HANKEL OPERATORS AND INVARIANT SUBSPACES
OF THE DIRICHLET SPACE

SHUAIBING LUO AND STEFAN RICHTER

ABSTRACT. The Dirichlet space D is the space of all analytic func-
tions f on the open unit disc D such that f’ is square integrable
with respect to two-dimensional Lebesgue measure. In this paper
we prove that the invariant subspaces of the Dirichlet shift are in
1-1 correspondence with the kernels of the Dirichlet-Hankel oper-
ators. We then apply this result to obtain information about the
invariant subspace lattice of the weak product D ® D and to some
questions about approximation of invariant subspaces of D.
Our main results hold in the context of superharmonically weighted

Dirichlet spaces.

1. INTRODUCTION

If f € Hol(D) denotes an analytic function on the open unit disc
D, then we use f(n) for its nth Taylor coefficient. We write H?
for the Hardy space of the unit disc, it has norm given by || f]|7. =

dz o R
e LFEPE =0, 1 ()

In this paper we will consider weighted Dirichlet spaces of the form

H={f € Hol(D) / F(2)PU(2)dA(z) < oo},

where U is a non-negative superharmonic function on D and dA denotes
2-dimensional Lebesgue measure. Particular examples of such weights
are U(z) = (1 —|z]?)}7® for 0 < a < 1. By the representation theorem
for superharmonic functions (see [12], page 109) such weights can be
represented by use of a finite Borel measure p on the closed unit disc.
We write

Uuz) = / log
Jw|<1
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then the correspondence i — U, is a bijection of the collection of finite
positive measures on D onto the set of positive superharmonic functions
on D, and it is a theorem of Aleman, [1], Theorem IV.1.9 that for all
f € H? we have

(1.1) /|f 20, (2)dA(= /D Fdp(w

where D,,(f) = f‘z|:1 Y@ T w) |dz| ldz‘ is called the local Dirichlet integral

- e—wl?
of f at w € D. Here we follow the convention that D, (f) = oo, if f
does not have a nontangential limit at w € 0D.
We define

D(w) = {f € F*(D): | Dulf)dute) < o}

with norm || f||* = || fII32 + J5 Dw(f)dp(w). In the special case where
i = m is normalized linear Lebesgue measure on the unit circle we
obtain U,, = 1 and D(m) = D, the classical Dirichlet space. In this
case we have

12 = /|ﬂmm+/¢ﬂ2 - m+nu<n

Note also that D(u) = H? when p = 0. For measures p that are
supported in D these spaces arose in [16]. The general case was con-
sidered in [1], [22], and [19], where all the basic results about D(u) can
be found.

For any space of analytic functions B on the open unit disc D we de-
note by (M., B) the linear transformation defined by (M. f)(z) = zf(2)
and we use Lat(M., B) to denote the collection of invariant subspaces

of (M., B). We write M(B) for the set of multipliers of B,
M(B) ={p € Hol(D) : ¢f € B for all f € B}

and for ¢ € M(B) we use M, € B(B) for the corresponding mul-
tiplication operator, f — ¢f. Furthermore for ¢ € M(B) we write
llellm = || M| for the multiplier norm.

Let H = H? D(u), or L? = L*(dA) N Hol(D), the Bergman space.
By Beurling’s theorem we have a precise knowledge of Lat(M,, H?),
the Beurling lattice. Indeed, if (0) # M € Lat(M,, H?), then M =
©H? for some inner function ¢, i.e. ¢ is in the unit ball of H>
and satisfies |p(e”)] = 1 a.e., [5]. Less is known about the invari-
ant subspaces of the Dirichlet and Bergman shifts, but it is well-
established that the Bergman lattice differs in structure substantially
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from the Beurling lattice, [2], while there are a number of similari-
ties between Lat(M,, H?) and Lat(M,, D(p)), [15, 18, 1]. We refer the
reader to [9] for a nice overview of what is currently known about
the Dirichlet lattice Lat(M,, D). The analogues of inner functions
play an important role in the invariant subspace theory of both the
Bergman and Dirichlet spaces. For (0) # M € Lat(M.,H) we let
n = inf{k : 3f € M with f*)(0) # 0}. Then the extremal problem
sup{Ref™(0) : f € M, ||f|| < 1} has a unique solution, which will be
called the extremal function for M. In the case H = H? the extremal
function for M is the inner function satisfying M = @H?. It is easy
to check that up to a multiplicative constant of modulus one extremal
functions ¢ in ‘H are characterized by ("¢, p) = do,, where &y, = 1
for n =0 and = 0 for n > 0.

The main result that we want to bring to the attention of the reader
is a new analogy between the Beurling and Dirichlet lattices that is
based on the theory of Hankel operators H — H. Here we have written
H = {f: f € H} for the space of complex conjugates of . This is a
Hilbert space with inner product (f, )z = (g, f), f,9 € H.

As in [4] or [19] we define

X(H)={beH: FC >0, b)] < Cllell[[¢]], Ve, ¢ € Hol(D)}.

Note that for every b € X' (#) the map_(gp,@) — (1), b) extends to
be a bounded sesquilinear form on H x H. Thus with each b € X (H)
we may associate the Hankel operator H, € B(H,H),

<Hb90,E>ﬁ = <90¢7b>7-l7 90,¢ € HOI(D)

If H = H? our definition of Hankel operator differs by a rank 1 operator
from the common definition as operator H?> — H?*: C L?(0D). For
H = L2 our definition coincides with what is typically referred to as
"little Hankel operator”.

