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Abstract. Let H be a Hilbert space of analytic functions with
multiplier algebra M(H), and let

M = {(f, T1f...., Tn−1f) : f ∈ D}
be an invariant graph subspace for M(H)(n). Here n ≥ 2, D ⊆ H
is a vector-subspace, Ti : D → H are linear transformations that
commute with each multiplication operator Mϕ ∈ M(H), and M
is closed in H(n). In this paper we investigate the existence of non-
trivial common invariant subspaces of operator algebras of the type

AM = {A ∈ B(H) : AD ⊆ D : ATif = TiAf ∀f ∈ D}.
In particular, for the Bergman space L2

a we exhibit examples of
invariant graph subspaces of fiber dimension 2 such that AM does
not have any nontrivial invariant subspaces that are defined by
linear relations of the graph transformations for M.

1. Introduction

Let d ≥ 1, Ω ⊆ Cd be an open, connected, and nonempty set, and
let H ⊆ Hol(Ω) be a reproducing kernel Hilbert space. If ϕ ∈ Hol(Ω)
such that ϕf ∈ H for all f ∈ H, then ϕ is called a multiplier andMϕf =
ϕf defines a bounded linear operator on H. We use M(H) to denote
the multiplier algebra of H,M(H) = {Mϕ ∈ B(H) : ϕ is a multiplier}.

A subalgebra A ⊆ B(H) is called a transitive algebra if it contains
the identity operator and if it has no nontrivial common invariant sub-
spaces. It is a longstanding open question (due to Kadison), called the
transitive algebra problem, to decide whether every transitive algebra
is dense in B(H) in the strong operator topology. If that were the case,
then, as is well-known, it would easily follow that every T ∈ B(H)
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which is not a scalar multiple of the identity has a nontrivial hyper-
invariant subspace (see e.g. [27]). Recall that a subspace M is called
hyperinvariant for an operator A, if it is invariant for every bounded
operator that commutes with A.

Arveson was the first to systematically study the transitive algebra
problem. We say that an operator A (respectively an algebra A) has
the transitive algebra property, if every transitive algebra that contains
A (respectively A) is strongly dense in B(H). Arveson showed that any
maximal abelian self-adjoint subalgebra and the unilateral shift have
the transitive algebra property. We refer the reader to [27] for further
early results on the transitive algebra problem.

Arveson’s approach requires a detailed knowledge of the invariant
subspace structure of the operator or the algebra that is to be shown
to have the transitive algebra property. Thus based on information
about the invariant subspaces of the Dirichlet space Richter was able
to use Arveson’s approach to establish that the Dirichlet shift has the
transitive algebra property, [29]. Then more generally Chong, Guo, and
Wang, [11], followed a similar strategy to show among other things
that M(H) has the transitive algebra property, whenever H has a
complete Nevanlinna-Pick kernel, i.e. if the reproducing kernel kλ(z)

for H is of the form kλ(z) = f(λ)f(z)
1−uλ(z)

, where f is an analytic function

and uλ(z) is positive definite and sesquianalytic. This result covers
both the unilateral shift and the Dirichlet shift, and without going
into further detail we should say that the Chong-Guo-Wang result also
covers higher finite multiplicities as well as restrictions to invariant
subspaces.

The current paper was motivated by the desire to decide which other
multiplier algebras have the transitive algebra property. Although we
did not obtain any specific answers, our investigations lead us to con-
sider some interesting questions related to the invariant subspace struc-
ture ofM(H). For additional recent work on questions about transitive
algebras we refer the reader to [9].

Our starting point is Arveson’s Lemma. For its statement we need
to define invariant graph subspaces. If N > 1 then H(N) denotes the
direct sum of N copies of H, and for an operator A ∈ B(H) A(N) is
the N− fold ampliation of A, A(N) : H(N) → H(N), A(N)(x1, ..., xN) =
(Ax1, ..., AxN).

If A ⊆ B(H) is an algebra of bounded operators on H, then a closed
subspaceM⊆ H(N) is called an invariant graph subspace for A if there
is a linear manifold D ⊆ H and linear transformations T1, ..., TN−1 :
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D → H such that

M = {(x, T1x, ..., TN−1x) : x ∈ D}(1.1)

and such that A(N)M ⊆ M for every A ∈ A. The transformations
T1, ..., TN−1 are called linear graph transformations for A. Note that if
a linear manifold D and linear transformations T1, ..., TN−1 : D → H
are given, then (1.1) defines an invariant graph subspace for A, if and
only if M is closed, AD ⊆ D for every A ∈ A, and ATi = TiA on D
for each i = 1, ..., N − 1. Thus the graph transformations for N = 2
correspond to the closed linear transformations that commute with A.
Arveson’s Lemma states that a transitive algebra A is strongly dense
in B(H) if and only if the only linear graph transformations for A are
multiples of the identity operator, [8]. For a proof (and statement) we
also refer the reader to [27], Lemma 8.8.

In Section 2 we will explain how the following theorem is a simple
consequence of Arveson’s Lemma.

Theorem 1.1. Let H ⊆ Hol(Ω) be a reproducing kernel Hilbert space.
M(H) has the transitive algebra property if and only if the following
condition is satisfied:

Whenever N > 1 and

M = {(f, T1f, ..., TN−1f) : f ∈ D} ⊆ H(N)

is an invariant graph subspace ofM(H) such that for each α = (α0, ..., αN−1) ∈
CN , α 6= (0, ..., 0) the linear transformation

Lα : D → H, Lα = α0I +
N−1∑
i=1

αiTi

is 1-1 and has dense range,
then

AM = {A ∈ B(H) : AD ⊆ D : ATif = TiAf ∀f ∈ D}

has nontrivial invariant subspaces.

Note that it is easy to see that for any invariant graph subspace M
the collection AM is a strongly closed algebra, contains M(H), and
that M is an invariant graph subspace for AM. In fact, AM is the
largest algebra that has M as an invariant graph subspace. It is clear
that for any α ∈ CN the closures of kerLα and ran Lα are invariant
subspaces for AM. We will say that AM does not have any nontrivial
invariant subspaces that are determined by linear relations of the graph
transformations, if for each α ∈ Cn we have kerLα, ran Lα ∈ {(0),H}.
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With this terminology one easily checks that the condition in Theorem
1.1 is equivalent to the two conditions

(i) the set {I, T1, ..., TN−1} is linearly independent, and
(ii) AM does not have any nontrivial invariant subspaces that are

determined by linear relations of the graph transformations.
At this point we note that D = ran Lα for α = (1, 0, ..., 0). Thus

condition (ii) implies that D is dense in H.
A useful invariant in the study of invariant subspaces M ⊆ HN is

the fiber dimension of M. It is defined as follows. If λ ∈ Ω, if N ≥ 1,
and if M⊆ H(N) is a subspace, then the fiber of M at λ is

Mλ = {(f1(λ), ..., fN(λ)) : (f1, ..., fN) ∈M} ⊆ CN .

The fiber dimension of M is

fd M = sup
λ∈Ω

dimMλ.

A simple argument using determinants shows that fd M = dimMλ

for all λ ∈ Ω \ E, where E is the zero set of some nontrivial analytic
function on Ω, see [15], Section 1.

If M ⊆ HN is an invariant graph subspace, then it is easy to see
that

M⊥
λ = {α ∈ CN : kλ ⊥ ran Lα},

see Lemma 2.4. Thus, the condition that ran Lα is dense implies that
M has full fiber dimension at each point, i.e. Mλ = CN for all λ ∈ Ω
such that kλ 6= 0, see the remark after Lemma 2.4. It follows that the
invariant graph subspacesM considered in Theorem 1.1 all have fiber
dimension N > 1.

We will see that whenever fd M > 1, then AM 6= B(H), see Proposi-
tion 2.2. In particular, we note that any AM as above that is transitive
would be a counterexample to the transitive algebra problem.

It turns out that if H has a complete Nevanlinna-Pick kernel then
every nonzero invariant graph subspace of M(H) has fiber dimension
one. Thus the condition of the theorem is trivially satisfied, because
there is no invariant graph subspace of M(H) that satisfies the hy-
pothesis of the condition (see Section 2 and [11]).

This means that it becomes a question of interest to decide for which
spaces H one can construct examples of invariant graph subspaces
which satisfy the condition of Theorem 1.1. In Section 3 of the pa-
per we will outline a strategy for constructing such invariant graph
subspaces (in the case N = 2), and we will discuss what other nontriv-
ial invariant subspaces the algebra AM may have. In Section 4 we will
show that this can be carried out for the Bergman space L2

a.
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All of our results can be derived from the following example.

