
JOINT EXTENSIONS IN FAMILIES OF
CONTRACTIVE COMMUTING OPERATOR TUPLES.

STEFAN RICHTER AND CARL SUNDBERG

Abstract. In this paper we systematically study extension ques-
tions in families of commuting operator tuples that are associated
with the unit ball in Cd.
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1. Introduction

It is fair to say that the Sz. Nagy dilation theorem is of central im-
portance for the theory of contraction operators on Hilbert spaces. One
version of this theorem states that every contraction on a Hilbert space
can be extended to a co-isometric operator acting on a larger Hilbert
space. Because of the known structure of the co-isometric operators,
this means that one can use the function theory of the Hardy space of
the unit disc to study arbitrary contractions.

Partial extensions of Sz. Nagy’s theorem are available for the study
of tuples of operators. The best known result is Ando’s theorem which

2000 Mathematics Subject Classification. Primary 47A13, 47A20; Secondary
47A45.

Work of the authors was supported by the National Science Foundation, grant
DMS-0556051.

1



2 RICHTER AND SUNDBERG

says that for any pair of commuting contraction operators S and T act-
ing on a Hilbert spaceH, there is a pair U, V of commuting co-isometric
operators acting on a larger space K ⊇ H such that U extends S and
V extends T , [2]. It is also known that a direct analogue of Ando’s the-
orem fails for three or more commuting contractions. Ando’s theorem
relates the study of commuting contractions to function theory on the
bidisc, while it remains an open problem to find an effective model for
three or more commuting contractions. The spherical contractions and
the row contractions are collections of operator tuples which have been
studied recently and which can be associated with function theory in
the unit ball of Cd. A convenient way to approach many such theorems
is through J. Agler’s model theory (see [1]). In this note we will present
some examples of this model theory for the multivariable context.

The following definition is from [1]. We will assume that all our
Hilbert spaces are separable.

Definition 1.1. Let d ≥ 1. A family is a collection F of d-tuples
T = (T1, .., Td) of Hilbert space operators, Ti ∈ B(H), such that:

(a) F is bounded, i.e. there exists c > 0 such that for all T =
(T1, .., Td) ∈ F we have ‖Ti‖ ≤ c for all i = 1, ..., d,

(b) F is preserved under restrictions to invariant subspaces, i.e.
whenever T ∈ F and M ⊆ H such that TiM ⊆ M for all i, then
T |M ∈ F ,

(c) F is preserved under direct sums, i.e. whenever Tn ∈ F is a
sequence of tuples, then ⊕nTn ∈ F ,

(d) F is preserved under unital * -representations, i.e. if π : B(H) →
B(K) is a *-homomorphism with π(I) = I and if T = (T1, .., Td) ∈ F ,
then π(T ) = (π(T1), .., π(Td)) ∈ F .

For d = 1 some examples are given by the families of contractions,
isometries, subnormal contractions, and hyponormal contractions. For
d > 1 we will be interested only in families which consist of commuting
tuples of operators. The family of commuting contractions has already
been mentioned. A tuple (T1, ..., Td) is called a spherical isometry if∑d

i=1 ‖Tix‖2 = ‖x‖2 for every x ∈ H. It is immediately clear that the
collection of spherical isometries satisfies (a), (b) and (c) of Definition
1.1. Furthermore (d) follows as well, because (T1, ..., Td) is a spherical

isometry if and only if
∑d

i=1 T ∗
i Ti = I. We will write Fsi to denote the

family of commuting spherical isometries.
The spherical contractions Fsc are those commuting d-tuples T =

(T1, .., Td) of Hilbert space operators satisfying
∑d

j=1 T ∗
j Tj ≤ I. The

collection of adjoint tuples F∗
sc consists of the row contractions Frc.
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They satisfy

‖
d∑

j=1

Tjxj‖2 ≤
d∑

j=1

‖xj‖2 for all x1, ..., xd

in the Hilbert space. As for the spherical isometries it is easy to check
that both Fsc and Frc = F∗

sc form a family.
Suppose T is an operator tuple acting on a Hilbert space H and R

is a tuple acting on K. We will write R ≥ T if R is an extension of
T , i.e. if H ⊆ K is a subspace which is invariant for each Ri, and if
Ti = Ri|H for all i. In this case we will call dim KªH the rank of the
extension. If R = T ⊕B for some operator tuple B, then R is called a
trivial extension of T .