Carleson measures can be used to describe X'(#H) in the cases where
H = H? D, or L?. Recall that a positive measure y on D is called
a Carleson measure for H, if there is a C' > 0 such that [ [p[*du <
C|lp||* for all polynomials p. Then it is well-known that X(H?) =
BMOA = {b € H? : |V|*(1 — |2|?)dA is a Carleson measure for H?},
[8]. Similarly, X(L?) is the Bloch space, and also

X(L2) ={be D:|t']*(1 — |2/*)*dA is a Carleson measure for L2},
see e.g. [24]. Furthermore, in [4] it was shown that

X(D)={be D:|V|*dA is a Carleson measure for D}.
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One checks that (Hy(z2f),0)s; = (Hyf,20)57 for all f € H and

Y € Hol(D). This implies that for each b € X(H) we have ker H, €
Lat(M., H).

Theorem 1.1. Let pu be a nonnegative finite Borel measure supported
in D and let M € Lat(M,, D(11)). Then there is a b € X(D(u)) such
that M = ker H,,.

If M #£(0), if p is the extremal function for M, then b = M*p €
X(D(u)) and M = ker H,,.

For 1 = 0 one obtains H?. Of course, in this case the result is well-
known. For the Bergman space the direct analogue of Theorem 1.1 is
false, see [23].

We will prove Theorem 1.1 in Section 2. In the later sections of the
paper we will apply the theorem to obtain further results about these
spaces. If H = H? is the Hardy space, or H = L? is the Bergman space,
then it is natural to view H as part of the family of H?- or LP-spaces,
and investigate how properties of functions and operators on these
spaces change as the parameter p changes. However, if H = D(u), or
any abstract reproducing kernel Hilbert space, then it is unclear what
the most natural class of related spaces should be. In Section 3 of this
paper we investigate the weak product D(u)® D(u), which we consider
to be a natural analogue of the spaces H' and L! in the Hardy and
Bergman theories.

The weak product of H is denoted by H ® H and it is defined to
be the collection of all functions h € Hol(ID) such that there are se-
quences {fi}i>1,{gi}i=1 © H with 3277, [[fillllg:l] < oo and h(z) =
Yooy [i(2)gi(2) for all z € D. Note that whenever Y 22, || fillllg:| < oo,
then

D A@gi=)] < kAP Y IAllgill < oo,
i=1 i=1

thus the series will converge locally uniformly to the analytic function
h

A norm on ‘H © H is defined by
Rl = f 0> (1 fillllgsll = h(z) = > fil2)gi(z) for all z € D}.
i=1 =1

Weak products first appeared in a paper by Coifman, Rochberg and
Weiss [7]. It turns out that for spaces H considered in this paper one
can identify the dual of H ® H with X' (H), see [19]. The paper [4] (p.
22-24) contains an excellent motivation for the study of weak products
and a summary of results about such spaces, also see [3] and [19]. Here
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we just mention that if H is the Hardy space H? of the unit disc D, then
it follows from the Riesz factorization that H?>® H? = H! with equality
of norms, and in fact every h € H? ® H? can be written as a single
product of functions in H?. Similarly, it turns out that L2 ® L? = L},
[7]. Furthermore, the papers [3], [19], and [13] contain a number of
results about D ® D.

It follows from Beurling’s theorem and the HP-theory that every
nonzero invariant subspace M of HP, 0 < p < oo, is of the form
M = @ HP for some inner function ¢, [8]. Based on the analogy of D®D
with H' one might expect the structure of Lat(M,, D ® D) to resemble
the one of Lat(M,, D). Not much is known about this. In [13] the first
named author showed that every nonzero M € Lat(M,, D ® D) has
index 1, i.e. satisfies dim M /zM = 1. In this paper we will establish
further results along these lines.

We will write closg K for the closure of the set K in the topology of
B. Note that two easy corollaries to Beurling’s theorem are that

(1.2) for every M € Lat(M,, H*) we have M = H? N closy: M and

(1.3) for every N € Lat(M,, H') we have N = closg: (N N H?).
We will establish the Dirichlet analogue of (1.2).

Theorem 1.2. Let y1 be a nonnegative finite Borel measure supported
in D and let M € Lat(M,, D(y)), then M = D(u) N clospiyonp M.

This will be Theorem 3.2. Recall that f is called cyclic in B, if the
polynomial multiples of f are dense in B. It will follow from Theorem
1.2 that a function f € D(u) is cyclic in D(u), if and only if f is cyclic
in D(u) © D(p), see Corollary 3.3. Unfortunately we do not know
whether the Dirichlet analogue of (1.3) holds.

In Section 4 we will prove the following Theorem as a corollary to
Theorem 1.1.

Theorem 1.3. Let pu be a nonnegative finite Borel measure supported
in D and for j = 1,2, ... let (0) # M;, M € Lat(M,, D(p)), let @, be
the extremal function for M, let ¢ be the extremal function for M,
and let P;, P be the orhogonal projections onto M;, M.

If ;(2) = @(2) locally uniformly on D, then P; — P in the strong
operator topology.

