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SHUAIBING LUO AND STEFAN RICHTER

Abstract. The Dirichlet space D is the space of all analytic func-
tions f on the open unit disc D such that f ′ is square integrable
with respect to two-dimensional Lebesgue measure. In this paper
we prove that the invariant subspaces of the Dirichlet shift are in
1-1 correspondence with the kernels of the Dirichlet-Hankel oper-
ators. We then apply this result to obtain information about the
invariant subspace lattice of the weak product D�D and to some
questions about approximation of invariant subspaces of D.

Our main results hold in the context of superharmonically weighted
Dirichlet spaces.

1. Introduction

If f ∈ Hol(D) denotes an analytic function on the open unit disc

D, then we use f̂(n) for its nth Taylor coefficient. We write H2

for the Hardy space of the unit disc, it has norm given by ‖f‖2H2 =∫
|z|=1
|f(z)|2 |dz|

2π
=
∑∞

n=0 |f̂(n)|2.
In this paper we will consider weighted Dirichlet spaces of the form

H = {f ∈ Hol(D) :

∫
D
|f ′(z)|2U(z)dA(z) <∞},

where U is a non-negative superharmonic function on D and dA denotes
2-dimensional Lebesgue measure. Particular examples of such weights
are U(z) = (1− |z|2)1−α for 0 < α ≤ 1. By the representation theorem
for superharmonic functions (see [12], page 109) such weights can be
represented by use of a finite Borel measure µ on the closed unit disc.
We write

Uµ(z) =

∫
|w|<1

log

∣∣∣∣1− wzz − w

∣∣∣∣ dµ(w)

1− |w|2
+

∫
|w|=1

1− |z|2

|1− wz|2
dµ(w), z ∈ D,
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then the correspondence µ→ Uµ is a bijection of the collection of finite

positive measures on D onto the set of positive superharmonic functions
on D, and it is a theorem of Aleman, [1], Theorem IV.1.9 that for all
f ∈ H2 we have∫

D
|f ′(z)|2Uµ(z)dA(z) =

∫
D
Dw(f)dµ(w),(1.1)

where Dw(f) =
∫
|z|=1

|f(z)−f(w)|2
|z−w|2

|dz|
2π

is called the local Dirichlet integral

of f at w ∈ D. Here we follow the convention that Dw(f) = ∞, if f
does not have a nontangential limit at w ∈ ∂D.

We define

D(µ) = {f ∈ H2(D) :

∫
D
Dw(f)dµ(w) <∞}

with norm ‖f‖2 = ‖f‖2H2 +
∫
DDw(f)dµ(w). In the special case where

µ = m is normalized linear Lebesgue measure on the unit circle we
obtain Um ≡ 1 and D(m) = D, the classical Dirichlet space. In this
case we have

‖f‖2 =

∫
∂D
|f |2dm+

∫
D
|f ′|2dA

π
=
∞∑
n=0

(n+ 1)|f̂(n)|2,

Note also that D(µ) = H2 when µ = 0. For measures µ that are
supported in ∂D these spaces arose in [16]. The general case was con-
sidered in [1], [22], and [19], where all the basic results about D(µ) can
be found.

For any space of analytic functions B on the open unit disc D we de-
note by (Mz,B) the linear transformation defined by (Mzf)(z) = zf(z)
and we use Lat(Mz,B) to denote the collection of invariant subspaces
of (Mz,B). We write M(B) for the set of multipliers of B,

M(B) = {ϕ ∈ Hol(D) : ϕf ∈ B for all f ∈ B}

and for ϕ ∈ M(B) we use Mϕ ∈ B(B) for the corresponding mul-
tiplication operator, f → ϕf . Furthermore for ϕ ∈ M(B) we write
‖ϕ‖M = ‖Mϕ‖ for the multiplier norm.

Let H = H2, D(µ), or L2
a = L2(dA) ∩ Hol(D), the Bergman space.

By Beurling’s theorem we have a precise knowledge of Lat(Mz, H
2),

the Beurling lattice. Indeed, if (0) 6= M ∈ Lat(Mz, H
2), then M =

ϕH2 for some inner function ϕ, i.e. ϕ is in the unit ball of H∞

and satisfies |ϕ(eit)| = 1 a.e., [5]. Less is known about the invari-
ant subspaces of the Dirichlet and Bergman shifts, but it is well-
established that the Bergman lattice differs in structure substantially
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from the Beurling lattice, [2], while there are a number of similari-
ties between Lat(Mz, H

2) and Lat(Mz, D(µ)), [15, 18, 1]. We refer the
reader to [9] for a nice overview of what is currently known about
the Dirichlet lattice Lat(Mz, D). The analogues of inner functions
play an important role in the invariant subspace theory of both the
Bergman and Dirichlet spaces. For (0) 6= M ∈ Lat(Mz,H) we let
n = inf{k : ∃f ∈ M with f (k)(0) 6= 0}. Then the extremal problem
sup{Ref (n)(0) : f ∈ M, ‖f‖ ≤ 1} has a unique solution, which will be
called the extremal function for M. In the case H = H2 the extremal
function for M is the inner function satisfying M = ϕH2. It is easy
to check that up to a multiplicative constant of modulus one extremal
functions ϕ in H are characterized by 〈znϕ, ϕ〉 = δ0n, where δ0n = 1
for n = 0 and = 0 for n > 0.

The main result that we want to bring to the attention of the reader
is a new analogy between the Beurling and Dirichlet lattices that is
based on the theory of Hankel operators H → H. Here we have written
H = {f : f ∈ H} for the space of complex conjugates of H. This is a
Hilbert space with inner product 〈f, g〉H = 〈g, f〉H, f, g ∈ H.

As in [4] or [19] we define

X (H) = {b ∈ H : ∃ C > 0 |〈ϕψ, b〉| ≤ C‖ϕ‖‖ψ‖,∀ϕ, ψ ∈ Hol(D)}.

Note that for every b ∈ X (H) the map (ϕ, ψ) → 〈ϕψ, b〉 extends to
be a bounded sesquilinear form on H×H. Thus with each b ∈ X (H)
we may associate the Hankel operator Hb ∈ B(H,H),

〈Hbϕ, ψ〉H = 〈ϕψ, b〉H, ϕ, ψ ∈ Hol(D).

IfH = H2 our definition of Hankel operator differs by a rank 1 operator
from the common definition as operator H2 → H2⊥ ⊆ L2(∂D). For
H = L2

a our definition coincides with what is typically referred to as
”little Hankel operator”.