Example 1.2. LetH ⊆ Hol(Ω) be a reproducing kernel Hilbert space,
let ϕ, ψ be multipliers such that 1

ϕ−ψ is a multiplier, and let N ,L ⊆ H
be closed nonzero invariant subspaces ofM(H) such that N ∩L = (0).

Then with D = N + L and T (f + g) = ϕf + ψg the space M =
{(h, Th) : h ∈ D} is an invariant graph subspace of M(H) of fiber
dimension 2.

This is easy to check, we have included details in Section 3. We men-
tion that Hadwin, Liu, and Nordgren, [16], Section 4, also have con-
structed an example of an invariant graph subspace (of the Bergman
space) with fiber dimension 2. However, we note that with their ap-
proach one will always have a nonzero α such that Lα does not have
dense range. Since any approach to constructing such fiber dimension
2 or higher invariant graph subspaces is of interest, we have included
some details in Section 3.

Examples of invariant subspaces with N ∩ L = (0) can be based
on zero sets. Recall that a set E ⊆ Ω is called a zero set for H if
I(E) = {f ∈ H : f(λ) = 0 ∀λ ∈ E} 6= (0). Then if A,B ⊆ Ω are
zero sets for H such that A ∪ B is not a zero set for H, one checks
that I(A) and I(B) are invariant subspaces with I(A) ∩ I(B) = (0).
See [22], Theorem 2, for a concrete example of this. For S ⊆ H let
Z(S) = {λ ∈ D : f(λ) = 0 ∀f ∈ S}. It turns out that if in Example
1.2 λ ∈ Z(N ) ∪ Z(L), then dimMλ < 2. Hence any examples built
from zero sets as above will not satisfy the hypothesis of Theorem 1.1.

Theorem 1.3. Let H ⊆ Hol(D) be such thatM(H) = {Mu : u ∈ H∞}
with equivalence of norms, ran (Mz − λ) is closed for all |λ| < 1, and
dimH/zH = 1. Let ϕ, ψ ∈ H∞ such that 1/(ϕ − ψ) ∈ H∞ and let
N ,L ⊆ H be M(H)-invariant subspaces such that

(i) N ∩ L = (0),
(ii) N + L is dense in H,

(iii) Z(N ) = Z(L) = ∅,
(iv) the inner-outer factorizations of ϕ − λ and ψ − λ have no

singular inner factor for any λ ∈ C, and
(v) neither ϕ nor ψ is a constant function,

then M as in Example 1.2 satisfies the hypothesis of Theorem 1.1.

Note that condition (iv) is satisfied for example, whenever both ϕ
and ψ extend to be analytic in a neighborhood of D, but there are
many other examples. In Section 4 we will show that for the Bergman
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space of the unit disc D,

L2
a = {f ∈ Hol(D) : ‖f‖2 =

∫
D
|f |2dA

π
<∞}

the hypotheses of this Theorem can be achieved. Since it is clear that
functions ϕ and ψ can be chosen as in the theorem, our result is implied
by the following, which is of independent interest.

Theorem 1.4. There are two closed subspaces N ,L ⊆ L2
a with which

are invariant for M(L2
a) and such that

(i) N ∩ L = (0),
(ii) N + L is dense in L2

a, and
(iii) Z(N ) = Z(L) = ∅.

It is well-established that the Bergman shift has a complicated in-
variant subspace structure. Thus the above result may not come as a
surprise. One reason for these perceived complications is the existence
of invariant subspacesN ⊆ L2

a of high index, i.e. with dimN	zN > 1,
[7], [19], [21]. It is notable that our construction in this paper is in-
dependent of the high index phenomenon. Indeed we will exhibit a
space H ⊆ Hol(D) with no invariant subspaces of high index, but still
admitting the above type of example (Theorem 5.1).

For the Bergman space it is a result of Horowitz that there are zero
sets whose union is not a zero set, [22]. We start with Horowitz’s
example and apply a result of Korenblum, which shows how to ”push”
zeros to the boundary ∂D, [24]. Then we show that if this is done often
enough one can end up with the required example.

In the constructed examples the algebras AM have no nontrivial
invariant subspaces that are defined by linear relations of the graph
transformations. Can one show that they have others? We will see
that for many choices of ϕ and ψ one or both of the subspaces N and
L that were used in the construction of the example turn out to be
invariant for AM.

Theorem 1.5. Let H ⊆ Hol(Ω) be such thatM(H) = {Mu : u ∈ H∞}
with equivalence of norms, let ϕ, ψ ∈ H∞ such that 1

ϕ−ψ ∈ H
∞, and let

N ,L ⊆ H be closed nonzero invariant subspaces of M(H) such that
N ∩ L = (0). Let M be the invariant graph subspace as in Example
1.2.

If

ϕ(D) \ ψ(D) 6= ∅,
then N is an invariant subspace for AM.

In particular, AM has a non-trivial invariant subspace.
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Similarly, if ψ(D) \ ϕ(D) 6= ∅, then L is invariant for AM.

This will be Theorem 3.5. It raises the question whether the distin-
guished subspaces N and L of Example 1.2 are always invariant for
AM, but we will give an example of carefully chosen zero-based invari-
ant subspaces of the Bergman space and H∞-functions ϕ and ψ that
satisfy the hypothesis of Example 1.2, but such that neither N nor L
are invariant for AM (see Example 3.11).

A simple way to construct functions ϕ and ψ that satisfy the hypoth-
esis of Example 1.2 and Theorem 1.3, but do not satisfy the hypothesis
of Theorem 1.5 is to let ϕ be an analytic function that takes the unit
disc onto an annulus centered at 0 and to take ψ = e2πitϕ for some
t ∈ (0, 1). In the case that t is rational the following theorem implies
that AM has nontrivial invariant subspaces.

Theorem 1.6. Let H ⊆ Hol(Ω) be such thatM(H) = {Mu : u ∈ H∞}
with equivalence of norms, let ϕ, ψ ∈ H∞ such that 1

ϕ−ψ ∈ H
∞, and let

N ,L ⊆ H be closed nonzero invariant subspaces of M(H) such that
N ∩ L = (0). Let M be the invariant graph subspace as in Example
1.2.

If there is a u ∈ Hol(ϕ(D) ∪ ψ(D)) such that u ◦ ϕ = u ◦ ψ, then
AM has a non-trivial invariant subspace.

This will be Theorem 3.6. We have been unable to establish that
AM has nontrivial invariant subspaces in the general case where ϕ is
an analytic function that takes the unit disc onto an annulus centered
at 0 and ψ = e2πitϕ for some irrational t ∈ (0, 1).

2. Some general observations about graph
transformations

We start this section with a lemma which is just an adaptation of
Arveson’s lemma for our situation. It implies that it suffices to inves-
tigate algebras of the type AM.

Lemma 2.1. M(H) has the transitive algebra property, if and only if
the following condition holds:

Whenever M = {(x, T1x, ..., TN−1x) : x ∈ D} is an invariant graph
subspace for M(H) such that D is dense in H and at least one of the
Ti’s is not a multiple of the identity, then AM has nontrivial invariant
subspaces.

Proof. We start by showing that the condition is sufficient for the tran-
sitive algebra property of M(H). Let A be a transitive algebra that
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contains M(H). We need to show that A is strongly dense in B(H).
By Arveson’s Lemma it suffices to prove that the only linear graph
transformations for A are multiples of the identity operator, see [27],
Lemma 8.8. Thus let M = {(x, T1x, ..., TN−1x) : x ∈ D} be an invari-
ant graph subspace of A and suppose that there is an i, 1 ≤ i ≤ N − 1
such that Ti is not a multiple of the identity. Then clearly D 6= (0)
and since A is transitive we must have that D is dense in H. Note that
we have M(H) ⊆ A ⊆ AM. Thus M is an invariant graph subspace
forM(H) and hence the hypothesis implies that AM is not transitive.
But since A ⊆ AM this would imply that A is not transitive, a con-
tradiction. Hence all Ti have to be multiples of the identity, and hence
A is strongly dense in B(H).

For the converse we suppose that the condition is not satisfied and
we will show that M(H) then does not have the transitive algebra
property. Thus our hypothesis now says that there is an invariant
graph subspaceM ofM(H) such that D is dense in H, such that one
of the graph transformations is not a multiple of the identity, and such
that AM is transitive. Since AM containsM(H) it will be the required
example, if we show that AM is not strongly dense in B(H). But all
the T ′is are linear graph transformations for AM, so the result follows
from the easy direction of Arveson’s lemma. �

The most obvious linear graph transformations are multiplications
by meromorphic functions. For f ∈ H we let [f ] be the smallestM(H)
invariant subspace containing f . Let f, g ∈ H, g 6= 0 and

D = {h ∈ [g] : fh/g ∈ [f ]},
then one easily checks that T = M f

g
is a closed linear transformation

that commutes with Mϕ for all ϕ ∈ M(H). Note that D contains
{ϕg : ϕ ∈ M(H)}, thus T will be densely defined whenever g is cyclic
in H, i.e. whenever [g] = H.