If H = H? and if M = pH? for some inner function ¢, then Py =
M M7, and it is easily seen (and well-known) that Theorem 1.3 holds
for H?. Furthermore, we note that a Bergman space version of this

theorem is also true and that was proved by Shimorin, [21], Theorem
1A.
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For a finite or infinite sequence of points Z = {z1, 25,...} in D we
write I(Z) for all funtions in H that are zero at each z; counting mul-
tiplicities. Clearly I(Z) € Lat(M,, H) and we say I(Z) is generated by
the sequence 7.

The Caratheodory-Schur Theorem states that every function in the
unit ball of H* can be approximated locally uniformly in D by a se-
quence of finite Blaschke products, see e.g. [10], Theorem 2.1, or [20],
Theorem 5.5.1 for a different proof. In particular, every inner function
can be approximated by inner functions that correspond to invariant
subspaces that are generated by finite zero sets. Shimorin proved an
analogous theorem for the Bergman space, see [21], Theorem 1B. These
theorems then can be applied together with the corresponding version
of Theorem 1.3 to show that the projections onto all singly generated
invariant subspaces can be approximated by projections onto invariant
subspaces corresponding to finite zero sets.

Thus we wonder whether all Dirichlet extremal functions can be
approximated by Dirichlet extremal functions corresponding to finite
zero sets and which functions in D can be approximated by Dirichlet
extremal functions. We have two partial results.

Theorem 1.4. Let pu be a nonnegative finite Borel measure supported
in D and let S be an inner function such that M = SH?N D(u) # (0)
and let ¢ be the D(u)-extremal function for M.

Then there is a sequence of D(u)-extremal functions p,, correspond-
ing to finite zero sets such that @, — ¢ locally uniformly in D.

For a function f € H we define a harmonic function uy on D by
1+ Xz

T}

If H = H?, then uy = PJ[|f|?], the Poisson integral of | f|>. Thus, in this
case uy < 1in D if and only if f is in the unit ball of H>*. For H = L2

one obtains us(\) = [ L=D2P) £(2)1244  and notes that the unit ball

[1—Xz|? )

of H> is properly contained in {f € L2 : uy < 1in D}. Shimorin
calls functions f € L2 with uy < 1 in D subextremal functions, and he
proves in [21] that the subextremal functions form the set of functions
that can be approximated by Bergman extremal functions for invariant
subspaces corresponding to finite zero sets. Thus in particular, for both
spaces H = H? and H = L? it is true that a function f € H can be
approximated locally uniformly in D by H-extremal functions, if and
only if uy <1in D.

For the D(u)-spaces it is known that extremal functions are contrac-
tive multipliers, and hence it is easy to see that any limit of extremal

uf(A) = Re(
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functions also must be a contractive multiplier. Additionally we will
prove the following.

Theorem 1.5. Let y1 be a nonnegative finite Borel measure supported
inD. If p, is a sequence of D(u)-extremal functions and if f € D(u)
such that @, — f locally uniformly in D, then uy <1 in ID.

For the classical Dirichlet space D we will show that the collection
{f € D:wu < 1inD} is a proper subset of the unit ball of the
multiplier algebra M(D). However, even in this restricted setting we
do not know whether every function f € D with uy < 1in D can be
approximated by Dirichlet extremal functions.

2. INVARIANT SUBSPACES OF D(u)

We start with two simple lemmas that hold for all reproducing kernel
Hilbert spaces H C Hol(D) such that

(2.1) Hol(D) € M(#H) C H and

(2.2) Hol(DD) is dense in H.

Lemma 2.1. Suppose H satisfies conditions (2.1) and (2.2).
Ifbe X(H) and f € H, then for every p € M(H) we have

(2.3) (Hyf,@)3 = (0, 000 = (f, Mgb)n.

Proof. 1t is clear that (2.3) holds for f, € Hol(D). By a simple
approximation we obtain (Hy, )z = (¢, b)y for all 1 € Hol(D) and
v € M(H). B

Let p € M(H), f € H, and 1), € Hol(D) with v, — f in H, then
= lim (@1, b)
= (@f,0)
= (f, Mzb).
|
Lemma 2.2. Assume H satisfies conditions (2.1) and (2.2). If b €

X(H) and ¢ € M(H), then
(a) ker Hy, = [b]+, where [b], denotes the smallest subspace that con-

tains b and is invariant under My for every ¢ € M(H),
(b) Hip = M3b and

(C) by = M;b € X(H) and Hb1 = Hngo'
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Proof. (a) and (b) follow immediately from Lemma 2.1. In order to see

that (c) holds we apply equation (2.3) with f = uv for u,v € Hol(D)
to obtain

[(uv, MZb)| = [{puv, )] < [[Hpll[leulll[oll < l[Hbll| M [[ullllv]]-

This implies by = M3b € X(H) and one now easily verifies Hy, =
HbM<p. [ ]

It is shown in [1] that the polynomials are dense in D(u). In par-
ticular, it follows easily that D(u) satisfies (2.1) and (2.2). If f € H,
then we write [f] = closy{pf : p is a polynomial} for the smallest M-
invariant subspace containing f.

We will need the following result, see Lemma IV.4.8 and Theorem
IV.4.9 of [1]. Recall that for any extremal function ¢ of a nonzero
invariant subspace M we have ¢ € M S 2 M.

Theorem 2.3. If (0) # M € Lat(M,, D(u)), then dimM & z2M = 1.
Furthermore, if ¢ € M & 2M, |p|| = 1, then ¢ € M(D(n)) with
lef Il < \IfIl for all f € D(u), and M =ran M, = [¢].