Definition 1.2. Let F be a family. An operator tuple T ∈ F acting
on H is called an extremal for F if T has only trivial extensions in F ,
i.e. whenever R ∈ F satisfies R ≥ T , then H reduces R.

We shall write ext(F) for the extremals of the family F .

Theorem. (J. Agler) If F is a family and if T ∈ F , then T can be
extended to a tuple S ∈ ext(F).

The Theorem is stated for families of single operators in [1], but it is
mentioned there that the result also holds in the multivariable context.
For a proof we refer the reader to [14] or the unpublished note [6].

Thus it is an important question to identify the extremals of families
of interest. We note that it is easy to see that the extremals for the
family of contractions are the co-isometric operators, the extremals for
the isometric operators are the unitary operators, and extremals for
the subnormal contractions are the normal contractions. It is unknown
what the extremals for the hyponormal contractions are (see [13]).

Next we discuss some examples for d > 1. Ando’s theorem can be
used to show that the pairs of two commuting co-isometric operators
are extremal for the pairs of commuting contractions. Alternatively,
one can use a one-step extension as in the proof of the commutant
lifting theorem (see [20], page 65) to identify the extremals. In this
case Ando’s theorem follows from the above theorem of Agler’s. It is an
open problem to identify the extremals for the d-tuples of commuting
contractions if d > 2. On the other hand the extremals for the family of
commuting isometries are easily identified as the tuples of commuting
unitary operators. The resulting extension theorem is due to Ito [17]
and Brehmer [9].



4 RICHTER AND SUNDBERG

In this paper we will discuss extremals of families that are associated
with the unit ball in Cd. A particular emphasis is placed on identify-
ing which spatial and spectral properties of an operator tuple allow
nontrivial extensions.

A tuple U = (U1, ..., Ud) of commuting operators is called spherical

unitary if
∑d

i=1 U∗
i Ui = I and each Ui is a normal operator. Our first

Theorem is the following.

Theorem 1.3. Let Fsi be the family of commuting spherical isometries,
then ext(Fsi) equals the collection of commuting spherical unitaries.

The resulting extension theorem says that commuting spherical isome-
tries are jointly subnormal and it is due to Athavale [7].

We now turn to spherical and row contractions. An important ex-
ample of a row contraction is the d-shift Mz = (Mz1 , ..., Mzd

) acting
on the Drury-Arveson space H2

d . H2
d is the reproducing kernel Hilbert

space defined by the kernel

kλ(z) =
1

1− 〈z, λ〉 λ, z ∈ Bd, 〈z, λ〉 =
d∑

i=1

ziλi.

H2
d consists of analytic functions in Bd, and for d > 1 it is properly

contained in the classical Hardy space H2(∂Bd), which has reproducing
kernel 1

(1−〈z,λ〉)d .

Since M∗
zi
kλ = λikλ it follows that
(

d∑
i=1

Mzi
M∗

zi
kλ

)
(z) =

〈z, λ〉
1− 〈z, λ〉 = kλ(z)− 1.

This implies that

d∑
i=1

Mzi
M∗

zi
= I − 1⊗ 1 ≤ I,(1.1)

thus M∗
z is a spherical contraction and Mz is a row contraction.

We say that S is a direct sum of d-shifts if S = (S1, ..., Sd), Si =
Mzi

⊗ I ∈ B(H2
d ⊗ C) for some Hilbert space C.

Theorem 1.4. Let Fsc be the family of commuting spherical contrac-
tions, and let T = (T1, .., Td) be a commuting operator tuple.

Then the following are equivalent:

(i) T ∈ ext(Fsc)
(ii) T = S∗ ⊕ U , where U is spherical unitary and S is a direct

sum of d-shifts,
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(iii) (a)
∑d

i=1 T ∗
i Ti = P = a projection,

(b)
∑d

i=1 TiT
∗
i ≥ I,

(c) If x1, .., xd ∈ H with Tixj = Tjxi, then there is an x ∈ H
with xi = Tix for all i.

When we write T = S∗ ⊕ U , we want to include the possibility that
one of the summands is absent. Note that (iii)(c) says that the Koszul
complex for T is exact at Λ1(H) (Section 3 contains a short summary
of elementary facts about the Koszul complex).