The following Proposition combined with the previous Lemma cap-
tures the essence of the known proofs of the fact that the unilateral
shift, the Dirichlet shift, and the algebra M(H) has the transitive al-
gebra property whenever H has a complete Nevanlinna-Pick kernel,
see [8, 11,27,29].

Proposition 2.2. Let N ≥ 2 and

M = {(f, T1f, ..., TN−1f) : f ∈ D} ⊆ H(N)

be an invariant graph subspace for M(H) such that D 6= (0).
(a) Then M has fiber dimension one, if and only if every Ti is a

multiplication.
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(b) If the fiber dimension ofM is one, then either every Ti is a mul-
tiple of the identity and AM = B(H) or AM has a nontrivial invariant
subspace which is defined by a linear relation of the graph transforma-
tions.

(c) If the fiber dimension of M is > 1, then AM 6= B(H).

Proof. (a) Suppose for each i we have Ti = Mϕi for some meromorphic
function ϕi. Let f0 ∈ D with f0 6= 0. For λ ∈ Ω such that f0(λ) 6= 0
and λ is not a pole of any of the ϕi set

uλ = (f0(λ), ϕ1(λ)f0(λ), ..., ϕN−1(λ)f0(λ)) ∈ CN .

Then one easily checks that for any f ∈ D we have

(f(λ), (T1f)(λ), ..., (TN−1f)(λ)) = f(λ)/f0(λ)uλ.

Hence Mλ = Cuλ and dimMλ = 1. This is true for all λ in an open
subset of Ω, hence the fiber dimension of M must be one.

Conversely, suppose thatM has fiber dimension one, and let f0 ∈ D
with f0 6= 0. For i = 1, ..., N − 1 set ϕi = Tif0/f0. Then ϕi is
meromorphic.

Let S0 be the set of zeros of f0 and let λ ∈ D \ S0. Set

uλ = (f0(λ), (T1f0)(λ), ..., (TN−1f0)(λ)).

Then 0 6= uλ ∈ Mλ. Thus the hypothesis implies that dimMλ = 1,
and for each f ∈ D there is cλ ∈ C such that

(f(λ), (T1f)(λ), ..., (TN−1f)(λ)) = cλuλ.

Hence cλ = f(λ)/f0(λ) and for i = 1, ..., N − 1 we have

(Tif)(λ) = cλ(Tif0)(λ) = ϕi(λ)f(λ).

Since Tif ∈ H for each i we conclude that for every f ∈ D the function
ϕif extends to be analytic in Ω and that Ti is multiplication by ϕi.

(b) It follows from (a) that each Ti is a multiplication. Let E = {λ ∈
Ω : kλ = 0}, where kλ is the reproducing kernel for H. Since M 6= (0)
it is clear that Ω \ E is a nonempty open set. If one of the Ti is not
a multiple of the identity, then Ti = Mϕ where ϕ is not constant on
Ω \E. Let λ0 ∈ Ω \E, then Ti−ϕ(λ0) is not identically equal to 0 and
kλ0 ⊥ ran Ti−ϕ(λ0). Thus the closure of ran Ti−ϕ(λ0) is a nontrivial
invariant subspace of AM. In fact, in our earlier terminology, we would
say that AM has a nontrivial invariant subspace that is defined by a
linear relation of the graph transformations. This proves (b).

(c) If AM = B(H), thenM is an invariant graph subspace of B(H).
It follows that each linear transformation Ti is a multiple of the identity,
and this implies that the fiber dimension of M is one. �
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Thus Lemma 2.1 and Proposition 2.2 imply the the following Corol-
lary. We note, as we have in the Introduction, that if H has a complete
Nevanlinna-Pick kernel, then M(H) has no invariant graph subspaces
of fiber dimension > 1.

Corollary 2.3. M(H) has the transitive algebra property if and only
if the following condition holds:

Whenever M is an invariant graph subspace for M(H) of fiber di-
mension > 1, then AM has nontrivial invariant subspaces.

We will now restrict the class of the invariant graph subspaces that
need to be checked by excluding the ones where AM has nontrivial
invariant subspaces defined by linear relations of the graph transfor-
mations.

Lemma 2.4. Let M = {(f, T1f, ..., TN−1f) : f ∈ D} ⊆ H(N) be an
invariant graph subspace for M(H), and let λ ∈ Ω, then

M⊥
λ = {α ∈ CN : kλ ⊥ ran Lα}.

Here as before for α ∈ CN we defined Lα = α0I +
∑N−1

i=1 αiTi.

In particular it follows that if ran Lα is dense in H for all nonzero
α ∈ CN , then Mλ = CN for all λ ∈ Ω, kλ 6= 0. We omit the proof of
this elementary lemma.

Lemma 2.5. LetM⊆ H(N) be an invariant graph subspace forM(H).
If AM has no nontrivial invariant subspaces defined by linear rela-

tions of the graph transformations, then there is a subspace K ⊆ CN

such that Mλ = K for all λ ∈ Ω with kλ 6= 0.

Proof. Suppose that all invariant subspaces of AM that are defined by
linear relations of the graph transformations are either (0) or H, and
let λ1, λ2 ∈ Ω such that kλ1 , kλ2 6= 0. The lemma will follow, if we show
that Mλ1 =Mλ2 .

Let α = (α0, α1, ..., αN−1) ∈M⊥
λ1

then by the previous lemma kλ1 is
orthogonal to ran Lα. The closure of ran Lα is an invariant subspace
of AM that is defined by a linear relation of the graph transformations,
and it does not equal H since kλ1 6= 0. Hence the hypothesis implies
ran Lα = (0). This implies that Lα = 0 whenever α ∈ M⊥

λ1
. This

means α ∈M⊥
λ and henceMλ ⊆Mλ1 for all λ ∈ Ω. In particular then

Mλ2 ⊆Mλ1 , and in fact by symmetry we conclude Mλ1 =Mλ2 . �

Lemma 2.6. Let M = {(f, T1f, ..., TN−1f : f ∈ D} ⊆ H(N) be an
invariant graph subspace for M(H) such that all invariant subspaces
of AM that are defined by linear relations of the graph transformations
are either (0) or H.
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If M has fiber dimension 1 ≤ k ≤ N , then there are linear graph
transformations S1, ..., Sk−1 : D → H such that each Si is a linear
combination of I and T1, ..., TN−1 and such that

N = {(f, S1f, ..., Sk−1f : f ∈ D} ⊆ H(k)

is an invariant graph subspace for M(H) with AN = AM, and LNα =

α0I +
∑k−1

i=1 αiSi is 1-1 and has dense range for all nonzero α ∈ Ck.

Proof. The hypothesis and Lemma 2.5 implies that there is a k-dimensional
subspace L ⊆ CN such that Mλ = L for all λ ∈ Ω with kλ 6= 0. Write
T0 = I, then as in the proof of Lemma 2.5 we have

∑N−1
i=0 αiTi = 0 for

all α = (α0, ..., αN−1) ∈ L⊥. This implies that {I, T1, ..., TN−1} spans
a k-dimensional subspace of the linear transformations D → H. Let
{S0, ..., Sk−1} be a basis for this space. Since the space contains I we
may assume that S0 = I. It is now easy to check that

N = {(f, S1f, ..., Sk−1f : f ∈ D} ⊆ H(k)

satisfies the conclusion of the lemma. Indeed, it is immediate that N
is a closed invariant graph subspace of M(H) and that AM = AN .

Next we note that AN satisfies that all invariant subspaces if AM
that are defined by linear relations of the graph transformations are
either (0) or H, since any linear combination of I and S1, ..., Sk−1 is
a linear combination of I and T1, ..., TN−1. Since I, S1, ..., Sk−1 are
linearly independent we conclude that for each nonzero α ∈ Ck LNα 6= 0.
Thus kerLNα = (0) and ran LNα is dense. �

Theorem 1.1 follows immediately from Corollary 2.3 and Lemma 2.6.
The following Theorem describes another way one can identify in-

variant subspaces that the algebra AM may have. We will apply this
Theorem in the next section.

Theorem 2.7. Let M be an invariant graph subspace for M(H), and
suppose that there is a non-constant meromorphic function u on Ω
and a nonzero linear subspace D1 such that multiplication by u, Mu :
D1 → H commutes with every A ∈ AM, i.e. whenever A ∈ AM, then
AD1 ⊆ D1 and AMu = MuA on D1.