Lemma 2.4. For any nonnegative finite measure p with support in D
we have M(D(u)) C X(D(u)).

Proof. 1t is well-known and easy to verify from (1.1) that b € M(D(u))
if and only if b € H* and |0'|*U,dA is a Carleson measure for D(p)

For b € M(D(u)) and ¢, € Hol(D) we have

(1, b) = /8 § obdm + /D ('Y + WU, dA.

The first summand is easily bounded by [|bl|o [[o[[ rr2 |41 2 < (bl aall[[ o[l 221],
while the second summand can be seen to be bounded after applications

of the Cauchy-Schwarz inequality and the Carleson measure property
of [b'[*U,dA. The lemma follows. [

Y

We are now ready to prove our main theorem.

Theorem 2.5. Let M € Lat(M,, D(u)). Then there is a b € X(D(u))
such that M = ker H,.

If M #(0), if ¢ is the extremal function for M, then b = M} €
X(D(p)) and M = ker Hy,.

Proof. We first consider the case M = (0). By Lemma 2.2 we need
to show the existence of b € X (D(u)) such that [b], = D(u), i.e. bis
cyclic for M. Cyclic vectors b € ‘H for M} exist in abundance for all
Hilbert spaces H satisfying (2.1) and (2.2), see e.g. [6]. We follow the
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ideas in [6] to construct a M7 -cyclic vector in M(D(u)) € X(D(u)).
Let kx(z) denote the reproducing kernel for D(p). Lemma 2.2 (a) of
[11] implies that for each A € D the function k) € M(D(u)). Indeed,
while it is true that k,(z) is a complete Nevanlinna Pick kernel ([22]),
we note that one can also just follow the proof of Lemma 2.2 (a) of
[11] and use Theorem 2.3. Now let A; € D be a sequence of distinct
points with A; — 0 and choose ¢; > 0 such that 7%, ¢;l|ky,lm < o0
and 3777 ¢jl|ky|[* < oo. Define a measure o = Z cjdy;, and set
b= 72, cjky,, then b € M(D(u)).

Also note that for g € D(p) we have [|g]*do = 3772 cjlg(N[* <
lgll* 22521 ejllk,|I? < o0, hence g € L*(o).

Now suppose that ¢ € D(u) such that g L [b].. Then for every
polynomial p we have

0= (g, M,b) chp /pgda

It is clear that the polynomials are dense in L?(o), thus g(\;) = 0
for all j. The analyticity of g implies that ¢ = 0. Hence b is M}-cyclic.

Next we suppose M # (0). Let ¢ be the extremal function for M.
Then by Theorem 2.3 M = [p] and ¢ € M(D(u), hence by Lemmas
2.4 and 2.2 we have b = MFp € X(D(n)).

Let NV = [b]+. Then by Lemma 2.2 (a) we have N = ker H,, and we
have to show that M = A. By Theorem 2.3 it suffices to prove that
o0 €N S zN. For n > 0 we have

(Hyp,Z") = ("o, MIp) = (2" g, 0) =0,
thus ¢ € ker H, = N. Furthermore, if f € A/, then
so ¢ L 2N and hence ¢ € N © zN.

7=1

Remark 2.6. If the extremal function ¢ for M satisfies ©(0) # 0,
then one can also take b=1— ¢(0)p and obtain ker H; = M.

Indeed, under that hypothesis one checks that b = Py 1 L [p] = M,
so that [b], € Mt = [ gp] (as established in the proof of the previous
theorem). Also M*¢ = so( ) *b e [b].. Thus [b], = [M7g], and this

implies ker H; = ker Hy+, = M.
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Remark 2.7. Similarly, if X\ € D such that there is f € M with
f(A\) # 0, then it turns out that b = Pyky € M(D(u)) C (D(,u))
and M = ker Hy,.

See Theorem 2.2.10 of [14]. We will not use this result here.

3. INVARIANT SUBSPACES OF D(u) ® D(u)

It was a basic observation of Coifman, Rochberg, and Weiss ([7]) that
in many cases one can identify X'(H) with the dual space of H ® H.

A proof that this duality holds for the spaces H = D(u) can be found
in [19], see Theorems 1.2 and 1.3. The needed estimate ||f,|| < 2| f|
for all f € D(u), 0 <r <1, f.(2) = f(rz) was established in [1].

Theorem 3.1. (D(u) ® D(p))* = X(D(n)), i.e. if for b € X(D(u))
we define Ly on D(u) by

Ly(h) = (h,b),

then Ly, extends to be bounded on D(u) ® D(u), and the map b — Ly
is a congugate linear isometric isomorphism of X (D(u)) onto (D(p) ®

D(p))".

Corollary 3.2. Let i be a finite positive measure in D, and let M €
Lat(M,, D(p)). Then

M = D(p) N clospyen(u) M.

Proof. The corollary is clearly true for M = (0). Thus we suppose that
M # (0) and we set N = D(u) N clospep M. Clearly M C N €
Lat(M.. D(1)).