The resulting extension theorem (i.e. that any R ∈ Fsc has an
extension T of the type as in (ii)) had been known and is due to
Müller-Vasilescu [18] and to Arveson [4]. Arveson also proved that
the adjoint of the d-shift is an extremal spherical contraction (see [4]
pages 205/206). Among other things his proofs are based on his earlier
results ([3]) and an analysis of the C∗-algebra generated by the d-shift
and the identity operator. We note that the extremality of S∗ also
follows directly from Agler’s Theorem once the implication (i) ⇒ (ii)
of Theorem 1.4 has been established.

Indeed, by Agler’s Theorem the zero tuple 0 = (0, ..., 0) acting on
a nonzero space extends to an extremal spherical contraction. By (i)
⇒ (ii) there must be an extremal of the type S∗ ⊕ U such that 0 =
S∗⊕U |M where S is a direct sum of d-shifts, U is a spherical unitary
tuple, and M is invariant for S∗ ⊕ U . If the direct summand S∗ were
absent, then 0 = U |M would have to be a spherical isometry, which
is absurd. Thus S∗ ⊕ U is extremal and definitely has a d-shift as a
direct summand. Now it is easy to verify that if X ⊕ Y is extremal for
a family F , then both X and Y have to be extremal for F also. Hence
the adjoint of the d-shift must be extremal for Fsc. For this paper we
decided to present yet another proof of the extremality of S∗, this one
based on spatial properties of S = Mz as it acts on H2

d (Section 3).
When we apply Theorem 1.4 to the tuple of adjoints we obtain the

following Corollary.

Corollary 1.5. (Wold-decomposition) A d-tuple of commuting opera-
tors is of the form T = S ⊕ U if and only if

(a)
∑d

i=1 TiT
∗
i is a projection,

(b)
∑d

i=1 T ∗
i Ti ≥ I, and

(c) whenever x1, ..., xd ∈ H with
∑d

i=1 Tixi = 0, then there is an
antisymmetric matrix {yij}1≤i,j≤d with entries yij ∈ H such that xi =∑d

j=1 Tjyij for each i (i.e. the Koszul complex for T is exact at Λd−1(H)).

We will give a short proof at the end of Section 6. Note that when
d = 1 and condition (a) is satisfied, then T is a partial isometry. In
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this case each of the conditions (b) or (c) implies that T is 1-1 and
thus T must be an isometry. For d > 1 neither conditions (a) and
(b) nor conditions (a) and (c) alone will imply that T = S ⊕ U . In
fact if T = (M∗

z , H2(∂Bd)) then T ∗ is a spherical isometry, thus it
satisfies (a). Furthermore, it is well-known that the Koszul complex
for (M∗

z , H2(∂Bd)) is exact at all stages except at the first one, so (c)
is satisfied provided d > 1 (see e.g. Section 2 of [15]), but (b) is not
satisfied.

In order to exhibit an example which satisfies (a) and (b) but not
(c) we let M0 = {f ∈ H2

d : f(0) = 0} and T = S|M0, where S
is the d-shift acting on H2

d . It is clear that T satisfies (b), because

S does. Furthermore,
∑d

i=1 SiS
∗
i = P = I − 1 ⊗ 1 is the projection

from H2
d onto M0 (see (1.1)). Then

∑d
i=1 TiT

∗
i =

∑d
i=1 PSiPS∗i P =

P
(∑d

i=1 SiS
∗
i − Si(1⊗ 1)S∗i

)
P = P −∑d

i=1 zi ⊗ zi and this is a pro-

jection, because ‖zi‖ = 1 for all i and zi ⊥ zj for all i 6= j (see equation
(1.2) below). Thus, T satisfies (a). We will now show that for d > 1 T
does not satisfy (c). Let f1(z) = z2, f2(z) = −z1, and f3 = ... = fd = 0.

Then fi ∈M0 and
∑d

i=1 Tifi = 0. If z2 = f1(z) =
∑d

j=1 zjg1j for some
g1j ∈ M0, then we take a partial derivative with respect to z2 and

obtain 1 = g12(z) +
∑d

j=1 zj
∂

∂z2
g1j(z). Evaluating at z = 0 we conclude

1 = g12(0), but this contradicts g12 ∈M0.
For the family of row contractions we have partial results.

Theorem 1.6. Let Frc be the family of commuting row contractions.
Let T ∈ Frc and write D∗ = (I −∑d

i=1 TiT
∗
i )1/2.