Then AM has non-trivial invariant subspaces.

Proof. Let λ ∈ Ω such that λ is not a pole of u and kλ 6= 0. Then
kλ ⊥ (Mu − u(λ)I)f for every f ∈ D1, and hence the closure of (Mu −
u(λ)I)D1 is a non-trivial invariant subspace for AM. �

Another way to look at the previous theorem is to note that if M1

is the closure of {(f, uf) : f ∈ D1}, then M1 is an invariant graph
subspace of M(H) with fiber dimension 1 and AM ⊆ AM1 . Thus the



12 ALEMAN, PERFEKT, RICHTER, AND SUNDBERG

existence of non-trivial invariant subspaces follows from Proposition
2.2 (b).

3. The general set-up for examples.

We will now restrict our attention to the case N = 2 and Ω = D, the
open unit disc in C.

We start this section with a discussion of the example by Hadwin,
Liu, and Nordgren (see [16]). Recall that if N is an invariant subspace
of M(H) and if Mz ∈ M(H), then dimN 	 zN is called the index of
N .

Example 3.1. [16] A densely defined closed linear transformation T
that is not a multiplication, but commutes with M(H). Thus by
Proposition 2.2 the invariant graph subspace M = {(f, Tf) : f ∈ D}
has fiber dimension 2.

This can be modified to apply to more general situations where one
has index 2 invariant subspaces.

Let L,N be index 1 invariant subspaces of the Bergman space L2
a

such that they are at a positive angle, assume thatN is a zero set based
invariant subspace. As was observed by Hedenmalm [19] the existence
of such subspaces follows from the work of Seip, [30].

Then L ∨N = L+N . Let f ∈ L, f 6= 0 and let

D = {h+ g : h ∈ L2
a, hf ∈ L, g ∈ N},

then D contains the polynomials and hence is dense in L2
a. Note that if

h+g = 0 with h ∈ L2
a, hf ∈ L, g ∈ N , then hf = −fg ∈ L ⊆ L2

a. Thus
fg ∈ N , because it has the correct zeros. This implies hf, fg ∈ L∩N ,
hence hf = fg = 0, i.e. h = g = 0. This implies that T : D →
L2
a, T (h+ g) = hf + g is well-defined.
It is closed also: Indeed, if hn + gn ∈ D such that hn + gn → u and

hnf + gn → v, then because of the positive angle condition we have
gn → v1 ∈ N and hence hn → u− v1 and hnf → v − v1. This implies
that(u − v1)f = v − v1 ∈ L, and hence u = (u − v1) + v1 ∈ D and
Tu = (u− v1)f + v1 = v. Thus we have the invariant graph subspace

M = {(h+ g, hf + g) : h ∈ L2
a, hf ∈ L, g ∈ N}.

We already observed that T is densely defined, but the range of T will
not be dense since TD ⊆ L + N which has index 2. Furthermore,
for all points λ in the common zero set of N the space Mλ is only
one-dimensional.

Thus M will not satisfy the condition of Theorem 1.1.
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The following is our basic example, which was mentioned in the
Introduction.

Example 3.2. LetH ⊆ Hol(Ω) be a reproducing kernel Hilbert space,
let ϕ, ψ be multipliers such that 1

ϕ−ψ is a multiplier, and let N ,L ⊆ H
be closed nonzero invariant subspaces ofM(H) such that N ∩L = (0).

Then with D = N + L and T (f + g) = ϕf + ψg the space M =
{(h, Th) : h ∈ D} is an invariant graph subspace of M(H) of fiber
dimension 2.

Clearly T is well-defined, and MuD ⊆ D and MuT = TMu for
every multiplier u. If fn ∈ L, gn ∈ N such that fn + gn → u and
ϕfn +ψgn → v, then (ϕ−ψ)gn → ϕu− v. Hence by the hypothesis on
ϕ − ψ we have gn → u1 = ϕu−v

ϕ−ψ ∈ N . Then fn → u2 = u− ϕu−v
ϕ−ψ ∈ L,

and v = ϕu1 + ψu2 = T (u1 + u2). Thus, T is closed and hence we
obtain the invariant graph subspace

M = {(f + g, ϕf + ψg) : f ∈ L, g ∈ N}.

We have Mλ = C2 whenever λ ∈ D \ (Z(L) ∪ Z(N )). In this
case we have (1, ϕ(λ)) ∈ Mλ and (1, ψ(λ)) ∈ Mλ. These vectors are
linearly independent since the hypothesis implies that ϕ(λ) 6= ψ(λ) for
all λ ∈ D. However, it is clear that the dimension of Mλ < 2 at every
λ ∈ Z(L) ∪ Z(N ). Thus, according to the remark after Lemma 2.4 in
order to have an example satisfying the condition of Theorem 1.1 we
will at least need that Z(L) = Z(N ) = ∅.

If neither ϕ nor ψ is a constant function, then ker(T − λ) = (0) for
all λ ∈ C. Suppose f ∈ L, g ∈ N such that (T − λ)(f + g) = 0. Then
(ϕ − λ)f = −(ψ − λ)g ∈ L ∩ N . Thus (ϕ − λ)f = −(ψ − λ)g = 0,
hence f = g = 0.

For α = (α0, α1) we have Lα = α0I + α1T , this Lα has dense range
for all nonzero α ∈ C2, if and only if L+N and (ϕ− λ)L+ (ψ − λ)N
are dense in H for every λ ∈ C.

Thus in order to establish Theorem 1.3 it will suffice to prove the
following Proposition.

Proposition 3.3. Let H ⊆ Hol(D) be such that M(H) = {Mu :
u ∈ H∞} with equivalence of norms, and ran (Mz −λ) is closed for all
|λ| < 1, and dimH/zH = 1. Let ϕ, ψ ∈ H∞ such that 1/(ϕ−ψ) ∈ H∞
and let N ,L ⊆ H be M(H)-invariant subspaces such that

(i) N ∩ L = (0),
(ii) N + L is dense in H,

(iii) Z(N ) = Z(L) = ∅, and
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(iv) the inner-outer factorizations of ϕ − λ and ψ − λ have no
singular inner factor for any λ ∈ C,

then (ϕ− λ)L+ (ψ − λ)N is dense in H for every λ ∈ C.

Before we prove the Proposition we need a Lemma.

Lemma 3.4. Let H ⊆ Hol(D) be such that M(H) = {Mu : u ∈ H∞}
with equivalence of norms, and ran (Mz − λ) is closed for all |λ| < 1,
and dimH/zH = 1.

Let K ⊆ H be an M(H)-invariant subspace with Z(K) = ∅. If there
is a Blaschke product B such that BH ⊆ K, then K = H.

Proof. The first part of this proof is a minor modification of Proposition
3.6 of [28]. Let λ ∈ D and let f ∈ K with f(λ) = 0. We claim that
f/(z − λ) ∈ K.

First suppose that B(λ) 6= 0. As in [28] it follows from the hypothesis
on H that f/(z− λ) ∈ H. Hence by hypothesis Bf/(z− λ) ∈ K. Note

that (B − B(λ))/(z − λ) ∈ H∞, thus B−B(λ)
z−λ f ∈ K and this implies

B(λ)f/(z − λ) ∈ K. Since B(λ) 6= 0 we conclude that f/(z − λ) ∈ K.
If B(λ) = 0, then let λn ∈ D with B(λn) 6= 0 and λn → λ. By

hypothesis there is a g ∈ K with g(λ) 6= 0. Then for each n we have
hn = fn − f

g
(λn)g ∈ K and hn(λn) = 0. By what we have already

shown, it follows that hn/(z − λn) ∈ K for each n. The hypothesis
on H implies that Mz − λI is bounded below, then Mz − λnI will be
bounded below with a similar constant for large n. That can be used
to show that hn/(z − λn)→ f/(z − λ). Thus f/(z − λ) ∈ K.

In particular, if f ∈ H, then since Bf ∈ K we conclude that
Bf/(z − λ) ∈ K for every λ ∈ D with B(λ) = 0. This easily implies
that Bf/Bn ∈ K, where Bn is the finite Blaschke product determined
by the first n simple factors of B. As n → ∞ the hypothesis implies
that Bf/Bn → f weakly, hence f ∈ K. Thus K = H. �

Proof of Proposition 3.3. Let λ ∈ C and write

K = (φ− λ)L+ (ψ − λ)N .
We must show that K = H.

Note that if z0 ∈ D, then either ϕ(z0) 6= λ or ψ(z0) 6= λ. In either
case the hypothesis (iii) implies that there is a function f ∈ K such
that f(z0) 6= 0, i.e. Z(K) = ∅.