Suppose that there is an f € N such that f ¢ M. By use of
Theorem 2.5 we pick b € X(D(u)) such that ker H, = M. Then the
functional that b defines in the dual of D(p) ® D(p) annihilates M and
hence it annihilates closp(ep() M. However, since f € N\ ker H,
we have Hyf # 0. Then there is a multiplier ¢ such that (pf,b) =
(Hyf. ?)pgy # 0. But of € N C closp(yen(y M, and hence b does
not annlhllate all of clospeop) M. This contradlctlon proves the
corollary. [ |

Corollary 3.3. Let f € D(n). Then f is cyclic in D(p) if and only if
f is cyclic in D(u) ® D(p).

Proof. Since ||pf — 1]« < ||pf — 1] is is clear that cyclic vectors in
D(p) are cyclic in D(p) @ D(p). If f is not cyclic in D(p), then we
can take M = [f] € Lat(M,, D(n)) and apply the previous Corollary
to conclude that closp()eplf] # D(r) © D(p), i.e. f is not cyclic in
D(p) © D(p). u
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4. APPROXIMATION BY D(u)-EXTREMAL FUNCTIONS

If F, is a sequence of subspaces of a Banach space F, then define
limF, ={x € E: 3z, € E, with x,, — z}.
It is easy to see that limF,, is always closed subspace. See [21].

Lemma 4.1. For any E,, E in a Hilbert space we have
limF, NlimEr = (0).

Consequently, if E C limFE, and E+ C limE;-, then E = limFE,, and
Et =1limE; .

Proof. Suppose = € limFE,, NlimE:-, then there are sequences z,, € E,
and ¥y, € E+ such that x, — = and y, — x, hence ||z,[|* + [|yn||* =
|2, — ynl|* = 0, hence z = 0. [ |

Lemma 4.2. Let P, P, P, ... be projections with ranges E, E1, Fs, ....
Then the following are equivalent:

(a) P, — P in the weak operator topology,

(b) P, — P in the strong operator topology,

(¢) E =1limFE, and B+ = limE;,

(d) E C limE, and E+ C limE:-.

Proof. The equivalence of (a) and (b) is elementary and well-known,
the equivalence of (b) and (c) is Lemma 2 of [21], (c) =(d) is trivial
and (d) = (c) follows from Lemma 4.1. |

Proposition 4.3. Assume that H satisfies (2.1) and (2.2).
(a) If up,u € M(H) with u,, — u in H, then

[u] C lim[uy).
(b) If b, b € X(H) with b, — b in H, then
keerL gli_mkerHli.

Proof. (a) The set {pu : p a polynomial} is dense in [u]. (a) follows,
because by (2.1) each polynomial p is a multiplier, hence we have pu,, €
[u,,] and pu,, — pu.

(b) Set E,, = ker H;-. Note that the set {H;u : v € M(H)} is dense
in clostan Hj = ker H;*. Thus by Lemma 2.2 (b) it will suffice to show
that Hiu = M*b € limF,, for every u € M(H). Let u € M(H), then
H; u € E, for each n and Hy u = M;b, — M;b € limF,,. [

Example 4.4. Let Z = {\,..., A} CDwith0 ¢ Z and let A € D\ Z,
A # 0, and let M = I(Z), the zero-based invariant subspace with zeros
Z. If P is the projection onto M+ we let b = Pky. Then b is a finite
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linear combination of reproducing kernels and hence H, is bounded and
M = ker Hb-

If we let b, = b+ Lk, then b, — b in H (or even in M(H)). Also,
if k) is not a linear combination of ky,,..., k), , then for each n we
have ker H,, = I(Z U {\}) # ker H, and E,, = closed linear span of
{k.: 2 € ZU{\}} # ker H;>. Thus we don’t always get equality in
Proposition 4.3 (b).

Corollary 4.5. Let y be a finite positive measure in D. Forj =1,2, ...
let (0) # M;,M € Lat(M,,D(n)), let ¢; be the extremal function
for M;, let ¢ be the extremal function for M, and let P;, P be the
orthogonal projections onto M;, M.

If pj(z) = @(2) for all = € D, then P; — P in the strong operator

topology.

Proof. Since ¢,(z) — ¢(z) for all z € D and ||p,|| = ||¢]| =1 for all n
we have ¢, — ¢ weakly and hence ||¢, — ¢||> = 2—2 Re(pn, ) — 0 as
n — 00. By Theorem 2.3 ¢,, and ¢ satisfy the hypothesis of Proposition
4.3 (a), hence M = [p] C lim[ep,].

Next set b, = M}y, and b = M;p. Then b, — bin ‘H and by Lemma
2.2 we have b,,b € X(D(u)). Thus by Theorem 2.5 M+ = ker H;- C
lim ker H;: = limM;;. The Corollary now follows from Lemma 4.2. W

Lemma 4.6. Let ;i be a finite positive measure in D, let S be an inner
function, and let f € H?. Then for all A\ € D we have

1—A S—=A I+ A
s < 120 < 10

= Sf1%.
L4 [A] 11—\ 1—MN 7l

Proof. Let |z| < 1. Then since S;—‘E(Zz) 1 SH? with respect to the H?
inner product we have

D(S—A)(y—m%2/ 1 S(z) — S(w)|* |dw]
12T 1=ASE)P S 1= AS(w)2 | z—w 2
2
_ 212 B
_a jAI)Qt/‘ 575”@Uy9@0 Sw)| [dw|
[1=AS(2)P? Jjwi=1 [ 2w 2m
1—|A]?
_ (_|‘>D4)
11— AS(2)2
This easily implies
1— ) S—XA. _1+])
4.1 . <D, —) < D,(S
(4.1) TE N (8) = Do) Y (5)
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for all |z| < 1. If |z] = 1, then any local Dirichlet integral D.(g) is
the limit of D, (g) whenever |z,| < 1 and z, — z nontangentially, see
[17], Lemma 3.3. Hence (4.1) holds for all |z| < 1. The lemma now
follows from the definition of the norm in D(u) and because for any
inner function B, any f € H? and any z € D we have D,(Bf) =
D.(B)|f(2)|* + D.(f), see [17], Lemma 3.4. |

Theorem 4.7. Let p be a finite positive measure in D. Let Sy be an
inner function such that M = SoH?* N D(p) # (0) and let ¢ be the
D(p)-extremal function for M.