(i) If D∗ = 0, then T ∈ ext(Frc).
(ii) If D∗ is onto, then T /∈ ext(Frc).
(iii) If D∗ is a projection, then T /∈ ext(Frc) if and only if there are

x1, .., xd ∈
⋂d

i=1 ker T ∗
i with

∑d
i=1 ‖xi‖2 > 0 and Tixj = Tjxi

for all i, j.
(iv) If D∗ has rank one, i.e. if D∗ = u ⊗ u for some u 6= 0, then

T ∈ ext(Frc) if and only if dim span {u, T1u, .., Tdu} ≥ 3.

If d = 1, then part (i) of Theorem 1.6 describes all extremals (the co-
isometric operators). For d > 1 the d-shift is an example of an extremal
with D∗ 6= 0. For the d-shift one verifies that D∗ is a projection of rank
1 (see equation (1.1)), so its extremality can be derived either from part
(iii) or part (iv) of Theorem 1.6. We will see that in all of the above
cases, when T is not extremal, then T actually has a nontrivial rank 1
extension in Frc.
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If S = (Mz, H
2
d) is the d-shift, and if M $ H2

d is invariant for S,
then T = PM⊥S|M⊥ ∈ Frc and D∗ has rank 1. Because of this one
can use Theorem 1.6 to verify the following Corollary (see Corollary
8.4).

Corollary 1.7. Let Frc be the family of commuting row contractions.
If M 6= H2

d is an invariant subspace for the d-shift S = (Mz, H
2
d), and

if

L = {a +
d∑

i=1

bizi : a, b1, .., bd ∈ C}

denotes the collection of polynomials of degree less than or equal to one,
then T = PM⊥S|M⊥ ∈ ext(Frc) if and only if dim M∩L < d− 1.

Under the hypothesis of the Corollary one easily checks that D2
∗ =

ϕ ⊗ ϕ, where ϕ = PM⊥1 (see the proof of Corollary 8.4). Thus D∗
is a projection if and only if 1 ∈ M⊥, and the Corollary can be used
to exhibit many examples of extremal row contractions whose defect
operators are not projections. For example, if d = 2 and λi = (λi1, λi2),
i = 1, 2, 3 are three distinct points in B2, then we can let

M = {f ∈ H2
2 : f(λ1) = f(λ2) = f(λ3) = 0}.

In this case T = (T1, T2) acts on the 3-dimensional space

M⊥ = span{kλ1 , kλ2 , kλ3},
and by the Corollary T is extremal if and only if M∩L = {0}. From
this one deduces with a little bit of elementary algebra that T is ex-
tremal if and only if

(λ31 − λ11)(λ22 − λ12) 6= (λ21 − λ11)(λ32 − λ12).

Hence there are extremal row contractions on finite dimensional
spaces that are not spherical unitaries. We also note that the above ex-
amples of extremals where the defect operator is not a projection show
that part (iii) of Theorem 1.6 does not cover all extremals. This is in
contrast to the family Fsc where for all extremals the defect operator

D =
(
I −∑d

i=1 T ∗
i Ti

)1/2

must be a projection (see Theorem 1.4).

If d = 1 and if F is either the family of contractions or the family
of isometries, then any non-extremal operator T ∈ F has a nontrivial
rank one extension in F . This is well-known and easy to see (compare
Lemma 7.2). If d > 1, then for each of the families Fsc,Fsi and Frc

there is a difference between extremals and operator tuples that allow
nontrivial finite rank or rank one extensions. We shall show in Corollary
5.4 that a spherical isometry V has no nontrivial rank one extensions
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in Fsi if and only if the Koszul complex for V − b is exact at Λ1 for
all b ∈ Bd. We will review definitions and elementary properties of
the Koszul complex in Section 3. Furthermore, in Theorem 6.1 we will
show that if T ∈ Fsc, then T has no nontrivial finite rank extensions if
and only if T has no nontrivial rank one extensions and this happens
if and only if T = S∗ ⊕ V , where S is a direct sum of d-shifts and
V is a spherical isometry with no nontrivial rank one extension. For
the row contractions we only have the following technical condition,
and we note that all extension results of Theorem 1.6 follow from this
result, i.e. if either D∗ is onto, or if T ∈ Frc is nonextremal and D∗
is a projection or a rank one operator, then T has a nontrivial rank 1
extension in Frc.

Theorem 1.8. Let Frc be the family of commuting row contractions,
and let T ∈ Frc.