It follows from the hypothesis (iv) that there exist Blaschke products
B1, B2 and bounded outer functions f1, f2 such that ϕ− λ = B1f1 and
ψ − λ = B2f2. Then

K ⊇ (ϕ− λ)L+ (ψ − λ)N ⊇ B1f1B2f2(L+N ) = Bf(L+N )
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for some Blaschke product B and some bounded outer function f .
Since f is outer, there exists a sequence of polynomials pn such that
pnf → 1 in the weak*-topology of H∞, hence Mpnf → I in the weak
operator topology. Thus combining this observation with hypothesis
(ii) we obtain K ⊇ BH. Hence K = H follows from Lemma 3.4. �

Now let H,L,N , ϕ, ψ be as in Proposition 3.3, set D = L+N , and
let ‖f + g‖D be the graph norm on D,

‖f + g‖2
D = ‖f + g‖2 + ‖ϕf + ψg‖2.

Then one easily checks that L and N are closed subspaces of D which
satisfy L∩N = 0 and L+N = D. Thus there is a projection P ∈ B(D)
with ran P = L and kerP = N . Let Q = I − P .

Theorem 3.5. Let H ⊆ Hol(Ω) be such thatM(H) = {Mu : u ∈ H∞}
with equivalence of norms, let ϕ, ψ ∈ H∞ such that 1

ϕ−ψ ∈ H
∞, and let

N ,L ⊆ H be closed nonzero invariant subspaces of M(H) such that
N ∩ L = (0). Let M be the invariant graph subspace as in Example
1.2.

If
ϕ(D) \ ψ(D) 6= ∅,

then N is an invariant subspace for AM.
In particular, AM has a non-trivial invariant subspace.

Similarly, if ψ(D) \ ϕ(D) 6= ∅, then L is invariant for AM.

Proof. Let A ∈ AM. We will show that A ∈ B(D) and PAQ = 0.
From the definition of AM we have AD ⊆ D and

‖Ah‖2
D = ‖Ah‖2 + ‖TAh‖2 = ‖Ah‖2 + ‖ATh‖2

≤ ‖A‖2(‖h‖2 + ‖Th‖2) = ‖A‖2‖h‖2
D.

Thus A,PAQ,Mϕ,Mψ ∈ B(D). For f ∈ L and g ∈ N we have

PAQMψ(f + g) = PAQ(ψf + ψg) = PAψg

= PATg = PTAg = PT (P +Q)AQ(f + g)

= PMϕPAQ(f + g) + PMψQAQ(f + g)

= MϕPAQ(f + g)

Thus PAQMψ = MϕPAQ and hence (PAQ)∗M∗
ϕ = M∗

ψ(PAQ)∗.
The hypothesis implies that there is a λ0 ∈ D such that

dist(ϕ(λ0), ψ(D)) > 0.

Then by continuity there is an open neighborhood U of λ0 in D and a
δ > 0 such that for all λ ∈ U and all z ∈ D we have |ψ(z)− ϕ(λ)| ≥ δ,
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hence Mψ −ϕ(λ)I is invertible. This implies ker(M∗
ψ −ϕ(λ)) = (0) for

all λ ∈ U .
Let λ ∈ U and let kλ be the reproducing kernel for D. We have

(M∗
ψ − ϕ(λ))(PAQ)∗kλ = (PAQ)∗(M∗

ϕ − ϕ(λ))kλ = 0.

This implies that (PAQ)∗kλ = 0 for all λ ∈ U . Since finite linear
combinations of kλ, λ ∈ U are dense in D we obtain PAQ = 0.

Thus if f ∈ N ⊆ D, then f = Qf and Af = (P +Q)Af = PAQf +
QAf = QAf ∈ N , i.e. AN ⊆ N . �

Theorem 3.6. Let H ⊆ Hol(Ω) be such thatM(H) = {Mu : u ∈ H∞}
with equivalence of norms, let ϕ, ψ ∈ H∞ such that 1

ϕ−ψ ∈ H
∞, and let

N ,L ⊆ H be closed nonzero invariant subspaces of M(H) such that
N ∩ L = (0). Let M be the invariant graph subspace as in Example
1.2.

If there is a u ∈ Hol(ϕ(D) ∪ ψ(D)) such that u ◦ ϕ = u ◦ ψ, then
AM has a non-trivial invariant subspace.

Proof. Let v = u ◦ ϕ = u ◦ ψ, then v ∈ H∞(D). We will show that
Mv : D → H commutes with AM. Then the result will follow from
Theorem 2.7. We will use a special property of our example, namely
that TD ⊆ D.

If λ ∈ C, λ /∈ ϕ(D) ∪ ψ(D), then 1
ϕ−λf ∈ N and 1

ψ−λg ∈ L for all

f ∈ N and g ∈ L. Thus one easily checks that (T − λ)−1(f + g) =
1

ϕ−λf+ 1
ψ−λg and for every A ∈ AM we have A(T −λ)−1 = (T −λ)−1A.

It follows that r(T )A = Ar(T ) for every rational function r with poles

outside of ϕ(D) ∪ ψ(D). The hypothesis on u implies that there is
a sequence of rational functions rn such that rn → u uniformly in a
neighborhood of ϕ(D) ∪ ψ(D). Then rn ◦ ϕ and rn ◦ ψ are bounded
sequences in H∞ that converge pointwise to v. Thus for every f ∈ N
and g ∈ L we have rn(T )(f + g) = rn ◦ϕf + rn ◦ψg → v(f + g) weakly.
Hence Arn(T )(f +g)→ AMv(f +g) and rn(T )A(f +g)→MvA(f +g)
weakly for each f ∈ N and g ∈ L. Thus MvA = AMv. �

A simple way to satisfy the hypothesis that 1/(ϕ−ψ) is a multiplier
is if ϕ = ψ + c for some constant c 6= 0. Then for appropriate H it is
easy to see that the hypotheses of both of the previous theorems are
satisfied, thus AM has non-trivial invariant subspaces. For the u in the
previous theorem we can take u(z) = e

2πi
c
z. Thus AM commutes with

Mv, where v(z) = e
2πi
c
ϕ(z). Actually in this case one can verify directly
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that AM commutes with Mϕ.

AMϕ(f + g) = AMϕf + AMψg + cAg

= AT (f + g) + cAg = TAf + TAg + cAg

= MϕAf +MψAg + cAg

= MϕA(f + g).

This implies that AMϕ = MϕA on H.
If ϕ(z) = z, then under the hypothesis of Theorem 3.5 the relation

AMz = MzA implies A ∈ M(H), hence AM =M(H). Thus it seems
worthwhile to point out that it can happen that AM 6=M(H).

Example 3.7. Take H = L2
a, ϕ(z) = z2, ψ = ϕ + c, for c 6= 0,

and choose the two subspaces L and N as above such that they are
invariant under (Uf)(z) = f(−z). For example, take two zero sets
A and B such that the union is not a zero set and such that they
both accumulate only on a small arc near 1. Then let A′ = A ∪ (−A)
and B′ = B ∪ (−B). It is well-known that the extremal function for
I(A) has an analytic continuation across any arc I ⊆ ∂D that does
not contain any accumulation points of A (see [1], also see Section 5
of the current paper for the definition and further results on Bergman
extremal functions). Thus, if f1 is the extremal function for I(A) and
f2 is the extremal function for I(−A), then it follows easily that f1f2 ∈
I(A′). Hence both A′ and B′ are zero sets for H and their union is not
a zero set. Now set L = I(A′) and N = I(B′).

One verifies easily that in this case U ∈ AM, thus AM 6=M(H).

Example 3.8. Let ϕ ∈ Hol(D), t ∈ R \Z, α = e2πit 6= 1 and such that
ϕ(D) = {z ∈ C : r < |z| < R}, and ψ = αϕ. For example, ϕ could be
the composition of an conformal map of the disc onto a vertical strip
and the exponential function,

ϕ(z) = exp(i log
1− z
1 + z

).

Then |ϕ(z)−ψ(z)| = |1−α||ϕ(z)| > c. Furthermore, we check that for
no λ ∈ C the function ϕ− λ can have a singular inner factor. Since ϕ
has an analytic continuation at every point except +1 or −1, it is clear
that the only possible singular inner factors of ϕ − λ are determined
by point masses at 1 or −1. If ϕ− λ had a singular inner factor at 1,
then we would have ϕ(r) − λ → 0 as r → 1−. But ϕ(r) − λ does not
converge as r → 1−. Similarly we see that there is no singular inner
factor with mass at −1. Thus this provides an example of the situation
of Theorem 1.3, and since ϕ(D) = ψ(D) Theorem 3.5 does not apply.
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Theorem 3.6 applies only if t = n
m

is rational, u(z) = zm. Thus if t is
irrational we don’t know of any non-trivial invariant subspaces of AM.