Carleson measures can be used to describe X (H) in the cases where
H = H2, D, or L2

a. Recall that a positive measure µ on D is called
a Carleson measure for H, if there is a C > 0 such that

∫
D |p|

2dµ ≤
C‖p‖2 for all polynomials p. Then it is well-known that X (H2) =
BMOA = {b ∈ H2 : |b′|2(1 − |z|2)dA is a Carleson measure for H2},
[8]. Similarly, X (L2

a) is the Bloch space, and also

X (L2
a) = {b ∈ D : |b′|2(1− |z|2)2dA is a Carleson measure for L2

a},

see e.g. [24]. Furthermore, in [4] it was shown that

X (D) = {b ∈ D : |b′|2dA is a Carleson measure for D}.
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One checks that 〈Hb(zf), ψ〉H = 〈Hbf, zψ〉H for all f ∈ H and
ψ ∈ Hol(D). This implies that for each b ∈ X (H) we have kerHb ∈
Lat(Mz,H).

Theorem 1.1. Let µ be a nonnegative finite Borel measure supported
in D and let M ∈ Lat(Mz, D(µ)). Then there is a b ∈ X (D(µ)) such
that M = kerHb.

If M 6= (0), if ϕ is the extremal function for M, then b = M∗
zϕ ∈

X (D(µ)) and M = kerHb.

For µ = 0 one obtains H2. Of course, in this case the result is well-
known. For the Bergman space the direct analogue of Theorem 1.1 is
false, see [23].

We will prove Theorem 1.1 in Section 2. In the later sections of the
paper we will apply the theorem to obtain further results about these
spaces. IfH = H2 is the Hardy space, orH = L2

a is the Bergman space,
then it is natural to view H as part of the family of Hp- or Lpa-spaces,
and investigate how properties of functions and operators on these
spaces change as the parameter p changes. However, if H = D(µ), or
any abstract reproducing kernel Hilbert space, then it is unclear what
the most natural class of related spaces should be. In Section 3 of this
paper we investigate the weak product D(µ)�D(µ), which we consider
to be a natural analogue of the spaces H1 and L1

a in the Hardy and
Bergman theories.

The weak product of H is denoted by H � H and it is defined to
be the collection of all functions h ∈ Hol(D) such that there are se-
quences {fi}i≥1, {gi}i≥1 ⊆ H with

∑∞
i=1 ‖fi‖‖gi‖ < ∞ and h(z) =∑∞

i=1 fi(z)gi(z) for all z ∈ D. Note that whenever
∑∞

i=1 ‖fi‖‖gi‖ <∞,
then

∞∑
i=1

|fi(z)||gi(z)| ≤ ‖kz‖2
∞∑
i=1

‖fi‖‖gi‖ <∞,

thus the series will converge locally uniformly to the analytic function
h.

A norm on H�H is defined by

‖h‖∗ = inf{
∞∑
i=1

‖fi‖‖gi‖ : h(z) =
∞∑
i=1

fi(z)gi(z) for all z ∈ D}.

Weak products first appeared in a paper by Coifman, Rochberg and
Weiss [7]. It turns out that for spaces H considered in this paper one
can identify the dual of H�H with X (H), see [19]. The paper [4] (p.
22-24) contains an excellent motivation for the study of weak products
and a summary of results about such spaces, also see [3] and [19]. Here
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we just mention that ifH is the Hardy space H2 of the unit disc D, then
it follows from the Riesz factorization that H2�H2 = H1 with equality
of norms, and in fact every h ∈ H2 � H2 can be written as a single
product of functions in H2. Similarly, it turns out that L2

a � L2
a = L1

a,
[7]. Furthermore, the papers [3], [19], and [13] contain a number of
results about D �D.

It follows from Beurling’s theorem and the Hp-theory that every
nonzero invariant subspace M of Hp, 0 < p < ∞, is of the form
M = ϕHp for some inner function ϕ, [8]. Based on the analogy ofD�D
with H1 one might expect the structure of Lat(Mz, D�D) to resemble
the one of Lat(Mz, D). Not much is known about this. In [13] the first
named author showed that every nonzero M ∈ Lat(Mz, D � D) has
index 1, i.e. satisfies dimM/zM = 1. In this paper we will establish
further results along these lines.

We will write closBK for the closure of the set K in the topology of
B. Note that two easy corollaries to Beurling’s theorem are that

(1.2) for every M∈ Lat(Mz, H
2) we have M = H2 ∩ closH1M and

(1.3) for every N ∈ Lat(Mz, H
1) we have N = closH1(N ∩H2).

We will establish the Dirichlet analogue of (1.2).

Theorem 1.2. Let µ be a nonnegative finite Borel measure supported
in D and let M∈ Lat(Mz, D(µ)), then M = D(µ) ∩ closD(µ)�D(µ)M.

This will be Theorem 3.2. Recall that f is called cyclic in B, if the
polynomial multiples of f are dense in B. It will follow from Theorem
1.2 that a function f ∈ D(µ) is cyclic in D(µ), if and only if f is cyclic
in D(µ) � D(µ), see Corollary 3.3. Unfortunately we do not know
whether the Dirichlet analogue of (1.3) holds.

In Section 4 we will prove the following Theorem as a corollary to
Theorem 1.1.

Theorem 1.3. Let µ be a nonnegative finite Borel measure supported
in D and for j = 1, 2, ... let (0) 6= Mj,M ∈ Lat(Mz, D(µ)), let ϕj be
the extremal function for Mj, let ϕ be the extremal function for M,
and let Pj, P be the orhogonal projections onto Mj,M.

If ϕj(z) → ϕ(z) locally uniformly on D, then Pj → P in the strong
operator topology.

If H = H2 and if M = ϕH2 for some inner function ϕ, then PM =
MϕM

∗
ϕ, and it is easily seen (and well-known) that Theorem 1.3 holds

for H2. Furthermore, we note that a Bergman space version of this
theorem is also true and that was proved by Shimorin, [21], Theorem
1A.
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For a finite or infinite sequence of points Z = {z1, z2, ...} in D we
write I(Z) for all funtions in H that are zero at each zi counting mul-
tiplicities. Clearly I(Z) ∈ Lat(Mz,H) and we say I(Z) is generated by
the sequence Z.