Then there is a sequence Zp, = {z1in, Zon, - 2k,n} Of finite sequences
in D such that the D(u)-extremal functions ¢, for 1(Z,) converge lo-
cally uniformly in D to .

Proof. Write Sy(z) = 285 (z), where k > 0 and S is an inner function
with S(0) # 0. Then the extremal function ¢ for M is of the form
¢ = 2FSu for some u € H?. Since inner factors increase the D(pu)-
norm (see [17], Lemma 3.4) it is clear that u is an outer function and

that S(0)u(0) > 0.

By Lemma 4.6 we have || 2" =2 u||* < oo for all [A] < 1 and ||2* 255 ull —
|2#Sul] = 1 as |A\| = 0. Thus M, := zkls )\’EHQ N D(u) # (0) for
all [A\| < 1. For A € D\ {0} we set S\ = zki)\’\s/szlS /\AS then

Shu € My, [|Shu|| =1, and Sy(z) — So(z) as [A| — 0.

For |A| < |S(0)] let uy be the function such that ¢, = Syu, is the
extremal function for M,. We will show that ¢, — ¢ locally uniformly
inDas |A\| = 0.

We have 1 = ||Shuy|| > |lual|. It suffices to prove that if v is any
weak limit of uy as |A| — 0, then u = v.

Thus let v € D(p) such that 3|\,| — 0 with u,, — v locally uni-
formly in D.

The extremality of ¢y, = Sy, uy, in M), and the properties of Sy, u
imply that |uy,(0)] > |u(0)| for each n. Thus |v(0)| > |u(0)].

But we also have S, (z)uy, (2) = So(z)v(z) in D and hence Sy, uy, —
Sov weakly in D(p). Thus ||[Sov|| < 1 and Spv € M. Then the ex-
tremality of ¢ = Sou in M implies |u(0)| > |v(0)|. The uniqueness of
the extremal function ¢ = Spu implies that there is a |¢| = 1 such that
Sou = cSov. From the extremal condition we also have S(0)u(0) > 0

— S’zn) . (0) > 0. Taking n — oo we conclude S(0)v(0) > 0 and

hence u = v. Thus ¢y = Shuy = ¢ = Spu locally uniformly in D.
By Frostman’s theorem we have By = zk% is a Blaschke product
for all A € D\ K, where K is an exceptional set of zero logarithmic

and =2
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capacity. Note that it is clear that if B) is a Blaschke product, then M,
is a zero based invariant subspace. Thus the above shows that ¢ can
be approximated locally uniformly by extremal functions corresponding
to zero based invariant subspaces. The Theorem follows, because if Z
is any zero sequence for D(u), then the extremal function for I(Z)
can be approximated locally uniformly on D by the extremal functions
corresponding to the partial subsequences of Z. That can be seen by
an argument similar to the one given above. We sketch the details
below for the case where 0 ¢ Z.

Suppose Z = {z1,29,...}, 0 € Z, and let ¢ € I(Z) be the extremal
function. Then for n € N, let Z,, = {21, 22,...,2,}, then I(Z,) D
I(Z) = NI (Zy). Suppose ¢, is the extremal function for I(Z,), then
©n(0) > ©,01(0) > ... > ¢(0). Let g be any weak limit of ¢, then
g € I(Z) and lim,, ¢,(0) = g(0), thus ¢(0) < g(0) and so g = ¢ by the
uniqueness of the extremal function for (7). |

5. A NECESSARY CONDITION FOR APPROXIMATION

For this section again we suppose that  is a nonnegative finite Borel
measure that is supported in D. As is easy to check the local Dirichlet
integral has the property that

(5.1) Dy(2f) = Du(f) + 1 f(w)[*

for all jw| < 1 and all f € H?. If |w| = 1 and D,,(f) < oo, then f has
finite non-tangential limit f(w) at w and equation (5.1) holds in this
case as well ([17]). This implies that MM, — I is a positive operator
on D(u). Let D denote the positive square root of MM, — I. Then
equation (5.1) implies

(5.2) IDAI* = ll=f17 = 117 = / |f*dp

|z]<1
for any f € D(p).

Lemma 5.1. If u # 0, then the inclusion map i : D(u) — L*(u) is
compact.