Question 3.9. Can one show that AM has non-trivial invariant sub-
spaces in the previous example if t is irrational?

The next example refines Example 3.7 to show that even in the
context of Question 3.9 one can get AM 6=M(H).

Example 3.10. Let ϕ(z) = exp(i log 1−z2
1+z2

), ψ(z) = αϕ(z) and assume
that f(z) ∈ N if and only if f(−z) ∈ N and g(z) ∈ L if and only if
g(−z) ∈ L. One can achieve this as in Example 3.7. By combining the
approach of Example 3.7 with the construction of the next section one
can also achieve this with the added property that Z(N ) = Z(L) = ∅.
As in Example 3.7 the operator Uf(z) = f(−z) will be in AM. Thus,
AM 6=M(H).

The subspaces N and L play a distinguished role in all our examples,
and one may wonder whether it is always true that both are invariant
for AM. While we cannot rule this out for irrational values of t in the
context of Question 3.9, we will show that this may not be the case
for t = 1/2. Since we know from Theorem 3.6 that AM has nontrivial
invariant subspaces in this case anyway, we will just work with zero set
based invariant subspaces.

Example 3.11. We will construct zero set based invariant subspaces
N and L of L2

a with N ∩L = (0) and a disc automorphism u such that
CuN = L and CuL = N and an H∞-function ϕ such that 1/ϕ ∈ H∞
and Cuϕ = −ϕ. Here Cu is the composition operator with symbol u.

Then we set ψ = −ϕ = Cuϕ. As above |ϕ − ψ| = 2|ϕ| is bounded
below, thus with D = N + L this provides an example satisfying the
hypothesis of Example 1.2. Furthermore, one now easily checks that
CuD ⊆ D and TCu = CuT on D. Thus Cu ∈ AM and hence N ,L /∈
Lat AM.

To get started we recall the definitions of interpolating and sampling
sequences of a space H of analytic functions on D.

For a sequence {λn} of distinct points in D we define T : H → l∞

by Tf = { f(λn)
‖kλn‖

}n. Then {λn} is called an interpolating sequence for

H, if T is a bounded operator from H into and onto l2, and {λn} is
called a sampling sequence for H, if there is a constant c > 0 such that
c‖f‖ ≤ ‖Tf‖l2 ≤ 1

c
‖f‖ for all f ∈ H.
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Lemma 3.12. If Γ ⊆ D is a sampling sequence for H, if D = D+∪D−,
where D+ and D− are closed semi-discs, then

Γ+ = Γ ∩D+

is not a zero-sequence for H.

Proof. Suppose that f ∈ H is a non-zero function with f(λ) = 0 for all
λ ∈ Γ+. Since Γ is a sampling sequence, there must be a c > 0 such
that

c‖pf‖2 ≤
∑

λ∈Γ∩D−

|pf(λ)|2

‖kλ‖2
≤ ‖p‖2

∞,D−

∑
λ∈Γ∩D−

|f(λ)|2

‖kλ‖2
≤ 1

c
‖p‖2

∞,D−‖f‖
2

for all polynomials p. Fix λ0 ∈ D \ D− with f(λ0) 6= 0. By Runge’s
theorem we may choose a sequence of polynomials pn such that pn
converges to 0 uniformly on D− and pn(λ0) → 1. Then the inequality
above implies that ‖pnf‖ → 0. This contradicts pnf(λ0)→ f(λ0) 6= 0.
Thus Γ+ is not a zero set for H. �

Now let S = {z ∈ C : −1 < Re z < 1} and let H+ denote the upper

half plane of C. The function f(z) = ie−
iπz
2 is a conformal map from

S onto H+ with f(0) = i. We note that f takes {z : 0 < Re z < 1}
onto the first quadrant and f−1 : H+ → S takes rays emanating from
0 to vertical lines in S. If we further let g(z) = i1+z

1−z be a conformal

map of D onto H+, then h = f−1 ◦ g is a conformal map from D onto
S. The function ϕ = eih is bounded and bounded below as required
for Example 3.11.

For a > 1 and b > 0 define the lattice

Λ(a, b) = {am(bn+ i) : m,n ∈ Z}
of points in H+, and consider the corresponding set Γ(a, b) = g−1(Λ(a, b))
in D. Theorem 3 on page 168 of [13] states that Γ(a, b) is interpolating
for H = L2

a if 2π
b log a

< 1
2

and Γ(a, b) is sampling for L2
a if 2π

b log a
> 1

2
.

Now set a = e
π2

2 so that f(z+iπ) = af(z) for all z ∈ S, and choose b
such that 2π

b log a2
< 1

2
< 2π

b log a
. Then Γ(a2, b) is interpolating and Γ(a, b)

is sampling for L2
a.

Set Λ1 = {a2m(bn + i) : m,n ∈ Z, n ≥ 0}, Λ2 = {a2m+1(bn + i) :
m,n ∈ Z, n ≥ 0} and for j = 1, 2 set Γj = g−1(Λj). Then Γ1 and Γ2

are subsets of interpolating sets for L2
a, hence they both are zero sets

for L2
a. Furthermore, Γ1 ∪ Γ2 = g−1({am(bn + i) : m,n ∈ Z, n ≥ 0})

and it follows from the choice of a and b and Lemma 3.12 that Γ1 ∪ Γ2

is not a zero set for L2
a. Thus, N = I(Γ1) and L = I(Γ2) are nontrivial

invariant subspaces with N ∩ L = (0).
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For z ∈ D set u(z) = g−1(ag(z)), then u is a disc automorphism with
u(Γ1) = Γ2 and u(Γ2) = Γ1. This implies that CuN = L and CuL = N .
Furthermore one checks that h(u(z)) = h(z) + iπ for all z ∈ D. Thus
Cuϕ = −ϕ and this concludes the construction for Example 3.11.

4. Two zero free subspaces of the Bergman space with
trivial intersection

In this section we will use the theory of Bergman extremal functions.
Let (0) 6=M ⊆ L2

a be an invariant subspace of (Mz, L
2
a), and let n be

the smallest natural number such that there is an f ∈M with f (n)(0) 6=
0. Then the extremal function for M is the unique function G ∈ M
such that ‖G‖ = 1 and G(n)(0) = sup{Re f (n)(0) : f ∈ M, ‖f‖ ≤ 1}.
It is easy to see that the extremal function G of M is contained in
M	 zM. Furthermore, for the case of invariant subspaces M with
index 1 it was shown in [5] that G contractively divides M and G
generatesM, i.e. for all f ∈M we have f/G ∈ L2

a with ‖f/G‖ ≤ ‖f‖
and [G] = M. In the following we will use these facts without giving
further references.

Let µ be a positive discrete measure on the unit circle T, given by a
sequence of points {λk}∞k=1 ⊂ T with corresponding masses 0 < wk <
∞ such that

µ =
∞∑
k=1

wkδλk .

We shall refer to {λk} as the a-support of µ.
When ‖µ‖ =

∑
k wk < ∞, µ is associated with the singular inner

function

Sµ(z) = exp

(
− 1

2π

∫
T

eiθ + z

eiθ − z
dµ(θ)

)
and by Iµ = [Sµ] we denote the invariant subspace of L2

a(D) generated
by Sµ. For non-finite measures µ we define Iµ instead by

Iµ =
⋂
{[Sν ] : 0 ≤ ν ≤ µ, ‖ν‖ <∞}.

We say that µ is admissible when Iµ 6= {0}. Since singly generated
invariant subspaces have index 1, it follows from [28], Theorem 3.16
that Iµ has index one whenever µ is admissible. Thus Iµ is generated
by its extremal function. Furthermore, we note that a routine argument
with contractive zero divisors shows that the extremal function for Iµ
is nonzero in D. In conclusion, Iµ is zero free whenever µ is admissible.

The aim of this section is to prove the following theorem.
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Theorem 4.1. There exist two positive discrete admissible measures
µ and ν such that

(i) Iµ ∩ Iν = {0}, and
(ii) Iµ + Iν is dense in L2

a.

We begin by stating the following well-known proposition.

Proposition 4.2. Suppose f ∈ L2
a is zero free. Then

(i) limr→1(1− r2) log 1
|f(rλ)| ≥ 0 exists for all λ ∈ T.

(ii) For λ ∈ T and w > 0, we have that f ∈ Iwδλ if and only if
limr→1(1− r2) log 1

|f(rλ)| ≥ 4w.