The Caratheodory-Schur Theorem states that every function in the
unit ball of H∞ can be approximated locally uniformly in D by a se-
quence of finite Blaschke products, see e.g. [10], Theorem 2.1, or [20],
Theorem 5.5.1 for a different proof. In particular, every inner function
can be approximated by inner functions that correspond to invariant
subspaces that are generated by finite zero sets. Shimorin proved an
analogous theorem for the Bergman space, see [21], Theorem 1B. These
theorems then can be applied together with the corresponding version
of Theorem 1.3 to show that the projections onto all singly generated
invariant subspaces can be approximated by projections onto invariant
subspaces corresponding to finite zero sets.

Thus we wonder whether all Dirichlet extremal functions can be
approximated by Dirichlet extremal functions corresponding to finite
zero sets and which functions in D can be approximated by Dirichlet
extremal functions. We have two partial results.

Theorem 1.4. Let µ be a nonnegative finite Borel measure supported
in D and let S be an inner function such that M = SH2 ∩D(µ) 6= (0)
and let ϕ be the D(µ)-extremal function for M.

Then there is a sequence of D(µ)-extremal functions ϕn correspond-
ing to finite zero sets such that ϕn → ϕ locally uniformly in D.

For a function f ∈ H we define a harmonic function uf on D by

uf (λ) = Re〈1 + λz

1− λz
f, f〉.

If H = H2, then uf = P [|f |2], the Poisson integral of |f |2. Thus, in this
case uf ≤ 1 in D if and only if f is in the unit ball of H∞. For H = L2

a

one obtains uf (λ) =
∫
D

1−|λz|2
|1−λz|2 |f(z)|2 dA

π
, and notes that the unit ball

of H∞ is properly contained in {f ∈ L2
a : uf ≤ 1 in D}. Shimorin

calls functions f ∈ L2
a with uf ≤ 1 in D subextremal functions, and he

proves in [21] that the subextremal functions form the set of functions
that can be approximated by Bergman extremal functions for invariant
subspaces corresponding to finite zero sets. Thus in particular, for both
spaces H = H2 and H = L2

a it is true that a function f ∈ H can be
approximated locally uniformly in D by H-extremal functions, if and
only if uf ≤ 1 in D.

For the D(µ)-spaces it is known that extremal functions are contrac-
tive multipliers, and hence it is easy to see that any limit of extremal
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functions also must be a contractive multiplier. Additionally we will
prove the following.

Theorem 1.5. Let µ be a nonnegative finite Borel measure supported
in D. If ϕn is a sequence of D(µ)-extremal functions and if f ∈ D(µ)
such that ϕn → f locally uniformly in D, then uf ≤ 1 in D.

For the classical Dirichlet space D we will show that the collection
{f ∈ D : uf ≤ 1 in D} is a proper subset of the unit ball of the
multiplier algebra M(D). However, even in this restricted setting we
do not know whether every function f ∈ D with uf ≤ 1 in D can be
approximated by Dirichlet extremal functions.

2. Invariant subspaces of D(µ)

We start with two simple lemmas that hold for all reproducing kernel
Hilbert spaces H ⊆ Hol(D) such that

(2.1) Hol(D) ⊆M(H) ⊆ H and
(2.2) Hol(D) is dense in H.

Lemma 2.1. Suppose H satisfies conditions (2.1) and (2.2).
If b ∈ X (H) and f ∈ H, then for every ϕ ∈M(H) we have

(2.3) 〈Hbf, ϕ〉H = 〈ϕf, b〉H = 〈f,M∗
ϕb〉H.

Proof. It is clear that (2.3) holds for f, ϕ ∈ Hol(D). By a simple
approximation we obtain 〈Hbψ, ϕ〉H = 〈ϕψ, b〉H for all ψ ∈ Hol(D) and
ϕ ∈M(H).

Let ϕ ∈M(H), f ∈ H, and ψn ∈ Hol(D) with ψn → f in H, then

〈Hbf, ϕ〉H = lim
n→∞
〈Hbψn, ϕ〉H

= lim
n→∞
〈ϕψn, b〉

= 〈ϕf, b〉
= 〈f,M∗

ϕb〉.

�

Lemma 2.2. Assume H satisfies conditions (2.1) and (2.2). If b ∈
X (H) and ϕ ∈M(H), then

(a) kerHb = [b]⊥∗ , where [b]∗ denotes the smallest subspace that con-
tains b and is invariant under M∗

ψ for every ψ ∈M(H),
(b) H∗bϕ = M∗

ϕb and
(c) b1 = M∗

ϕb ∈ X (H) and Hb1 = HbMϕ.
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Proof. (a) and (b) follow immediately from Lemma 2.1. In order to see
that (c) holds we apply equation (2.3) with f = uv for u, v ∈ Hol(D)
to obtain

|〈uv,M∗
ϕb〉| = |〈ϕuv, b〉| ≤ ‖Hb‖‖ϕu‖‖v‖ ≤ ‖Hb‖‖Mϕ‖‖u‖‖v‖.

This implies b1 = M∗
ϕb ∈ X (H) and one now easily verifies Hb1 =

HbMϕ. �

It is shown in [1] that the polynomials are dense in D(µ). In par-
ticular, it follows easily that D(µ) satisfies (2.1) and (2.2). If f ∈ H,
then we write [f ] = closH{pf : p is a polynomial} for the smallest Mz-
invariant subspace containing f .

We will need the following result, see Lemma IV.4.8 and Theorem
IV.4.9 of [1]. Recall that for any extremal function ϕ of a nonzero
invariant subspace M we have ϕ ∈M	 zM.

Theorem 2.3. If (0) 6=M ∈ Lat(Mz, D(µ)), then dimM	 zM = 1.
Furthermore, if ϕ ∈ M 	 zM, ‖ϕ‖ = 1, then ϕ ∈ M(D(µ)) with
‖ϕf‖ ≤ ‖f‖ for all f ∈ D(µ), and M = ran Mϕ = [ϕ].

Lemma 2.4. For any nonnegative finite measure µ with support in D
we have M(D(µ)) ⊆ X (D(µ)).

Proof. It is well-known and easy to verify from (1.1) that b ∈M(D(µ)),
if and only if b ∈ H∞ and |b′|2UµdA is a Carleson measure for D(µ).

For b ∈M(D(µ)) and ϕ, ψ ∈ Hol(D) we have

〈ϕψ, b〉 =

∫
∂D
ϕψbdm+

∫
D
(ϕ′ψ + ϕψ′)b′UµdA.