The following are equivalent:
(a) T has a nontrivial rank 1 extension in Frc,
(b) T has a nontrivial finite rank extension in Frc,
(c) there are a1, .., ad ∈ ran D∗,

∑
i ‖ai‖ > 0, and b = (b1, .., bd) ∈ Bd

such that (Ti − bi)aj = (Tj − bj)ai for all i, j.

In Section 9 we will present an example of a nonextremal commuting
row contraction which has no nontrivial finite dimensional extensions.

The remainder of the paper is structured as follows. In Section 2
we will prove Theorem 1.3 and we will see that spherical unitaries are
extremal spherical contractions. Section 3 contains a proof that the ad-
joint of the d-shift is an extremal among the spherical contractions. A
basic proposition about spherical contractions of the form S∗⊕V , where
S is a sum of d-shifts and V is a spherical isometry will be presented
and proved in Section 4. Section 5 contains a theorem characteriz-
ing the spherical isometries that have nontrivial rank one extensions
(Corollary 5.4) and it also has some preliminary results about rank one
and finite rank extensions of spherical contractions. Theorem 6.1 char-
acterizes spherical contractions with nontrivial finite rank extensions
and Corollaries 6.2 and 6.3 are Theorems 1.4. and Corollary 1.5. In
Section 7 we give our results about finite rank extensions of row con-
tractions and in Section 8 we present our main results about extremals
of Frc.

At various places throughout the paper we will use multinomial nota-
tion. If α ∈ Nd

0, then α = (α1, ..., αd), |α| = α1+...+αd, α! = α1!·...·αd!,
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and

(|α|
α

)
= |α|!

α!
. If z ∈ Cd and if T = (T1, .., Td) ∈ B(H)d, then

zα = zα1
1 · ... · zαd

d and Tα = Tα1
1 ... T αd

d . Furthermore, we will use
ej = (0, .., 0, 1, 0, .., 0) where the 1 is in the jth spot.

The reproducing kernel for the Drury-Arveson space H2
d satisfies

kλ(z) =
1

1− 〈z, λ〉 =
∞∑

n=0

〈z, λ〉n =
∞∑

n=0

∑

|α|=n

(
n
α

)
zαλ

α
=

∑

α∈Nd
0

(|α|
α

)
zαλ

α
.

Since we also have

kλ(z) = 〈kλ, kz〉 =
∑

α∈Nd
0

∑

β∈Nd
0

(|α|
α

)(|β|
β

)
zβλ

α〈wα, wβ〉H2
d

it follows that

〈wα, wβ〉H2
d

= δαβ
1(|α|
α

) , where δαβ = 0 if α 6= β, δαβ = 1 if α = β.

From this one deduces that for f ∈ Hol(Bd), f(z) =
∑

α∈Nd
0

f̂(α)zα one

has

‖f‖2
H2

d
=

∑

α∈Nd
0

|f̂(α)|2(|α|
α

) =
∑

α∈Nd
0

α!

|α|! |f̂(α)|2.(1.2)

If α ∈ N0
d, then

∑d
i=1 ‖ziz

α‖2 = α!
|α|!

|α|+d
|α|+1

, hence it follows that

d∑
i=1

‖zif‖2 ≥ ‖f‖2(1.3)

for all f ∈ H2
d . Furthermore, one calculates that for α ∈ Nd

0 and
1 ≤ i ≤ d

M∗
zi
zα =

αi

|α|z
α−ei whenever αi > 0,(1.4)

and M∗
zi
zα = 0 if αi = 0.

2. Spherical Isometries

In this Section we will prove Theorem 1.3 and part of the proof of
(ii) ⇒ (i) of Theorem 1.4.

The fact that extremals of the spherical isometries must be jointly
normal follows easily from the arguments of Attele and Lubin [8], who
presented an alternate proof of Athavale’s Theorem. In fact, let T =
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(T1, ..., Td) be a commuting spherical isometry acting on H and assume
that T1 is not normal. We must show that T is not extremal, i.e. we
have to construct a commuting spherical isometry S that extends T
nontrivially. By Corollary 6 of [8] T1 is a subnormal contraction. Thus
we can let S1 ∈ B(K) be the minimal normal extension of T1. Since
we assumed that T1 is not normal, it is clear that any extension of T
of the form S = (S1, S2, ..., Sd) will be nontrivial. In order to define
S2, ..., Sd we use the standard extensions

Si

(
n∑

k=0

S∗1
kxk

)
=

n∑

k=0

S∗1
kTixk, i = 2, ..., d, x0, ..., xn ∈ H,

see the proof of Proposition 7 of [8]. Since S1 is normal it is easy to
verify that

d∑
i=1

‖
n∑

k=0

S∗1
kTixk‖2 = ‖

n∑

k=0

S∗1
kxk‖2.