Proof. Using the notation from before the lemma we see from (5.2) that
i*i = D? and hence it suffices to show that D is compact. Since M,
is bounded below and its range has codimension one in D(u) (see [1])
it follows that F,, = (2™D(u))* is n-dimensional and D, = DPy, is a
finite rank operator. Equation (5.1) implies that for f € D(u), A € D,
and n € N we have Dy(2"f) = Da(f) + Sop—s IMN**[f(M)]>. Hence
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\]Lz;f(|)]2 = £ + J5 300 I f(N)|2du(N) and therefore whenever
I1D2"f1 _ Iz A2 — N2 £
12 £ 112+ S5 ko IAPHLF ) Pd()
B SPTE VTGRS
LI + J5 kg IAPELF ) Pdp(A)
Jo AP LF ) Pdp()

<
— AP+ 5 IAPF ) Pdu(N)
1

n

IN

This implies

Dn 2
122" fl] <——>Oasn—>oo

lz7f117
thus D is compact. |

ID — Dy|* = P

Recall from the introduction that for f € D(u) and A € D we defined

!

Then uy is harmonic on D and wuy is identically equal to 1 for any
extremal function f. The definition of uy is motivated by Shimorin’s
work in [21].

up(A) = Re (

Theorem 5.2. If ¢, are extremal functions in D(p) and if ¢,(2) —
f(2) for every z € D, then us(z) <1 for all z € D.

Proof. The theorem is trivial for y = 0, thus we will assume that
0 #0. Let A€ D and g € D(p). Then uy(A) = ||g[|* + 2Re (229, 9)

and hence

Az
= 0+ 2500l = ) + Pl

= uy(\) + APID+ —H2+|A||| XH2

I*

By use of (5.2) this implies

(5:3) (L= AP llsagll® = ug(N) + W/\SA (2)[*dp(=),

where s)(2) = ;.



16 LUO AND RICHTER

Now let ¢, and f be as in the theorem. Since ¢, is a norm-
bounded sequence that converges pointwise we conclude that ¢,, con-
verges weakly to f € D(u). sy € M(D(u)) implies that s, converges
weakly to syf. Hence [[syf||*> < liminf, o |[sx@n|*. Furthermore,
Lemma 5.1 implies that sy¢, — sxf in L?(u). Thus

/|<1 |S)\(Z)90n(z)‘2d,u(z) — |5/\(Z)f(2)|2du(z).

|lz[<1

But now (5.3) implies that uy(\) < liminf, o u,, (A) = 1. [

We have noted in the Introduction that local uniform limits of ex-
tremal functions also must be contractive multipliers. We will show
now that for the Dirichlet space D the condition uy < 1 in D already
implies that f is a contractive multiplier. We start with an observation
that holds for all D(u).

If p is an extremal function in D(u), then it was shown in [16] and
[1] that

Ipell? = /| e AL [ b)) Rdu)

2m |2I<1
for every polynomial p. The following lemma is a generalization of this.

Lemma 5.3. Let f € D(u), then for any polynomial p we have

pfE=tim [ )P S [ D)) du).

j2=1 2 Jpx

Proof. First note that by the definition of u; we have

. |d |
1 LRAEE

= (", f)

whenever k is a nonnegative integer. Similarly, for & < 0 we have

hmr—>1f| = 17 Uf(T‘Z) ldz| _ <f,Z|k|f>.
Now write

g = [ M=) )5

=1 W Z—w 2m
Recall from [17], Lemma 3.4 and its proof, that D,(Bh) = D,(B)|h(z)*+
D, (h) for all inner functions B, all h € H?, and all z € D. By polariza-
tion this implies D,(Bh, Bg) = D.(B)h(z ) g(2) )+ . (h, g) for h,g € H.
If m > n we first apply this with B( ) = w", h(w w™ ™", and
g(w) = 1 and obtain D,(w™, w") = D,(w"™)z"" ”. Next we apply the

\_/
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same formula with B(w) = w"™, h(w) = w™ " f(w), and g(w) = f(w)
and obtain for all m > n

D.(w™f,w" f) = D(w")z"""|f(2)]* + D.(w™ " f, )
= D.(w™,w")|f(2)]* + D.(w™"f, f).

Now the definition of the D(u)-norm implies that for m > n we have

g = [ D) +
) dz
= [ D Pt iy [ g (r2) .

A similar calculation holds for m < n and hence the lemma follows. W

Note that if uy < 1 in D, then 1 — u; is a nonnegative harmonic
function in D, hence there is a nonnegative measure ¢ such that uy =
1 — P[o], where P[o] denotes the Poisson integral of . Then Lemma
5.3 implies that

Ipf1* = llpl7 + Dz(p)lfIQdu—/ Ipl*do < max(L, [|f]15) Il

2l<1 2|=1
for every polynomi|a|l_p. Thus the inclu‘silon
{f€D(p) uy <1linDand [|flle <1} C{f € M(D(n)) + [[fllae < 13
holds for all p.
Theorem 5.4. If f € D, then ||f||2, < supyepup(). Consequently,
{feD:us<1inD} C{f e MD):|flmp <1}
Proof. The reproducing kernel for the Dirichlet spaceis ka(z) = >, Xnn:f ,

and it is a complete Nevanlinna-Pick kernel with £,(0) = 1, see e.g.
[22]. Then Lemma 2.2 (b) of [11] says that for all f € D and A € D

|F(V? < 2Re(krf, f) — Il fI1%.
A short calculation shows that
1
| ulonds = 2Relins. )~ 111
0

’ 2

Hence the two inequalities together imply | f(A)|* < sup,cp uy(z). Tak-
ing the supremum over A € D gives the desired estimate. |

Remark 5.5. Since there are bounded analytic functions in D that
are not multipliers, it follows that the boundedness of f does not im-
ply the boundedness of uy. The following provides a simple explicit
example with || fllm < 1 and sup,epus(z) > 1. It is shown in [11,
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Lemma 2.2| that for complete NP kernels one has |kx||pm < 2|k

and clearly, ug, (z) = llljgszl@\\P Thus setting fx = kx/(2]|kx||?) we

have || fallm < 1 and

11—z
A1 = AP {la ]

gy (Z)
_ 1+|A|
and henc.e SUD,ep Uy (2) = P 0 a8 IA| — 1 for ky the
reproducing kernel for the Dirichlet space.