The first summand is easily bounded by ‖b‖∞‖ϕ‖H2‖ψ‖H2 ≤ ‖b‖M‖‖ϕ‖‖ψ‖,
while the second summand can be seen to be bounded after applications
of the Cauchy-Schwarz inequality and the Carleson measure property
of |b′|2UµdA. The lemma follows. �

We are now ready to prove our main theorem.

Theorem 2.5. Let M∈ Lat(Mz, D(µ)). Then there is a b ∈ X (D(µ))
such that M = kerHb.

If M 6= (0), if ϕ is the extremal function for M, then b = M∗
zϕ ∈

X (D(µ)) and M = kerHb.

Proof. We first consider the case M = (0). By Lemma 2.2 we need
to show the existence of b ∈ X (D(µ)) such that [b]∗ = D(µ), i.e. b is
cyclic for M∗

z . Cyclic vectors b ∈ H for M∗
z exist in abundance for all

Hilbert spaces H satisfying (2.1) and (2.2), see e.g. [6]. We follow the
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ideas in [6] to construct a M∗
z -cyclic vector in M(D(µ)) ⊆ X (D(µ)).

Let kλ(z) denote the reproducing kernel for D(µ). Lemma 2.2 (a) of
[11] implies that for each λ ∈ D the function kλ ∈ M(D(µ)). Indeed,
while it is true that kλ(z) is a complete Nevanlinna Pick kernel ([22]),
we note that one can also just follow the proof of Lemma 2.2 (a) of
[11] and use Theorem 2.3. Now let λj ⊆ D be a sequence of distinct
points with λj → 0 and choose cj > 0 such that

∑∞
j=1 cj‖kλj‖M < ∞

and
∑∞

j=1 cj‖kλj‖2 < ∞. Define a measure σ =
∑∞

j=1 cjδλj , and set

b =
∑∞

j=1 cjkλj , then b ∈M(D(µ)).

Also note that for g ∈ D(µ) we have
∫
|g|2dσ =

∑∞
j=1 cj|g(λj|2 ≤

‖g‖2
∑∞

j=1 cj‖kλj‖2 <∞, hence g ∈ L2(σ).

Now suppose that g ∈ D(µ) such that g ⊥ [b]∗. Then for every
polynomial p we have

0 = 〈g,M∗
p b〉 =

∞∑
j=1

cjp(λj)g(λj) =

∫
pg dσ.

It is clear that the polynomials are dense in L2(σ), thus g(λj) = 0
for all j. The analyticity of g implies that g = 0. Hence b is M∗

z -cyclic.
Next we suppose M 6= (0). Let ϕ be the extremal function for M.

Then by Theorem 2.3 M = [ϕ] and ϕ ∈ M(D(µ), hence by Lemmas
2.4 and 2.2 we have b = M∗

zϕ ∈ X (D(µ)).
Let N = [b]⊥∗ . Then by Lemma 2.2 (a) we have N = kerHb, and we

have to show that M = N . By Theorem 2.3 it suffices to prove that
ϕ ∈ N 	 zN . For n ≥ 0 we have

〈Hbϕ, z
n〉 = 〈znϕ,M∗

zϕ〉 = 〈zn+1ϕ, ϕ〉 = 0,

thus ϕ ∈ kerHb = N . Furthermore, if f ∈ N , then

〈ϕ, zf〉 = 〈b, f〉 = 〈1, Hbf〉 = 0

so ϕ ⊥ zN and hence ϕ ∈ N 	 zN .
�

Remark 2.6. If the extremal function ϕ for M satisfies ϕ(0) 6= 0,

then one can also take b̃ = 1− ϕ(0)ϕ and obtain kerHb̃ =M.

Indeed, under that hypothesis one checks that b̃ = PM⊥1 ⊥ [ϕ] =M,

so that [b̃]∗ ⊆M⊥ = [M∗
zϕ]∗ (as established in the proof of the previous

theorem). Also M∗
zϕ = − 1

ϕ(0)
M∗

z b̃ ∈ [b̃]∗. Thus [b̃]∗ = [M∗
zϕ]∗ and this

implies kerHb̃ = kerHM∗zϕ =M.
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Remark 2.7. Similarly, if λ ∈ D such that there is f ∈ M with
f(λ) 6= 0, then it turns out that b = PM⊥kλ ∈ M(D(µ)) ⊆ X (D(µ))
and M = kerHb.

See Theorem 2.2.10 of [14]. We will not use this result here.

3. Invariant subspaces of D(µ)�D(µ)

It was a basic observation of Coifman, Rochberg, and Weiss ([7]) that
in many cases one can identify X (H) with the dual space of H�H.

A proof that this duality holds for the spacesH = D(µ) can be found
in [19], see Theorems 1.2 and 1.3. The needed estimate ‖fr‖ ≤ 5

2
‖f‖

for all f ∈ D(µ), 0 ≤ r < 1, fr(z) = f(rz) was established in [1].

Theorem 3.1. (D(µ) � D(µ))∗ = X (D(µ)), i.e. if for b ∈ X (D(µ))
we define Lb on D(µ) by

Lb(h) = 〈h, b〉,
then Lb extends to be bounded on D(µ) � D(µ), and the map b → Lb
is a conjugate linear isometric isomorphism of X (D(µ)) onto (D(µ)�
D(µ))∗.

Corollary 3.2. Let µ be a finite positive measure in D, and let M ∈
Lat(Mz, D(µ)). Then

M = D(µ) ∩ closD(µ)�D(µ)M.

Proof. The corollary is clearly true forM = (0). Thus we suppose that
M 6= (0) and we set N = D(µ) ∩ closD(µ)�D(µ)M. Clearly M ⊆ N ∈
Lat(Mz, D(µ)).

Suppose that there is an f ∈ N such that f /∈ M. By use of
Theorem 2.5 we pick b ∈ X (D(µ)) such that kerHb = M. Then the
functional that b defines in the dual of D(µ)�D(µ) annihilatesM and
hence it annihilates closD(µ)�D(µ)M. However, since f ∈ N \ kerHb

we have Hbf 6= 0. Then there is a multiplier ϕ such that 〈ϕf, b〉 =
〈Hbf, ϕ〉D(µ) 6= 0. But ϕf ∈ N ⊆ closD(µ)�D(µ)M, and hence b does
not annihilate all of closD(µ)�D(µ)M. This contradiction proves the
corollary. �

Corollary 3.3. Let f ∈ D(µ). Then f is cyclic in D(µ) if and only if
f is cyclic in D(µ)�D(µ).