Proof. Let Dλ ⊂ D be the disc of radius 1/2 that is tangent to T at
λ and note that f |Dλ is in the Smirnov class N+ of Dλ. Standard
arguments of Nevanlinna theory now give the validity of (i). A proof
of (ii) appears in [25], Proposition 11. �

We use Proposition 4.2 to prove the following lemma.

Lemma 4.3. Let µ =
∑

k wkδλk be admissible. If λ ∈ T \ {λk} and
w > 0, then Iµ * Iwδλ.

Proof. Suppose on the contrary that Iµ ⊂ Iwδλ . Let φµ and φwδλ be
the respective extremal functions for Iµ and Iwδλ , so that φµ ∈ [φwδλ ].
Then φµ/φwδλ ∈ L2

a, ‖φµ/φwδλ‖L2
a
≤ 1, and

φµ
φwδλ

(0) > φµ(0).

We are now going to demonstrate that φµ/φwδλ ∈ Iµ, contradicting the
extremality of φµ.

To this end we first note that we may write down φwδ1 explicitly
using the method for proving Formula (15) in [12],

φwδ1(z) =
1 + 2w

1−z

(1 + 2w)1/2
Swδ1(z).

from which we deduce that for all k

lim
r→1

(1− r2) log |φwδλ(rλk)| = 0.

Hence, by Proposition 4.2,

lim
r→1

(1− r2) log

∣∣∣∣φwδλ(rλk)

φµ(rλk)

∣∣∣∣ = lim
r→1

(1− r2) log
1

|φµ(rλk)|
≥ 4

∑
λ`=λk

w`.

Applying Proposition 4.2 once more we obtain φµ/φwδλ ∈ Iµ. �
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To prove Theorem 4.1, we are going to construct two positive discrete
measures

µ =
∑
k

wkδλk , ν =
∑
`

v`δξ` .

with disjoint a-supports, {λk}∩{ξ`} = ∅, such that µ and ν are admissi-
ble, but µ+ν is not. Then Iµ and Iν are two zero-free cyclic subspaces,
Z(Iµ) = Z(Iν) = ∅. In addition µ will be constructed such that there
exist f ∈ Iµ, f 6= 0, that continue analytically across a nonempty open
subarc of T. Before proceeding with the construction, let us show how
Theorem 4.1 is obtained from it.

Proof of Theorem 4.1. The non-admissibility of µ + ν is equivalent to
the fact that Iµ ∩ Iν = {0}. It remains to prove that Iµ + Iν is dense
in L2

a.
From the existence of a non-zero f ∈ Iµ extending analytically across

a subarc of T it follows that clos(Iµ + Iν) is an index-one invariant
subspace of L2

a, see e.g. Theorems A and C of [6]. Hence clos(Iµ + Iν)
is generated by its extremal function φ, which clearly has no zeros in
D. Denote by φµ and φν the respective extremal functions for Iµ and
Iν , and let f = φµ/φ and g = φν/φ, recalling that f, g ∈ L2

a [5].
We claim that f ∈ Iµ. To see this note that

lim
r→1

(1− r2) log
1

|φν(rλk)|
= 0, lim

r→1
(1− r2) log

1

|φ(rλk)|
≥ 0, ∀k ≥ 1,

by Proposition 4.2 and Lemma 4.3. So for every k ≥ 1 we have

0 ≤ lim
r→1

(1− r2) log
1

|g(rλk)|
= − lim

r→1
(1− r2) log

1

|φ(rλk)|
≤ 0,

whence

lim
r→1

(1− r2) log
1

|φ(rλk)|
= 0.

Therefore

lim
r→1

(1− r2) log
1

|f(rλk)|
= lim

r→1
(1− r2) log

1

|φµ(rλk)|
≥ 4

∑
λ`=λk

w`,

proving that f ∈ Iµ, by Proposition 4.2. Similarly one shows that
g ∈ Iν .

Now let {pn}n and {qn}n be two sequences of polynomials such that
pnφµ + qnφν → φ in L2

a as n→∞. By the contractive divisor property

of φ we obtain that pnf + qng = pnφµ+qnφν
φ

∈ Iµ + Iν is a Cauchy

sequence, hence pnf + qng → 1. That is, Iµ + Iν is dense in L2
a. �
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4.1. Construction of µ and ν. By the proof of Theorem 4.6 of [22],
the set

Λ =

{
αn,k =

(
4

5

)1/3n

ei2πk/3
n

: n ≥ 3, |k| < 3n

4

}
is a zero set for L2

a, contained in the right half of the unit disc. By
Korenblum’s method [24], Theorem 3, of sweeping zeros out to the
boundary it follows that the measure

µ0 =
∑
n≥3

|k|< 3n

4

wnδei2πk/3n

is admissible, where wn = 2
1−|αn,k|
1+|αn,k|

∼ 1
3n

.

Lemma 4.4. Iµ0 contains a nonzero function that continues analyti-
cally across the open arc J = {z ∈ C : |z| = 1 and Re z < 0} ⊆ T.

In Section 5 we will use that it follows from the lemma and a known
argument that the extremal function φ for Iµ0 continues analytically
across J , see the proof of Lemma 3.1 of [2].

Proof. Since the zero set Λ is contained in {z ∈ D : Re z > 0} it
is known that the extremal function G for the zero-based invariant
subspace I(Λ) continues analytically across J , see [1] or [31]. For α ∈ D
set bα(z) = α

|α|
α−z
1−αz and

Sα(z) = e
−2

1−|α|
1+|α|

α
|α|+z
α
|α|−z .

In [24] Korenblum shows that if α ∈ D and if f ∈ L2
a satisfies f(α) = 0,

then ‖Sα
bα
f‖ ≤ ‖f‖.

An easy calculation shows that if K ⊆ C is a compact set such that
K ∩ [1,∞) = ∅, then there is a c > 0 such that

|1−
r−z
1−rz

e−2 1−r
1+r

1+z
1−z
| ≤ c(1− r)2

for all z ∈ K and all 0 ≤ r < 1.
Since Λ is an L2

a-zero set we have
∑

α∈Λ(1 − |α|)2 < ∞ (see [22],
Corollary 3.6). Thus the above estimate shows that the product

P (z) =
∏
α∈Λ

bα
Sα

converges uniformly on each compact subset of D ∪ { Re z < 0} with
P (z) 6= 0 for all z with Re z < 0. Thus the function f = G/P



24 ALEMAN, PERFEKT, RICHTER, AND SUNDBERG

has an analytic continuation across J . Let {Pm} be the sequence of
partial products of P , then by iterating Korenblum’s inequality we
have ‖G/Pm‖ ≤ ‖G‖, so G/Pm → f weakly L2

a and it follows that
f ∈ Iµ0 . �

For a fixed J ≥ 1, pick angles θ1, . . . , θJ such that θ1
2π
, . . . , θJ

2π
are

linearly independent over the rational numbers. Then the a-supports
of µ1, . . . , µJ are pairwise disjoint, where µj is the rotation of µ0 by the
angle θj, 1 ≤ j ≤ J . We also introduce some further notation;

µN,j =
∑

3≤n≤N
|k|< 3n

4

wnδei(2πk/3n+θj) , µN =
J∑
j=1

µN,j,

letting FN denote the a-support of µN . For later reference we note that
‖µN‖ ∼ JN .

The remainder of this section is dedicated to showing that
∑J

j=1 µj is
not an admissible measure for a sufficiently large J . The construction
of µ and ν is then finished by letting µ = µJ0+1 and ν =

∑J0
j=1 µj,

where 1 ≤ J0 ≤ J is the largest index for which
∑J0

j=1 µj is admissible.
We will need several lemmas and the construction of a family of

curves. The first lemma we leave for the reader to verify. For a finite
measure v on T, we denote its Poisson integral on the disc by P [v](z),
z ∈ D.

Lemma 4.5. Let h(z) = P [δ1](z) = 1−|z|2
|1−z|2 and define for integers K ≥

27

HK(z) =
K−1∑
k=0

h(ei2πk/Kz), z ∈ D.

Then HK(z) = Kh(zK) and there exists a constant C > 0, independent
of K, such that HK(reiθ) < C whenever 1− r < θ2 and |θ| ≤ π/K.

Next, associated with the finite sets FN ⊆ T, we define curves ΓN on
which we have fairly precise estimates for log |f |. Similar curves were
used by Korenblum in [23]. The main difference between our curves
and Korenblum’s is that ours are required to be uniformly C2-smooth,
while the curves of [23] are not even C1, see Figure 4.1 on page 116
of [17].