This implies that S2, ..., Sd are well defined and extend to K and S =
(S1, S2, ..., Sd) forms a spherical isometry. Finally, we see that for all
1 ≤ i, j ≤ d

SjSi

n∑

k=0

S∗1
kxk = Sj

n∑

k=0

S∗1
kTixk

=
n∑

k=0

S∗1
kTjTixk

= SiSj

n∑

k=0

S∗1
kxk.

Thus S forms a tuple of commuting operators, and this proves that the
extremals of the spherical isometries must be commuting normals.

For later reference we make some simple observations about ex-
tremals.

Lemma 2.1. Let F and G be families.
(a) Let U ∈ ext(F) and V ∈ F . If R ∈ F with R ≥ U ⊕ V , then

R = U ⊕R′ for some R′ ≥ V , R′ ∈ F .
(b) Finite or infinite direct sums of extremals are extremal.
(c) If F ⊆ G, then ext(G) ∩ F ⊆ ext(F).

Proof. (a) is obvious and it easily implies (b) for finite direct sums. In
order to prove (b) for infinite direct sums let Un ∈ ext(F) ∩ B(Hn)d,
V = U1⊕U2⊕ ... and R ∈ F ∩B(K)d with R ≥ V . For n ∈ N we let Pn

be the projection from K onto H1⊕ ...⊕Hn. By the finite case we have
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RiPn = PnRi for all i and n. The sequence Pn converges in the strong
operator topology to P , the projection from K onto H1 ⊕H2 ⊕ .... It
follows that P commutes with R. Hence V must be extremal.

(c) is immediate. ¥

Theorem 2.2. Commuting spherical unitary tuples are extremal for
the families of commuting spherical contractions and commuting spher-
ical isometries.

Proof. Let U = (U1, ..., Ud) be a commuting spherical unitary tuple. By
Lemma 2.1(c) it suffices to show that U is extremal for the commuting
spherical contractions.

Thus let S ≥ U be a commuting spherical contraction. Then for
each 1 ≤ i ≤ d we have

Si =

(
Ui Ai

0 Bi

)
∈ B(H⊕K)

with

(2.1) UiAj + AiBj = UjAi + AjBi

for all 1 ≤ i, j ≤ d and

d∑
i=1

S∗i Si =

(
I

∑d
i=1 U∗

i Ai∑d
i=1 A∗

i Ui

∑d
i=1 A∗

i Ai + B∗
i Bi

)
≤

(
I 0
0 I

)
.

It follows that
∑d

i=1 U∗
i Ai = 0 and

(2.2)
d∑

i=1

A∗
i Ai + B∗

i Bi ≤ I.

Let j ∈ {1, ..., d}. We shall establish Lemma 2.2 by showing that
Aj = 0.

By hypothesis each Ui is normal and UiUj = UjUi. Hence it follows
from Fuglede’s theorem [19] that U∗

i Uj = UjU
∗
i . We now apply U∗

i on
the left in equation (2.1), sum in i, and obtain

d∑
i=1

U∗
i UiAj +

d∑
i=1

U∗
i AiBj =

d∑
i=1

U∗
i UjAi +

d∑
i=1

U∗
i AjBi.

Since
∑d

i=1 U∗
i Ui = I and

∑d
i=1 U∗

i Ai = 0 this implies Aj =
∑d

i=1 U∗
i AjBi.

Since U is a spherical contraction it follows that U∗ = (U∗
1 , ..., U∗

d ) is a
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row contraction. Hence for x ∈ K, ‖x‖ ≤ 1 we have

‖Ajx‖2 = ‖
d∑

i=1

U∗
i AjBix‖2 ≤

d∑
i=1

‖AjBix‖2

≤ ‖Aj‖2

d∑
i=1

‖Bix‖2

By equation (2.2) this implies

‖Ajx‖2 ≤ ‖Aj‖2

(
‖x‖2 −

d∑
i=1

‖Aix‖2

)
≤ ‖Aj‖2(1− ‖Ajx‖2).