Proof. Since ‖pf − 1‖∗ ≤ ‖pf − 1‖ is is clear that cyclic vectors in
D(µ) are cyclic in D(µ) � D(µ). If f is not cyclic in D(µ), then we
can take M = [f ] ∈ Lat(Mz, D(µ)) and apply the previous Corollary
to conclude that closD(µ)�D(µ)[f ] 6= D(µ)�D(µ), i.e. f is not cyclic in
D(µ)�D(µ). �
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4. Approximation by D(µ)-extremal functions

If En is a sequence of subspaces of a Banach space E, then define

limEn = {x ∈ E : ∃ xn ∈ En with xn → x}.
It is easy to see that limEn is always closed subspace. See [21].

Lemma 4.1. For any En, E in a Hilbert space we have

limEn ∩ limE⊥n = (0).

Consequently, if E ⊆ limEn and E⊥ ⊆ limE⊥n , then E = limEn and
E⊥ = limE⊥n .

Proof. Suppose x ∈ limEn ∩ limE⊥n , then there are sequences xn ∈ En
and yn ∈ E⊥n such that xn → x and yn → x, hence ‖xn‖2 + ‖yn‖2 =
‖xn − yn‖2 → 0, hence x = 0. �

Lemma 4.2. Let P, P1, P2, ... be projections with ranges E,E1, E2, ....
Then the following are equivalent:

(a) Pn → P in the weak operator topology,
(b) Pn → P in the strong operator topology,
(c) E = limEn and E⊥ = limE⊥n ,
(d) E ⊆ limEn and E⊥ ⊆ limE⊥n .

Proof. The equivalence of (a) and (b) is elementary and well-known,
the equivalence of (b) and (c) is Lemma 2 of [21], (c) ⇒(d) is trivial
and (d) ⇒ (c) follows from Lemma 4.1. �

Proposition 4.3. Assume that H satisfies (2.1) and (2.2).
(a) If un, u ∈M(H) with un → u in H, then

[u] ⊆ lim[un].

(b) If bn, b ∈ X (H) with bn → b in H, then

kerH⊥b ⊆ lim kerH⊥bn .

Proof. (a) The set {pu : p a polynomial} is dense in [u]. (a) follows,
because by (2.1) each polynomial p is a multiplier, hence we have pun ∈
[un] and pun → pu.

(b) Set En = kerH⊥bn . Note that the set {H∗b u : u ∈M(H)} is dense

in clos ran H∗b = kerH⊥b . Thus by Lemma 2.2 (b) it will suffice to show
that H∗b u = M∗

ub ∈ limEn for every u ∈ M(H). Let u ∈ M(H), then
H∗bnu ∈ En for each n and H∗bnu = M∗

ubn →M∗
ub ∈ limEn. �

Example 4.4. Let Z = {λ1, ..., λm} ⊆ D with 0 /∈ Z and let λ ∈ D\Z,
λ 6= 0, and letM = I(Z), the zero-based invariant subspace with zeros
Z. If P is the projection onto M⊥ we let b = Pk0. Then b is a finite
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linear combination of reproducing kernels and hence Hb is bounded and
M = kerHb.

If we let bn = b + 1
n
kλ, then bn → b in H (or even in M(H)). Also,

if kλ is not a linear combination of kλ1 , ..., kλm , then for each n we
have kerHbn = I(Z ∪ {λ}) 6= kerHb and En = closed linear span of
{kz : z ∈ Z ∪ {λ}} 6= kerH⊥b . Thus we don’t always get equality in
Proposition 4.3 (b).

Corollary 4.5. Let µ be a finite positive measure in D. For j = 1, 2, ...
let (0) 6= Mj,M ∈ Lat(Mz, D(µ)), let ϕj be the extremal function
for Mj, let ϕ be the extremal function for M, and let Pj, P be the
orthogonal projections onto Mj,M.

If ϕj(z) → ϕ(z) for all z ∈ D, then Pj → P in the strong operator
topology.

Proof. Since ϕn(z)→ ϕ(z) for all z ∈ D and ‖ϕn‖ = ‖ϕ‖ = 1 for all n
we have ϕn → ϕ weakly and hence ‖ϕn−ϕ‖2 = 2−2 Re〈ϕn, ϕ〉 → 0 as
n→∞. By Theorem 2.3 ϕn and ϕ satisfy the hypothesis of Proposition
4.3 (a), hence M = [ϕ] ⊆ lim[ϕn].

Next set bn = M∗
zϕn and b = M∗

zϕ. Then bn → b inH and by Lemma
2.2 we have bn, b ∈ X (D(µ)). Thus by Theorem 2.5 M⊥ = kerH⊥b ⊆
lim kerH⊥bn = limM⊥

n . The Corollary now follows from Lemma 4.2. �

Lemma 4.6. Let µ be a finite positive measure in D, let S be an inner
function, and let f ∈ H2. Then for all λ ∈ D we have

1− |λ|
1 + |λ|

‖Sf‖2 ≤ ‖ S − λ
1− λS

f‖2 ≤ 1 + |λ|
1− |λ|

‖Sf‖2.

Proof. Let |z| < 1. Then since S−S(z)
w−z ⊥ SH2 with respect to the H2

inner product we have

Dz(
S − λ
1− λS

) =
(1− |λ|2)2

|1− λS(z)|2

∫
|w|=1

1

|1− λS(w)|2

∣∣∣∣S(z)− S(w)

z − w

∣∣∣∣2 |dw|2π

=
(1− |λ|2)2

|1− λS(z)|2

∫
|w|=1

∣∣∣∣∣∑
n=0

λ
n
Sn(w)

S(z)− S(w)

z − w

∣∣∣∣∣
2
|dw|
2π

=
(1− |λ|2)
|1− λS(z)|2

Dz(S).

This easily implies

1− |λ|
1 + |λ|

Dz(S) ≤ Dz(
S − λ
1− λS

) ≤ 1 + |λ|
1− |λ|

Dz(S)(4.1)
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for all |z| < 1. If |z| = 1, then any local Dirichlet integral Dz(g) is
the limit of Dzn(g) whenever |zn| < 1 and zn → z nontangentially, see
[17], Lemma 3.3. Hence (4.1) holds for all |z| ≤ 1. The lemma now
follows from the definition of the norm in D(µ) and because for any
inner function B, any f ∈ H2, and any z ∈ D we have Dz(Bf) =
Dz(B)|f(z)|2 +Dz(f), see [17], Lemma 3.4. �

Theorem 4.7. Let µ be a finite positive measure in D. Let S0 be an
inner function such that M = S0H

2 ∩ D(µ) 6= (0) and let ϕ be the
D(µ)-extremal function for M.

