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Abstract. We study the reproducing kernel Hilbert space with kernel kd, where d is a
positive integer and k is the reproducing kernel of the analytic Dirichlet space.

Introduction

Consider the Dirichlet space D on the unit disc {z ∈ C : |z| < 1} of the complex plane.
It can be defined as the Reproducing Kernel Hilbert Space (RKHS) having kernel

kz(w) = k(w, z) =
1

zw
log

1

1− zw
=
∞∑
n=0

(zw)n

n+ 1
.

We are interested in the spaces Dd having kernel kd, with d ∈ N. Dd can be thought of
in terms of function spaces on polydiscs, following ideas of Aronszajn [4]. To explain this
point of view, note that the tensor d-power D⊗d of the Dirichlet space has reproducing kernel
kd(z1, · · · , zd;w1, . . . , wd) = Πd

j=1k(zj, wj). Hence, the space of restrictions of functions in

D⊗d to the diagonal z1 = · · · = zd has the reproducing kernel kd, and therefore coincides
with Dd.

We will provide several equivalent norms for the spaces Dd and their dual spaces in Theo-
rem 1. Then we will discuss the properties of these spaces. More precisely, we will investigate:

- Dd and its dual space HSd in connection with Hankel operators of Hilbert-Schmidt
class on the Dirichlet space D;

- the complete Nevanlinna-Pick property for Dd;
- the Carleson measures for these spaces.

Concerning the first item, the connection with Hilbert-Schmidt Hankel operators served as
our original motivation for studying the spaces Dd.

Note that the spaces Dd live infinitely close to D in the scale of weighted Dirichlet spaces
D̃s, defined by the norms

‖ϕ‖2D̃s
=

∫ +π

−π

∣∣ϕ(eit)
∣∣2 dt

2π
+

∫∫
|z|<1

|f ′(z)|2 (1− |z|2)sdA(z)

π
, 0 ≤ s < 1,

where dA(z)
π

is normalized area measure on the unit disc.

Notation: We use multiindex notation. If n = (n1, . . . , nd) belongs to Nd, then |n| =
n1 + · · ·+ nd. We write A ≈ B if A and B are quantities that depend on a certain family of
variables, and there exist independent constants 0 < c < C such that cA ≤ B ≤ CA.
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Equivalent norms for the spaces Dd and their dual spaces HSd

Theorem 1. Let d be a positive integer and let

ad(k) =
∑
|n|=k

1

(n1 + 1) . . . (nd + 1)
.

Then the norm of a function ϕ(z) =
∑∞

k=0 ϕ̂(k)zk in Dd is

(1) ‖ϕ‖Dd
=

(
∞∑
k=0

ad(k)−1 |ϕ̂(k)|2
)1/2

≈ [ϕ]d,

where

(2) [ϕ]d =

(
∞∑
k=0

k + 1

logd−1(k + 2)
|ϕ̂(k)|2

)1/2

.

An equivalent Hilbert norm |[ϕ]|d ≈ [ϕ]d for ϕ in terms of the values of ϕ is given by

(3) |[ϕ]|d = |ϕ(0)|2 +

∫∫
D
|ϕ′(z)|2 1

logd−1
(

1
1−|z|2

) dA(z)

π

1/2

.

Define now the holomorphic space HSd by the norm:

(4) ‖ψ‖HSd
=

(
∞∑
k=0

(k + 1)2ad(k)
∣∣∣ψ̂(k)

∣∣∣2)1/2

.

Then, HSd ≡ (Dd)∗ is the dual space of Dd under the duality pairing of D. Moreover,

‖ψ‖HSd
≈ [ψ]HSd

:=

(
∞∑
k=0

(k + 1) logd−1(k + 2)
∣∣∣ψ̂(k)

∣∣∣2)1/2

≈

|[ψ]|HSd
:=

(
|ψ(0)|2 +

∫∫
D
|ψ′(z)|2 logd−1

(
1

1− |z|2

)
dA(z)

π

)1/2

.(5)

Furthermore, the norm can be written as

(6) ‖ψ‖2HSd
=

∑
(n1,...,nd)

|〈en1 . . . end
, ψ〉D|2,

where {en}∞n=0 is the canonical orthonormal basis of D, en(z) = zn√
n+1

.