6. OPEN QUESTIONS

Our work raises a number of open questions. The first one is whether
an analogue of statement (1.3) holds for D® D. In particular, we don’t
even know the answers to the following questions.

Question 6.1. (a) If N € Lat(M.,D ® D) with N # (0), then is
NND=#(0) ?

(b) Is every zero sequence for D ® D a zero sequence for D?

Of course, the work of this paper on approximation by extremal
functions is motivated by the following question.

Question 6.2. If M € Lat(M,, D), M # (0), then is there a sequence
of finite codimensional subspaces M; € Lat(M,, D) such that Pn —
Pry in the strong operator topology?

Corollary 4.5 and Theorem 4.7 imply that this is true for subspaces of
the type SH*N D where S is inner. A class of invariant subspaces of D
containing outer functions is given by Dg = {f € D : f =0 ¢.e. on E}.
Here E C T is a compact set of positive logarithmic capacity and f =0
q.e. on F means f(z) = 0 for all z € E'\ Z for some set Z of logarithmic
capacity 0. It is known that there are such sets E with Dg # (0), see
[9].

Question 6.3. Let £ C T be a compact set with positive logarithmic
capacity such that Dg # (0), and let ¢ be the extremal function for
Dg.

Then are there extremal functions ¢; for zero set based invariant
subspaces 1(Z;) such that p; — ¢ locally uniformly in D?

The argument at the end of the proof of Theorem 4.7 shows that
if the answer to the question is affirmative, then it can be done with
finite zero sets. Hence Question 6.2 would have an affirmative answer
for such subspaces.
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Question 6.4. Let LE(D) be the set of local uniform limits of func-
tions of the type cp, where |c| =1 and ¢ is a Dirichlet extremal func-
tion. Is it true that

LED)={feD:us <1}?
Theorems 5.2, 5.4, and Remark 5.5 imply that
LE(D) C{f€D:u; <1} S {f € M(D): |[flln < 1.

The following example is due to Carl Sundberg and it shows that there
are nonzero functions in LE(D) which are not extremal functions. Note
that if f(z) = az?, then uy(\) = (j + 1)]al*

Theorem 6.5. (Sundberg, private communication) If f(z) = az’ for

some 7 > 0 and a > 0 with a* < jﬁ, then there is a sequence of

Dirichlet extremal functions o, corresponding to finite zero sets such
that @, — [ locally uniformly in D.

Proof. Throughout this proof we fix j > 0. If a®> = +1’ then f is an

extremal function and there is nothing to prove. If a = 0, then we just

take pn(z) = \/% and the theorem follows in this case. Thus we will
assume that 0 < a < ﬁ

We continue the proof with the observation that if 0 < |b| < 1 and if
‘H is a reproducing kernel Hilbert space on D with reproducing kernel

kx(2) such that ky and k; are linearly independent, then ||ko|*— LAV

I
 ko(2) - (2 )

2 \k,,
mk H O

is the extremal function for the subspace {g € H : g(b) = 0}. It satisfies

2
0) = /Il — i

0 and hence

For n € N let
M, = {g € Hol(D) : lgll3,, = Y _(nk +j + 1)|g(k)* < oo},
k=0

then H,, is a Hilbert space of analytic functions with the property that
(f,9)n, = (Z2(f oz™),27(go 2"))p for all f, g € H,. Furthermore, the

reproducing kernel for H,, is k3 (z) = > ;- mxkzk.

Note that kjj(z) = ﬁ and kg‘(b) — 00 as |b| — 1. Thus we may

n ke (01> -
choose b, € D\{0} such that ||k%|*— ‘I;Cn = ﬁ(l—m) = a?.

Now let 1, be the H,-extremal function for {9 € H,, : g(by) = 0},
and set ¢, (z) = 271, (2"). Notice that ,, is analytic in a neighborhood
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of D, hence it is clear that the invariant subspace of D that is generated
by ¢, is a finite zero set based invariant subspace M,,.

Any nonnegative integer is of the form m = kn + r for some integers
E>0and 0 <r <mn. If0<r < mn,then by the form of the power
series of the functions in the inner product it is clear that

<ZmS0na (pn>D = <an+r+j(¢n o Zn)y ZJ(Q/JTL o Zn))D = U.

If r =0, then we have

<Zm90n7 (pn>D = <an+j(wnozn)’ zj<wnozn)>D = <2kwnawn>7{n = Ook = Oom-
Thus since 9053 )(O) > 0 it follows that ¢, is the extremal function for
Mn'

Finally we note that 1,(2) = a + 2¢,(z) for some analytic function
gn- Thus @,(2) = f(2) + 27™g,(2") and since ||p,]| = 1 for all n
we conclude that ¢, — f weakly in D. This implies ¢, — f locally
uniformly in D. [ |
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