Then there is a sequence Zn = {z1n, z2n, ..., zknn} of finite sequences
in D such that the D(µ)-extremal functions ϕn for I(Zn) converge lo-
cally uniformly in D to ϕ.

Proof. Write S0(z) = zkS(z), where k ≥ 0 and S is an inner function
with S(0) 6= 0. Then the extremal function ϕ for M is of the form
ϕ = zkSu for some u ∈ H2. Since inner factors increase the D(µ)-
norm (see [17], Lemma 3.4) it is clear that u is an outer function and
that S(0)u(0) > 0.

By Lemma 4.6 we have ‖zk S−λ
1−λSu‖

2 <∞ for all |λ| < 1 and ‖zk S−λ
1−λSu‖ →

‖zkSu‖ = 1 as |λ| → 0. Thus Mλ := zk S−λ
1−λSH

2 ∩ D(µ) 6= (0) for

all |λ| < 1. For λ ∈ D \ {0} we set Sλ = zk S−λ
1−λS

/
‖zk S−λ

1−λSu‖, then

Sλu ∈Mλ, ‖Sλu‖ = 1, and Sλ(z)→ S0(z) as |λ| → 0.
For |λ| < |S(0)| let uλ be the function such that ϕλ = Sλuλ is the

extremal function forMλ. We will show that ϕλ → ϕ locally uniformly
in D as |λ| → 0.

We have 1 = ‖Sλuλ‖ ≥ ‖uλ‖. It suffices to prove that if v is any
weak limit of uλ as |λ| → 0, then u = v.

Thus let v ∈ D(µ) such that ∃|λn| → 0 with uλn → v locally uni-
formly in D.

The extremality of ϕλn = Sλnuλn inMλn and the properties of Sλnu
imply that |uλn(0)| ≥ |u(0)| for each n. Thus |v(0)| ≥ |u(0)|.

But we also have Sλn(z)uλn(z)→ S0(z)v(z) in D and hence Sλnuλn →
S0v weakly in D(µ). Thus ‖S0v‖ ≤ 1 and S0v ∈ M. Then the ex-
tremality of ϕ = S0u in M implies |u(0)| ≥ |v(0)|. The uniqueness of
the extremal function ϕ = S0u implies that there is a |c| = 1 such that
S0u = cS0v. From the extremal condition we also have S(0)u(0) > 0

and S(0)−λn
1−λnS(0)

uλn(0) > 0. Taking n→∞ we conclude S(0)v(0) > 0 and

hence u = v. Thus ϕλ = Sλuλ → ϕ = S0u locally uniformly in D.
By Frostman’s theorem we have Bλ = zk S−λ

1−λS is a Blaschke product

for all λ ∈ D\K, where K is an exceptional set of zero logarithmic
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capacity. Note that it is clear that if Bλ is a Blaschke product, thenMλ

is a zero based invariant subspace. Thus the above shows that ϕ can
be approximated locally uniformly by extremal functions corresponding
to zero based invariant subspaces. The Theorem follows, because if Z
is any zero sequence for D(µ), then the extremal function for I(Z)
can be approximated locally uniformly on D by the extremal functions
corresponding to the partial subsequences of Z. That can be seen by
an argument similar to the one given above. We sketch the details
below for the case where 0 /∈ Z.

Suppose Z = {z1, z2, . . .}, 0 6∈ Z, and let ϕ ∈ I(Z) be the extremal
function. Then for n ∈ N, let Zn = {z1, z2, . . . , zn}, then I(Zn) ⊇
I(Z) = ∩kI(Zk). Suppose ϕn is the extremal function for I(Zn), then
ϕn(0) ≥ ϕn+1(0) ≥ . . . ≥ ϕ(0). Let g be any weak limit of ϕn, then
g ∈ I(Z) and limn ϕn(0) = g(0), thus ϕ(0) ≤ g(0) and so g = ϕ by the
uniqueness of the extremal function for I(Z). �

5. A necessary condition for approximation

For this section again we suppose that µ is a nonnegative finite Borel
measure that is supported in D. As is easy to check the local Dirichlet
integral has the property that

Dw(zf) = Dw(f) + |f(w)|2(5.1)

for all |w| < 1 and all f ∈ H2. If |w| = 1 and Dw(f) <∞, then f has
finite non-tangential limit f(w) at w and equation (5.1) holds in this
case as well ([17]). This implies that M∗

zMz − I is a positive operator
on D(µ). Let D denote the positive square root of M∗

zMz − I. Then
equation (5.1) implies

‖Df‖2 = ‖zf‖2 − ‖f‖2 =

∫
|z|≤1
|f |2dµ(5.2)

for any f ∈ D(µ).

Lemma 5.1. If µ 6= 0, then the inclusion map i : D(µ) → L2(µ) is
compact.

Proof. Using the notation from before the lemma we see from (5.2) that
i∗i = D2 and hence it suffices to show that D is compact. Since Mz

is bounded below and its range has codimension one in D(µ) (see [1])
it follows that Fn = (znD(µ))⊥ is n-dimensional and Dn = DPFn is a
finite rank operator. Equation (5.1) implies that for f ∈ D(µ), λ ∈ D,
and n ∈ N we have Dλ(z

nf) = Dλ(f) +
∑n−1

k=0 |λ|2k|f(λ)|2. Hence
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‖znf‖2 = ‖f‖2 +
∫
D
∑n−1

k=0 |λ|2k|f(λ)|2dµ(λ) and therefore whenever
f 6= 0

‖Dznf‖2

‖znf‖2
=

‖zn+1f‖2 − ‖znf‖2

‖f‖2 +
∫
D
∑n−1

k=0 |λ|2k|f(λ)|2dµ(λ)

=

∫
D |λ|

2n|f(λ)|2dµ(λ)

‖f‖2 +
∫
D
∑n−1

k=0 |λ|2k|f(λ)|2dµ(λ)

≤
∫
D |λ|

2n|f(λ)|2dµ(λ)

‖f‖2 + n
∫
D |λ|2n|f(λ)|2dµ(λ)

≤ 1

n
.