The remainder of this section is devoted to the proof of Theorem 1. The expression for
‖ϕ‖Dd

in (1) follows by expanding (kz)
d as a power series. The equivalence ‖ϕ‖Dd

≈ [ϕ]d, as
well as ‖ϕ‖HSd

≈ [ϕ]HSd
, are consequences of the following lemma.

Lemma 1. For each d ∈ N there are constants c, C > 0 such that for all k ≥ 0 we have

cad(k) ≤ logd−1(k + 2)

k + 1
≤ Cad(k).
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Consequently, if t ∈ [0, 1), then

c

(
1

t
log

1

1− t

)d
≤

∞∑
k=0

logd−1(k + 2)

k + 1
tk ≤ c

(
1

t
log

1

1− t

)d
.

Proof of Lemma 1. We will prove the Lemma by induction on d ∈ N. It is obvious for d = 1.
Thus let d ≥ 2 and suppose the lemma is true for d − 1. Also we observe that there is a
constant c > 0 such that for all k ≥ 0 and 0 ≤ n ≤ k we have

c logd−2(k + 2) ≤ logd−2(n+ 2) + logd−2(k − n+ 2) ≤ 2 logd−2(k + 2).

Then for k ≥ 0

ad(k) =
∑

n1+···+nd=k

1

(n1 + 1) . . . (nd + 1)

=
k∑

n=0

1

n+ 1

∑
n2+···+nd=k−n

1

(n2 + 1) . . . (nd + 1)

≈
∑
n=0

1

n+ 1

logd−2(k − n+ 2)

k − n+ 1
by the inductive assumption

=
1

2

k∑
n=0

logd−2(n+ 2) + logd−2(k − n+ 2)

(n+ 1)(k − n+ 1)

≈ logd−2(k + 2)
k∑

n=0

1

(n+ 1)(k − n+ 1)
by the earlier observation

=
logd−2(k + 2)

k + 2

k∑
n=0

1

n+ 1
+

1

k − n+ 1

≈ logd−1(k + 2)

k + 1
. �

Next, we prove the equivalence [ϕ]HSd
≈ |[ϕ]|HSd

which appears in (5).

Lemma 2. Let d ∈ N. Then∫ 1

0

tk
(

1

t
log

1

1− t

)d−1
dt ≈ logd−1(k + 2)

k + 1
, k ≥ d.

Given the Lemma, we expand

|[ψ]|2HSd
= |ψ̂(0)|2 +

∫∫
D

∣∣∣∣∣
∞∑
k=1

ψ̂(k)kzk−1

∣∣∣∣∣
2

logd−1
1

1− |z|2
dA(z)

π

= |ψ̂(0)|2 +
∞∑
k=1

k2
∣∣∣ψ̂(k)

∣∣∣2 ∫ 1

0

logd−1
1

1− t
tk−1dt

≈ |ψ̂(0)|2 +
∞∑
k=1

k2
∣∣∣ψ̂(k)

∣∣∣2 logd−1(k + 2)

k + 1

≈ [ψ]2HSd
,
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obtaining the desired conclusion.

Proof of Lemma 2. The case d = 1 is obvious, leaving us to consider d ≥ 2. We will also
assume that k ≥ 2. Then by Lemma 1 we have∫ 1

0

tk
(

1

t
log

1

1− t

)d−1
dt ≈

∫ 1

0

tk
∞∑
n=0

logd−2(n+ 2)

n+ 1
tndt

=
∞∑
n=0

logd−2(n+ 2)

(n+ 1)(n+ k + 1)
= S1 + S2,

where

S1 =
k−1∑
n=0

logd−2(n+ 2)

(n+ 1)(n+ k + 1)
≈ 1

k + 1

k−1∑
n=0

logd−2(n+ 2)

n+ 1
≈ 1

k + 1

∫ k+2

1

logd−2(t)

t
dt

=
1

d− 1

logd−1(k + 2)

k + 1

and

S2 =
∞∑
n=k

logd−2(n+ 2)

(n+ 1)(n+ k + 1)
≤

∞∑
n=k+1

logd−2(n+ 1)

n2
≤

∞∑
j=1

kj+1−1∑
n=kj

logd−2(n+ 1)

n2

≤
∞∑
j=1

(j + 1)d−2 logd−2 k
kj+1−1∑
n=kj

1

n2
≤ logd−2(k + 2)

∞∑
j=1

(j + 1)d−2
∫ ∞
kj−1

1

x2
dx

=
logd−2(k + 2)

k + 1

∞∑
j=1

(j + 1)d−2
k + 1

kj − 1
≤ logd−2(k + 2)

k + 1

∞∑
j=1

(j + 1)d−2
k + 1

(k − 1)kj−1

≤ logd−2(k + 2)

k + 1

∞∑
j=1

(j + 1)d−2
3

2j−1
= o

(
logd−1(k + 2)

k + 1

)
. �

Now, the duality between Dd and HSd under the duality pairing given by the inner product
of D is easily seen by considering [·]d and [·]HSd

. They are weighted `2 norms and duality is
established by means of the Cauchy-Schwarz inequality.