Let h : [0, 1]→ R be defined by h(t) = 1
2π2 t

2(1− t)2. For ε ∈ (0, 2π]
and t ∈ [0, ε] set rε(t) = 1− ε2h( t

ε
). Then 0 < rε(t) ≤ 1 and |r′ε(t)| and

|r′′ε (t)| are bounded uniformly for all ε ∈ (0, 2π] and t ∈ [0, ε]. Note
also that r′ε(0) = r′ε(ε) = 0 and r′′ε (0) = r′′ε (ε) = 1

π2 .
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Now let ∅ 6= F ⊆ T be finite and define the closed path γF : [0, 2π]→
D as follows: If t ∈ [0, 2π] is such that eit ∈ F , then set γF (t) =
eit. Otherwise eit ∈ I, where I is some complementary arc of F with
endpoints eit0 and eit1 . Then we set γF (t) = r|I|(t− t0)eit, where |I| is
the length of I. The curve ΓF is defined as the range of γF . It is clear
that ΓF ⊆ D is a Jordan curve such that ΓF ∩T = F . The properties of
the functions rε imply that each ΓF is C2-smooth and there is a C > 0
such that ‖γ′′F‖∞ ≤ C for all finite nonempty sets F ⊆ T. Furthermore
one checks that the Jordan region bounded by Γ1 is contained in the
Jordan region bounded by Γ2 whenever F1 ⊆ F2, and that we have the
estimate

1

8π2
dist

(
z

|z|
, F

)2

≤ 1− |z| ≤ 1

2π2
dist

(
z

|z|
, F

)2

, z ∈ ΓF ,(4.1)

where dist refers to the geodesic distance along T.
Let ϕF be the Riemann map from the Jordan domain bounded by ΓF

to the unit disc that takes 0 to 0. ϕF extends to be a homeomorphism
from the closure of the Jordan domain bounded by ΓF to the closed unit
disc, and the additional uniform smoothness of the curves ΓF implies
the following lemma.

Lemma 4.6. There are constants c, C > 0 such that for all finite
nonempty sets F ⊆ T we have c < |ϕ′F (z)| < C for all z ∈ ΓF .
Furthermore, if ωF denotes harmonic measure at 0 on ΓF , then dωF =

|ϕ′F |
|dz|
2π

and hence

c

2π

∫
ΓF

h(z)|dz| ≤
∫

ΓF

h(z)dωF (z) ≤ C

2π

∫
ΓF

h(z)|dz|

for all nonnegative Borel measurable functions h on ΓF . Here |dz|
denotes arclength measure.

This follows from Theorem 3.5 of [26].
For N ∈ N we will write ΓN = ΓFN .

Lemma 4.7. There exists a constant D > 0, independent of J such
that for every N ≥ 3 we have log |SµN (z)| ≥ −DJ for z ∈ ΓN ∩ D.

Proof. For this proof we introduce the set F̃N ⊃ FN ,

F̃N =
{
ei(2πk/3

n+θj) : 3 ≤ n ≤ N, 1 ≤ j ≤ J, 0 ≤ k ≤ 3n − 1
}
,

and let Γ̃N = ΓF̃N be the curve defined by use of the complementary

arcs of F̃N .



26 ALEMAN, PERFEKT, RICHTER, AND SUNDBERG

Fix for the moment n and j. For a point z = reiθ ∈ Γ̃N ∩ D, let k0

be a minimizer of

min
0≤k≤3n−1

dist
(
eiθ, ei(2πk/3

n+θj)
)
,

and let z0 = ze−i(2πk0/3
n+θj) = reiθ0 . Note that |θ0| ≤ π/3n and 1− r ≤

θ2
0 by (4.1). Hence, by Lemma 4.5

(4.2)
∑
|k|< 3n

4

P
[
δ
e
i(2πk/3n+θj)

]
(z) < H3n(z0) < C.

Since the domain enclosed by Γ̃N contains the domain enclosed by ΓN ,
it follows by the maximum principle for harmonic functions that (4.2)
holds also for z ∈ ΓN ∩ D. Noting now that

log
1

|SµN (z)|
=

∑
3≤n≤N, |k|< 3n

4
1≤j≤J

wnP
[
δ
e
i(2πk/3n+θj)

]
(z),

with wn ∼ 1/3n, the lemma follows. �

Proof that
∑J

j=1 µj is not admissible for sufficiently large J . Suppose that∑J
j=1 µj is admissible. We will now argue that J has to be smaller than

a certain universal constant. Fix N ≥ 3 and note first that the admiss-
ability of

∑J
j=1 µj implies that there exists an η > 0, independent of

N , such that there exists a polynomial p such that f = pSµN satisfies
‖f‖L2

a
≤ 1 and |f(0)| ≥ η. In what follows there will be several implied

constants that are all independent of both N and J .
With f = pSµN as above and ωN denoting harmonic measure on ΓN

with pole at 0 we write
(4.3)∫

ΓN

log |f(z)| dωN(z) =

∫
ΓN

log |p(z)| dωN(z)+

∫
ΓN

log |SµN (z)| dωN(z).

Since ‖f‖L2
a
≤ 1 we find by (4.1) and the estimate |f(z)| ≤ (1−|z|2)−1

that

|f(z)| ≤ 8π2

dist (z/|z|, FN)2 .
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Letting {Ih} be the collection of complementary arcs on T to FN , we
obtain ∫

ΓN

log |f(z)| dωN(z) .
∫

ΓN

log
2π

dist( z
|z| , FN)

|dz|+ log 2(4.4)

.
∫
T

log
2π

dist(w,FN)
|dw|+ log 2

∼
∑
h

|Ih| log
2π

|Ih|

. 1 + log |FN | . N + log J

where |Ih| denotes the length of Ih and |FN | ≤ 3NJ the number of
points in FN . We have used the fact that the entropy

∑
h |Ih| log 2π

|Ih|
for a fixed number of intervals is maximized when all intervals are of
equal size.

We also note that∫
ΓN

log |p(z)| dωN(z) ≥ log |p(0)| = log |f(0)|+ log
1

|SµN (0)|
(4.5)

= log |f(0)|+ ‖µN‖ & log η +NJ,

and by Lemma 4.7 that

(4.6)

∫
ΓN

log |SµN (z)| dωN(z) & −J.

Combining (4.3), (4.4), (4.5), and (4.6), we find

N + log J & log η +NJ − J.

Letting N → ∞ we conclude that J must be smaller than some uni-
versal constant A, J ≤ A. �

5. Hilbert spaces without invariant subspaces with large
index

We will now show that the previous example can be used to show
that the same phenomenon as in Theorem 4.1 can happen in spaces of
analytic functions that have a simpler invariant subspace lattice than
the Bergman space.

Theorem 5.1. There is a space H ⊆ Hol(D) such that every invariant
graph subspace M has the property that indM = fdM, and such that
there are index 1 invariant subspaces M and N of (Mz,H) such that
M∩N = (0) and M+N is dense in H.



28 ALEMAN, PERFEKT, RICHTER, AND SUNDBERG

Proof. It follows from the construction in the proof of Theorem 4.1
that the measures µ and ν can be chosen in such a way that the union
of their a-supports is disjoint from some non-empty closed arc I ⊆ T
(just take I to be a small arc centered at −1 and choose all θj to be
sufficiently small). Let σ be the measure defined by dσ = χI |dz|+dA|D
and consider the space P 2(σ), the closure of the polynomials in L2(σ).
Then one verifies that P 2(σ) is irreducible and clearly every point of D
defines a bounded point evaluation for P 2(σ), i.e. P 2(σ) is an analytic
P 2-space in the sense of [4] and [3]. For such spaces it was shown that
every non-empty Mz-invariant subspace has index 1 [4], and in fact,

Carlsson, [10] showed that every M
(N)
z -invariant subspace of P 2(µ)(N)

satisfies that its index equals its fiber dimension. In particular, the
index of each invariant graph subspace equals its fiber dimension.

Now recall from the paragraph following the statement of Lemma
4.4 that the L2

a-extremal functions Gµ and Gν of Iµ and Iν continue
analytically to a neighborhood of I. Hence one obtains that Gµ

r → Gµ

and Gν
r → Gν in P 2(σ) as r → 1, here fr(z) = f(rz). Thus, Gµ, Gν ∈

P 2(σ) and [Gµ]P 2(σ) ⊆ [Gµ]L2
a

= Iµ and [Gν ]P 2(σ) ⊆ [Gν ]L2
a

= Iν are two
zero-free index 1 invariant subspaces of P 2(σ) with trivial intersection.
It follows that the theorem holds with M = [Gµ]P 2(σ),N = [Gν ]P 2(σ)

and H = the closure of M+N in P 2(σ). �
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