This implies

‖D −Dn‖2 = sup
f 6=0

‖Dznf‖2

‖znf‖2
≤ 1

n
→ 0 as n→∞,

thus D is compact. �

Recall from the introduction that for f ∈ D(µ) and λ ∈ D we defined

uf (λ) = Re 〈1 + λz

1− λz
f, f〉.

Then uf is harmonic on D and uf is identically equal to 1 for any
extremal function f . The definition of uf is motivated by Shimorin’s
work in [21].

Theorem 5.2. If ϕn are extremal functions in D(µ) and if ϕn(z) →
f(z) for every z ∈ D, then uf (z) ≤ 1 for all z ∈ D.

Proof. The theorem is trivial for µ = 0, thus we will assume that

µ 6= 0. Let λ ∈ D and g ∈ D(µ). Then ug(λ) = ‖g‖2 + 2Re 〈 λz
1−λzg, g〉

and hence

‖ g

1− λz
‖2 = ‖(1 +

λz

1− λz
)g‖2 = ug(λ) + |λ|2‖z g

1− λz
‖2

= ug(λ) + |λ|2‖D g

1− λz
‖2 + |λ|2‖ g

1− λz
‖2.

By use of (5.2) this implies

(1− |λ|2)‖sλg‖2 = ug(λ) + |λ|2
∫
|sλ(z)g(z)|2dµ(z),(5.3)

where sλ(z) = 1
1−λz .
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Now let ϕn and f be as in the theorem. Since ϕn is a norm-
bounded sequence that converges pointwise we conclude that ϕn con-
verges weakly to f ∈ D(µ). sλ ∈M(D(µ)) implies that sλϕn converges
weakly to sλf . Hence ‖sλf‖2 ≤ lim infn→∞ ‖sλϕn‖2. Furthermore,
Lemma 5.1 implies that sλϕn → sλf in L2(µ). Thus∫

|z|≤1
|sλ(z)ϕn(z)|2dµ(z)→

∫
|z|≤1
|sλ(z)f(z)|2dµ(z).

But now (5.3) implies that uf (λ) ≤ lim infn→∞ uϕn(λ) = 1. �

We have noted in the Introduction that local uniform limits of ex-
tremal functions also must be contractive multipliers. We will show
now that for the Dirichlet space D the condition uf ≤ 1 in D already
implies that f is a contractive multiplier. We start with an observation
that holds for all D(µ).

If ϕ is an extremal function in D(µ), then it was shown in [16] and
[1] that

‖pϕ‖2 =

∫
|z|=1

|p(z)|2 |dz|
2π

+

∫
|z|≤1

Dz(p)|ϕ(z)|2dµ(z)

for every polynomial p. The following lemma is a generalization of this.

Lemma 5.3. Let f ∈ D(µ), then for any polynomial p we have

‖pf‖2 = lim
r→1

∫
|z|=1

|p(z)|2uf (rz)
|dz|
2π

+

∫
|z|≤1

Dz(p)|f(z)|2dµ(z).

Proof. First note that by the definition of uf we have

lim
r→1

∫
|z|=1

zkuf (rz)
|dz|
2π

= 〈zkf, f〉

whenever k is a nonnegative integer. Similarly, for k < 0 we have

limr→1

∫
|z|=1

zkuf (rz) |dz|
2π

= 〈f, z|k|f〉.
Now write

Dz(h, g) =

∫
|w|=1

h(z)− h(w)

z − w
g(z)− g(w)

z − w
|dw|
2π

.

Recall from [17], Lemma 3.4 and its proof, thatDz(Bh) = Dz(B)|h(z)|2+
Dz(h) for all inner functions B, all h ∈ H2, and all z ∈ D. By polariza-

tion this implies Dz(Bh,Bg) = Dz(B)h(z)g(z)+Dz(h, g) for h, g ∈ H2.
If m ≥ n we first apply this with B(w) = wn, h(w) = wm−n, and
g(w) = 1 and obtain Dz(w

m, wn) = Dz(w
n)zm−n. Next we apply the
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same formula with B(w) = wn, h(w) = wm−nf(w), and g(w) = f(w)
and obtain for all m ≥ n

Dz(w
mf, wnf) = Dz(w

n)zm−n|f(z)|2 +Dz(w
m−nf, f)

= Dz(w
m, wn)|f(z)|2 +Dz(w

m−nf, f).

Now the definition of the D(µ)-norm implies that for m ≥ n we have

〈zmf, znf〉 =

∫
|z|≤1

Dz(w
m, wn)|f(z)|2dµ(z) + 〈zm−nf, f〉

=

∫
|z|≤1

Dz(w
m, wn)|f(z)|2dµ(z) + lim

r→1

∫
|z|=1

zm−nuf (rz)
|dz|
2π

.

A similar calculation holds for m < n and hence the lemma follows. �

Note that if uf ≤ 1 in D, then 1 − uf is a nonnegative harmonic
function in D, hence there is a nonnegative measure σ such that uf =
1 − P [σ], where P [σ] denotes the Poisson integral of σ. Then Lemma
5.3 implies that

‖pf‖2 = ‖p‖2H2 +

∫
|z|≤1

Dz(p)|f |2dµ−
∫
|z|=1

|p|2dσ ≤ max(1, ‖f‖2∞)‖p‖2

for every polynomial p. Thus the inclusion

{f ∈ D(µ) : uf ≤ 1 in D and ‖f‖∞ ≤ 1} ⊆ {f ∈M(D(µ)) : ‖f‖M ≤ 1}
holds for all µ.

Theorem 5.4. If f ∈ D, then ‖f‖2∞ ≤ supλ∈D uf (λ). Consequently,

{f ∈ D : uf ≤ 1 in D} ⊆ {f ∈M(D) : ‖f‖M(D) ≤ 1}

Proof. The reproducing kernel for the Dirichlet space is kλ(z) =
∑∞

n=0
λ
n
zn

n+1
,

and it is a complete Nevanlinna-Pick kernel with kλ(0) = 1, see e.g.
[22]. Then Lemma 2.2 (b) of [11] says that for all f ∈ D and λ ∈ D

|f(λ)|2 ≤ 2Re〈kλf, f〉 − ‖f‖2.
A short calculation shows that∫ 1

0

uf (sλ)ds = 2Re〈kλf, f〉 − ‖f‖2.