Next we will prove that [ϕ]d ≈ |[ϕ]|d. This is equivalent to proving that the dual space of
HSd, with respect to the Dirichlet inner product 〈· , ·〉D, is the Hilbert space with the norm
|[·]|d.

Let d ∈ N and set, for 0 ≤ t < 1, wd(t) =
(
1
t

log 1
1−t

)d
and, for |z| < 1, Wd(z) = wd(|z|2).

Lemma 3. Let d ∈ N and t ∈ [0, 1). Then∫ 1

1−ε
wd(t)dt ·

∫ 1

1−ε

1

wd(t)
dt ≈ ε2 as ε→ 0.
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Proof. Write w̃(t) = (log 1
1−t)

d, and note that it suffices to establish the lemma for w̃ in place

of w. Let ε > 0. Then w̃ is increasing in [0, 1) and w̃(1− εk+1) = (k + 1)d(log 1
ε
)d, hence∫ 1

1−ε
w̃(t)dt =

∞∑
k=1

∫ 1−εk+1

1−εk
w̃(t)dt

≤
∞∑
k=1

w̃(1− εk+1)(εk − εk+1)

=
∞∑
k=1

(k + 1)d(log
1

ε
)dεk(1− ε)

≈ ε(log
1

ε
)d

1

(1− ε)d

For 1/w̃ we just notice that it is decreasing and hence∫ 1

1−ε

1

w̃(t)
dt ≤ 1

w̃(1− ε)
ε =

ε

(log 1
ε
)d

Thus as ε→ 0 we have

ε2 ≤
∫ 1

1−ε
w̃(t)dt

∫ 1

1−ε

1

w̃(t)
dt = O(ε2). �

For 0 < h < 1 and s ∈ [−π, π), let Sh(e
is) be the Carleson square at eis, i.e.

Sh(e
is) = {reit : 1− h < r < 1, |t− s| < h}.

A positive function W on the unit disc is said to satisfy the Békollé-Bonami condition (B2)
if ∫

Sh(eis)

WdA ·
∫
Sh(eis)

1

W
dA ≤ ch4

for every Carleson square Sh(e
is). If d ∈ N and if W (z) = Wd(z) = wd(|z|2), then∫

Sh(eis)

WddA ·
∫
Sh(eis)

1

Wd

dA = h2
∫ 1

1−h
wd(t)dt ·

∫ 1

1−h

1

wd(t)
dt ≈ h4

by Lemma 3. Thus Wd satisfies the condition (B2). Furthermore, note that if f(z) =∑∞
k=0 f̂(k)zk is analytic in the open unit disc, then∫

|z|<1

|f(z)|2wd(|z|2)
dA(z)

π
=
∞∑
k=0

wk|f̂(k)|2,

where wk =
∫ 1

0
tkwd(t)dt ≈ logd(k+2)

k+1
.

A special case of Theorem 2.1 of Luecking’s paper [7] says that if W satisfies the condition
(B2) by Bekollé and Bonami [5], then one has a duality between the spaces L2

a(WdA) and
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L2
a(

1
W
dA) with respect to the pairing given by

∫
|z|<1

fgdA. Thus, we have

∫
|z|<1

|g(z)|2 1

Wd(z)
dA ≈ sup

f 6=0

∣∣∣∫|z|<1
g(z)f(z)dA(z)

π

∣∣∣2∫
|z|<1
|f(z)|2Wd(z)dA

= sup
f 6=0

∣∣∣∑∞k=0
ĝ(k)

(k+1)
√
wk

√
wkf̂(k)

∣∣∣2∑∞
k=0wk|f̂(k)|2

=
∞∑
k=0

1

(k + 1)2wk
|ĝ(k)|2

This finishes the proof of (5). It remains to demonstrate (6). We defer its proof to the next
section.

