will imply that û(z) = û(1

z
) for z ∈ A.

Then it is not difficult to see that ‖u‖2
Dh

is equivalent to

‖u‖2
A =

∫
A
|∇û|2dA,

but we will need the following stronger statement.

Lemma 7.4. If w, u ∈ Dh, then∣∣∣∣∫
A
∇ŵ · ∇ûdA

4π
−
∫
D
∇P [w] · ∇P [u]

dA

2π

∣∣∣∣ ≤ C‖w‖L1(T)‖u‖L1(T).

Proof. For n ∈ Z let un(eit) = eint. Then Preit [un] = r|n|eint, |∇Preit [un]|2 =
2n2r2|n|−2 and hence ∫

D
|∇P [un]|2dA = 2π|n|.(7.4)

We can also find ûn explicitly. In 1/2 ≤ r ≤ 1 we have

ûn(reit) =

(
4|n|

4|n| − 1
r|n| − 1

4|n| − 1
r−|n|

)
eint for n 6= 0

and û0(eit) = log 2r
log 2

. Thus for n 6= 0

∣∣∇ûn(reit)
∣∣2 = 2n2

[(
4|n|

4|n| − 1

)2

r2|n|−2 +
1

(4|n| − 1)2
r−2|n|−2

]
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and |∇û0(reit)|2 = 1
(log 2)2

1
r2

. Thus,∫
1/2<|z|<1

|∇ûn|2 dA = 2π|n|4
|n| + 1

4|n| − 1
, if n 6= 0

and
∫

1/2<|z|<1
|∇û0|2 dA = 2π

log 2
.

In 1 ≤ r ≤ 2 we have ûn(reit) = ûn(1
r
eit) and

∫
1<|z|<2

|∇ûn|2dA =∫
1/2<|z|<1

|∇ûn|2 dA. Hence∫
A
|∇ûn|2 dA = 4π|n|4

|n| + 1

4|n| − 1
, if n 6= 0(7.5)

and
∫
A |∇û0|2 dA = 4π

log 2
.

Also note that∫
A
∇ûn · ∇ûmdA =

∫
D
∇P [un] · ∇P [um]dA = 0 for all n 6= m.(7.6)

Now let w(eit) =
∑∞
−∞ ane

int and u(eit) =
∑∞
−∞ bne

int, then by
(7.4),(7.5), and (7.6) we have∣∣∣∣∫
A
∇ŵ · ∇ûdA

4π
−
∫
D
∇P [w] · ∇P [u]

dA

2π

∣∣∣∣ =

∣∣∣∣∣ a0b0

log 2
+
∑
n6=0

(|n|4
|n| + 1

4|n| − 1
− |n|)anbn

∣∣∣∣∣
≤ |a0||b0|

log 2
+
∑
n6=0

2|n|
4|n| − 1

|an||bn|

≤ C‖{an}‖∞‖{bn}‖∞
≤ C‖w‖L1(T)‖u‖L1(T)

�

Proof of (a)⇒(b) of Theorem 7.2. Lemma 7.4 shows that the hypoth-
esis (a) of Theorem 7.2 implies that∫

A
∇ŵ · ∇ûvdA ≤ C‖u‖Dh‖v‖Dh for all u, v ∈ C∞(T).(7.7)

Furthermore, it is clear from the definitions that for any v ∈ L2(T)
the function Pz[v] − v̂(z) is harmonic in D ∩ A, 0 on |z| = 1 and C∞

on |z| = 1/2. Hence there is a C > 0 (dependent on w) such that for
all z with 1/2 < |z| < 1 we have

| |∇ŵ(z)| − |∇Pz[w]| | ≤ C
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and |û(z) − Pz[u]| ≤ 3‖u‖L1(T) by the maximum principle. Thus it
suffices to verify that∫

A
|û∇ŵ|2dA ≤ C2‖u‖2

Dh
for all u ∈ C∞(T).(7.8)

Now let U1, U2 ∈ C∞c (A) and define uj = Uj|T for j = 1, 2. Recall
Green’s first identity says that∫

Ω

[ϕ∆ψ +∇ϕ · ∇ψ]dA =

∫
∂Ω

ϕ
∂ψ

∂n
ds

for sufficiently smooth Ω and ϕ, ψ. We apply this in A ∩ {z : |z| < 1}
and A ∩ {z : |z| > 1} to obtain∫

A
∇ŵ · ∇(U1U2 − û1u2)dA = 0.

This would first be true for smooth w and then by an approximation
for all w ∈ Dh. Thus inequality (7.7) and the Dirichlet principle imply

|
∫
A
∇ŵ · ∇U1U2dA|2 ≤ C2

∫
A
|∇û1|2dA

∫
A
|∇û2|2dA

≤ C2

∫
A
|∇U1|2dA

∫
A
|∇U2|2dA.

We now think of V = −∆ŵ as a distribution, then

〈V, U1U2〉 = −〈∆ŵ, U1U2〉 =

∫
A
∇ŵ · ∇(U1U2)dA,

so that |〈V, U1U2〉| ≤ C‖∇U1‖L2‖∇U2‖L2 for all U1, U2 ∈ C∞c (A). Fur-
thermore, spt V = T and ŵ = GA[V ]. Hence (7.8) follows from Theo-
rem 7.3. �

8. Examples

The following examples are meant to illustrate some of the problems
we encountered as we were trying to determine conditions for norm-
minimizers in the weak product spaces.

Example 8.1. If n ∈ N then ‖zn‖2
D = n + 1. For k = 0, ..., n set

fk(z) = (n−k+1
k+1

)1/4zk and gk(z) = ( k+1
n−k+1

)1/4zn−k, then for each k we
get zn = fkgk and 〈ϕfk, fk〉D = 〈ϕgk, gk〉D for every multiplier ϕ, i.e.
for each k the pair (fk, gk) satisfies the necessary condition for a norm-
minimizer of Theorem 4.3. Yet it is clear that (fk, gk) is not a norm
minimizer for ‖zn‖∗, whenever 0 < k < n. In this case it appears to be
best to write zn = 1 · zn.
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If z ∈ Ω and if kz denotes the reproducing kernel for the space H of
analytic functions on Ω, then, of course, k2

z ∈ H �H and it is easy to
see that ‖k2

z‖∗ = ‖kz‖2. For outer or positive functions h it is tempting

to think that h =
√
h
√
h would be the best decomposition for ‖h‖∗.

That is not always the case. The following example was suggested to
us by Paul Bourdon.

Example 8.2. (a) The analytic Dirichlet spaceD. Let h(z) = (1+z3)2.

Then 1 · ‖h‖D =
√

24 < 5 = ‖
√
h‖2

D.
(b) The harmonic Dirichlet space Dh. The function h(eit) = |1+e5it|4

is a non-negative function in Dh and we have 1 · ‖h‖Dh =
√

250 < 16 =

‖
√
h‖2

Dh
.
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