Hence the two inequalities together imply |f(λ)|2 ≤ supz∈D uf (z). Tak-
ing the supremum over λ ∈ D gives the desired estimate. �

Remark 5.5. Since there are bounded analytic functions in D that
are not multipliers, it follows that the boundedness of f does not im-
ply the boundedness of uf . The following provides a simple explicit
example with ‖f‖M ≤ 1 and supz∈D uf (z) > 1. It is shown in [11,
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Lemma 2.2] that for complete NP kernels one has ‖kλ‖M ≤ 2‖kλ‖2

and clearly, ukλ(z) = 1−|λz|2
|1−λz|2‖kλ‖

2. Thus setting fλ = kλ/(2‖kλ‖2) we

have ‖fλ‖M ≤ 1 and

ufλ(z) =
1

4

1− |λz|2

|1− λz|2‖kλ‖2
,

and hence supz∈D ufλ(z) = 1+|λ|
4(1−|λ|)‖kλ‖2

→ ∞ as |λ| → 1 for kλ the

reproducing kernel for the Dirichlet space.

6. Open Questions

Our work raises a number of open questions. The first one is whether
an analogue of statement (1.3) holds for D�D. In particular, we don’t
even know the answers to the following questions.

Question 6.1. (a) If N ∈ Lat(Mz, D � D) with N 6= (0), then is
N ∩D 6= (0) ?

(b) Is every zero sequence for D �D a zero sequence for D?

Of course, the work of this paper on approximation by extremal
functions is motivated by the following question.

Question 6.2. IfM∈ Lat(Mz, D), M 6= (0), then is there a sequence
of finite codimensional subspaces Mj ∈ Lat(Mz, D) such that PMj

→
PM in the strong operator topology?

Corollary 4.5 and Theorem 4.7 imply that this is true for subspaces of
the type SH2∩D where S is inner. A class of invariant subspaces of D
containing outer functions is given by DE = {f ∈ D : f = 0 q.e. on E}.
Here E ⊆ T is a compact set of positive logarithmic capacity and f = 0
q.e. on E means f(z) = 0 for all z ∈ E\Z for some set Z of logarithmic
capacity 0. It is known that there are such sets E with DE 6= (0), see
[9].

Question 6.3. Let E ⊆ T be a compact set with positive logarithmic
capacity such that DE 6= (0), and let ϕ be the extremal function for
DE.

Then are there extremal functions ϕj for zero set based invariant
subspaces I(Zj) such that ϕj → ϕ locally uniformly in D?

The argument at the end of the proof of Theorem 4.7 shows that
if the answer to the question is affirmative, then it can be done with
finite zero sets. Hence Question 6.2 would have an affirmative answer
for such subspaces.
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Question 6.4. Let LE(D) be the set of local uniform limits of func-
tions of the type cϕ, where |c| = 1 and ϕ is a Dirichlet extremal func-
tion. Is it true that

LE(D) = {f ∈ D : uf ≤ 1}?

Theorems 5.2, 5.4, and Remark 5.5 imply that

LE(D) ⊆ {f ∈ D : uf ≤ 1} $ {f ∈M(D) : ‖f‖M ≤ 1}.
The following example is due to Carl Sundberg and it shows that there
are nonzero functions in LE(D) which are not extremal functions. Note
that if f(z) = azj, then uf (λ) = (j + 1)|a|2.

Theorem 6.5. (Sundberg, private communication) If f(z) = azj for
some j ≥ 0 and a ≥ 0 with a2 ≤ 1

j+1
, then there is a sequence of

Dirichlet extremal functions ϕn corresponding to finite zero sets such
that ϕn → f locally uniformly in D.

Proof. Throughout this proof we fix j ≥ 0. If a2 = 1
j+1

, then f is an

extremal function and there is nothing to prove. If a = 0, then we just
take ϕn(z) = zn√

n+1
and the theorem follows in this case. Thus we will

assume that 0 < a < 1√
j+1

.

We continue the proof with the observation that if 0 < |b| < 1 and if
H is a reproducing kernel Hilbert space on D with reproducing kernel

kλ(z) such that k0 and kb are linearly independent, then ‖k0‖2− |kb(0)|
2

‖kb‖2
6=

0 and hence

ψ(z) =
k0(z)− k0(b)

kb(b)
kb(z)√

‖k0‖2 − |kb(0)|
2

‖kb‖2

is the extremal function for the subspace {g ∈ H : g(b) = 0}. It satisfies

ψ(0) =
√
‖k0‖2 − |kb(0)|

2

‖kb‖2
.

For n ∈ N let

Hn = {g ∈ Hol(D) : ‖g‖2Hn =
∞∑
k=0

(nk + j + 1)|ĝ(k)|2 <∞},

then Hn is a Hilbert space of analytic functions with the property that
〈f, g〉Hn = 〈zj(f ◦ zn), zj(g ◦ zn)〉D for all f, g ∈ Hn. Furthermore, the

reproducing kernel for Hn is knλ(z) =
∑∞

k=0
1

nk+j+1
λ
k
zk.

Note that kn0 (z) = 1
j+1

and knb (b) → ∞ as |b| → 1. Thus we may

choose bn ∈ D\{0} such that ‖kn0 ‖2−
|knbn (0)|

2

‖knbn‖
2 = 1

j+1
(1− 1

(j+1)‖knbn‖
2 ) = a2.

Now let ψn be the Hn-extremal function for {g ∈ Hn : g(bn) = 0},
and set ϕn(z) = zjψn(zn). Notice that ϕn is analytic in a neighborhood
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of D, hence it is clear that the invariant subspace of D that is generated
by ϕn is a finite zero set based invariant subspace Mn.

Any nonnegative integer is of the form m = kn+ r for some integers
k ≥ 0 and 0 ≤ r < n. If 0 < r < n, then by the form of the power
series of the functions in the inner product it is clear that

〈zmϕn, ϕn〉D = 〈zkn+r+j(ψn ◦ zn), zj(ψn ◦ zn)〉D = 0.

If r = 0, then we have

〈zmϕn, ϕn〉D = 〈zkn+j(ψn◦zn), zj(ψn◦zn)〉D = 〈zkψn, ψn〉Hn = δ0k = δ0m.

Thus since ϕ
(j)
n (0) > 0 it follows that ϕn is the extremal function for

Mn.
Finally we note that ψn(z) = a + zgn(z) for some analytic function

gn. Thus ϕn(z) = f(z) + zj+ngn(zn) and since ‖ϕn‖ = 1 for all n
we conclude that ϕn → f weakly in D. This implies ϕn → f locally
uniformly in D. �
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