By Theorem 1 we have the following chain of inclusions:

. . . ↪→ HSd+1 ↪→ HSd ↪→ . . . ↪→ HS2 ↪→ HS1 = D = D1 ↪→ D2 ↪→ . . . ↪→ Dd ↪→ Dd+1 ↪→ . . .

with duality w.r.t. D linking spaces with the same index. It might be interesting to compare
this sequence with the sequence of Banach spaces related to the Dirichlet spaces studied in
[2]. Note that for d ≥ 3 the reproducing kernel of HSd is continuous up to the boundary.
Hence functions in HSd extend continuously to the closure of the unit disc, for d ≥ 3.

Hilbert-Schmidt norms of Hankel-type operators

Let {en} be the canonical orthonormal basis of D, en(z) = zn√
n+1

. Equation (6) follows

from the computation

∞∑
k=0

∑
|n|=k

|〈en1 ...end
, ψ〉|2 =

∞∑
k=0

∑
|n|=k

1

(n1 + 1) · ... · (nd + 1)
|〈zn1 ...znd , ψ〉|2

=
∞∑
k=0

∑
|n|=k

1

(n1 + 1) · ... · (nd + 1)
|〈zk, ψ〉|2 =

∞∑
k=0

∑
|n|=k

(k + 1)2

(n1 + 1) · ... · (nd + 1)
|ψ̂(k)|2

=
∞∑
k=0

(k + 1)ad(k)|ψ̂(k)|2 ≈
∞∑
k=0

logd−1(k + 2)

k + 1
|ψ̂(k)|2.

Polarizing this expression for ‖ · ‖HSd
, the inner product of HSd can be written

〈ψ1, ψ2〉HSd
=

∑
(n1,...,nd)

〈ψ1, en1 . . . end
〉D〈en1 . . . end

, ψ2〉D.

Hence, for any λ, ζ ∈ D,

〈kλ, kζ〉HSd
=
∑
n∈Nd

〈kλ, en1 . . . end
〉D〈en1 . . . end

, kζ〉D =
∑
n∈Nd

en1(λ) . . . end
(λ)en1(ζ) . . . end

(ζ)

=

(
∞∑
i=0

ei(λ)ei(ζ)

)d

= kλ(ζ)d = 〈kdλ, kdζ 〉Dd
.

That is,
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Proposition 1. The map U : kλ 7→ kdλ extends to a unitary map HSd → Dd.

When d = 2, HS2 contains those functions b for which the Hankel operator Hb : D → D,
defined by 〈Hbej, ek〉D = 〈ejek, b〉D, belongs to the Hilbert-Schmidt class.

Analogous interpretations can be given for d ≥ 3, but then function spaces on polydiscs
are involved. We consider the case d = 3, which is representative. Consider first the operator
Tb : D → D ⊗D defined by 〈

Tbf, g ⊗ h
〉
D⊗D = 〈fgh, b〉D .

The formula uniquely defines an operator, whose action is

Tbf(z, w) = 〈Tbf, kzkw〉D⊗D
= 〈fkzkw, b〉D

=
∑
n,m,j

f̂(j)
zn

n+ 1

wm

m+ 1
〈ζn+m+j, b〉D

=
∑
n,m,j

f̂(j)b̂(n+m+ j)
n+m+ j + 1

(n+ 1)(m+ 1)
znwm

Then, the Hilbert-Schmidt norm of Tb is:∑
l,m,n

∣∣〈Tbel, emen〉D⊗D∣∣2 =
∑
l,m,n

|〈elemen, b〉D|
2 = ‖b‖2HS3

.

Similarly, we can consider Ub : D ⊗D → D defined by〈
Ub(f ⊗ g), h

〉
D = 〈fgh, b〉D .

The action of this operator is given by

Ub(f ⊗ g)(z) =
∞∑

l,m,n=0

f̂(l)ĝ(m)
(l +m+ n+ 1)̂b(l +m+ n)

n+ 1
zn.

The Hilbert-Schmidt norm of Ub is still ‖b‖HS3 .

Carleson measures for the spaces Dd and HSd

The (B2) condition allows us to characterize the Carleson measures for the spaces Dd and
HSd. Recall that a nonnegative Borel measure µ on the open unit disc is Carleson for the
Hilbert function space H if the inequality∫

|z|<1

|f |2dµ ≤ C(µ)‖f‖2H

holds with a constant C(µ) which is independent of f . The characterization [3] shows that,
since the (B2) condition holds, then

Theorem 2. For d ∈ N, a measure µ ≥ 0 on {|z| < 1} is Carleson for Dd if and only if for
|a| < 1 we have:∫

S̃(a)

logd−1
(

1

1− |z|2

)
(1− |z|2)µ(S(z) ∩ S(a))2

dxdy

(1− |z|2)2
≤ C1(µ)µ(S(a)),
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where S(a) = {z : 0 < 1− |z| < 1− |a|, | arg(za)| < 1− |a|} is the Carleson box with vertex
a and S̃(a) = {z : 0 < 1− |z| < 2(1− |a|), | arg(za)| < 2(1− |a|)} is its “dilation”.

The characterization extends to HS2, with the weight log−1
(

1
1−|z|2

)
. Since functions in

HSd are continuous for d ≥ 3, all finite measures are Carleson measures for these spaces.
Once we know the Carleson measures, we can characterize the multipliers forDd in a standard
way.

The complete Nevanlinna-Pick property for Dd
Next, we prove that the spaces Dd have the Complete Nevanlinna-Pick (CNP) Property.

Much research has been done on CNP kernels in the past twenty years, following seminal
work of Sarason and Agler. See the monograph [1] for a comprehensive and very readable
introduction to this topic. We give here a definition which is simple to state but perhaps not
the most conceptual. An irreducible kernel k : X×X → C has the CNP if there is a positive
definite function F : X → D and a nowhere vanishing function δ : X → C such that:

k(x, y) =
δ(x)δ(y)

1− F (x, y)

whenever x, y lie in X. CNP is a property of the kernel, not of the Hilbert space itself.

Theorem 3. There are norms on Dd such that the CNP property holds.

Proof. A kernel k : D × D → C of the form k(w, z) =
∑∞

k=0 ak(zw)k has the CNP property
if a0 = 1 and the sequence {an}∞n=0 is positive and log-convex:

an−1
an
≤ an
an+1

.

See [1], Theorem 7.33 and Lemma 7.38. Consider η(x) = α log log(x)− log(x), with real α.

Then, η′′(x) = log2(x)−α log(x)−α
x2 log2(x)

, which is positive for x ≥Mα, depending on α. Let now

an =
logd−1(Md(n+ 1))

log(Md) · (n+ 1)
≈ 1

n+ 1
+

logd−1(n+ 1)

n+ 1
(7)

Then, the sequence {an}∞n=0 provides the coefficients for a CNP kernel for the space Dd. �

The CNP property has a number of consequences. For instance, we have that the space
Dd and its multiplier algebra M(Dd) have the same interpolating sequences. Recall that
a sequence Z = {zn}∞n=0 is interpolating for a RKHS H with reproducing kernel kH if the

weighted restriction map R : ϕ 7→
{

ϕ(zn)

kH(zn,zn)1/2

}∞
n=0

maps H boundedly onto `2; while Z is

interpolating for the multiplier algebra M(H) if Q : ψ 7→ {ψ(zn)}∞n=0 maps M(H) boundedly
onto `∞. The reader is referred to [1] and to the second chapter of [8] for more on this topic.

It is a reasonable guess that the universal interpolating sequences for Dd and for its multi-
plier space M(Dd) are characterized by a Carleson condition and a separation condition, as
described in [8] (see the Conjecture at p. 33). See also [6], which contains the best known
result on interpolation in general CNP spaces. Unfortunately we do not have an answer for
the spaces Dd.

8



References

1. Jim Agler and John E. McCarthy, Pick interpolation and Hilbert function spaces, Graduate Studies in
Mathematics, vol. 44, American Mathematical Society, Providence, RI, 2002.

2. N. Arcozzi, R. Rochberg, E. Sawyer, and B. D. Wick, Function spaces related to the Dirichlet space, J.
Lond. Math. Soc. (2) 83 (2011), no. 1, 1–18.

3. Nicola Arcozzi, Richard Rochberg, and Eric Sawyer, Carleson measures for analytic Besov spaces, Rev.
Mat. Iberoamericana 18 (2002), no. 2, 443–510.

4. N. Aronszajn, Theory of reproducing kernels, Trans. Amer. Math. Soc. 68 (1950), 337–404.
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Moro 5, 00185 Roma

E-mail address: giulia.sarfatti@imj-prg.fr

9