We now rearrange the terms to get ‖Ajx‖2(1 + ‖Aj‖2) ≤ ‖Aj‖2 and
after taking the sup over ‖x‖ ≤ 1 we obtain ‖Aj‖2(1+ ‖Aj‖2) ≤ ‖Aj‖2

which implies that Aj = 0. ¥

3. Extremality of the adjoint of the d-shift

Let T = (T1, . . . , Td) be a commuting tuple of operators on a Hilbert
space H. We will now define the Koszul complex of T . We will follow
[5]. For more information of a general type on the Koszul complex and
its relationship to invertible and Fredholm tuples, the reader is also
referred to [10] and [21].

Let Λ = Λ[e] = Λd[e] be the exterior algebra generated by the d
symbols e1, . . . , ed, along with the identity e0 defined by e0 ∧ ξ = ξ
for all ξ. Then Λ is the algebra of forms in e1, . . . , ed with complex
coefficients, subject to the anti-commutative property ei∧ej+ej∧ei = 0
(1 ≤ i, j ≤ d). In fact, we can make Λ into a 2d-dimensional Hilbert
space with orthonormal basis

{e0}
⋃
{ei1 ∧ · · · ∧ eik | ij ∈ {1, . . . , d}, i1 < i2 < · · · < ik} .

For each i = 0, 1, . . . , d let Ei : Λ → Λ be given by Eiξ = ei ∧ ξ. E0

is thus the identity on Λ. For i = 1, . . . , d the Ei are called the creation
operators and they satisfy the following anticommutation relations

EiEj + EjEi = 0 and E∗
i Ej + EjE

∗
i = δijE0.

Let Λ(H) := H⊗C Λ and define ∂T : Λ(H) → Λ(H) by

∂T :=
d∑

i=1

Ti ⊗ Ei.
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It follows easily from the anticommutation relationships that ∂2
T = 0.

Thus, the Koszul complex of the tuple T can be defined by

K(T ) : 0 → Λ0(H)
∂T,0−→ Λ1(H)

∂T,1−→ · · · ∂T,d−1−→ Λd(H) → 0

where Λp(H) is the collection of p forms in Λ(H) and ∂T,p := ∂T |Λp(H).
For purposes of notation we also define Λ−1(H) = 0 and ∂T,−1 and ∂T,d

to be the zero maps at the two ends of the complex.
The identity ∂2

T = 0 implies that for each p = 0, 1, ..., d ran ∂T,p−1 ⊆
ker ∂T,p and ran ∂∗T,p ⊆ ker ∂∗T,p−1, and one says that the Koszul complex
K(T ) is exact at Λp(H), if ran ∂T,p−1 = ker ∂T,p. In particular, if K(T )
is exact at Λp(H), then ran ∂T,p−1 must be closed, hence ∂T,p−1∂

∗
T,p−1

is 1-1 and onto when restricted to ran ∂T,p−1 = (ker ∂∗T,p−1)
⊥. Further-

more, in this case one also has that ran ∂∗T,p is dense in ker ∂∗T,p−1. It
follows that the operator

(3.1) DT,p : Λp(H) → Λp(H), DT,p = ∂T,p−1∂
∗
T,p−1 + ∂∗T,p∂T,p

is 1-1 and has dense range whenever K(T ) is exact at Λp(H), and DT,p

is invertible if it is also known that ran ∂T,p or what is the same ran ∂∗T,p

is closed.
In order to relate properties of the Koszul complex for T with the

Koszul complex for T ∗ we define the Hodge ∗-operator (see [16] for
more information on this topic). For p = 0, 1, ..., d we have dim Λp =
dim Λd−p and ∗ establishes a conjugate linear isomorphism between Λp

and Λd−p that is compatible with ∂. Indeed,

∗(ei1 ∧ ei2 ∧ ... ∧ eip) = (−1)εej1 ∧ ej2 ∧ ... ∧ ejd−p

where {ei1 , ei1 , ..., eip , ej1 , ..., ejd−p
} = {e1, ..., ed} and ε ∈ {0, 1} is cho-

sen so that η ∧ ∗ω = 〈η, ω〉e1 ∧ ... ∧ ed for all p-forms η, ω ∈ Λp.
If η ∈ Λp−1 and ω ∈ Λp, then

η ∧ (∗E∗
i ω) = 〈η, E∗

i ω〉e1 ∧ ... ∧ ed

= 〈Eiη, ω〉e1 ∧ ... ∧ ed

= Eiη ∧ ∗ω
= ei ∧ η ∧ ∗ω = (−1)p−1η ∧ ei ∧ ∗ω
= (−1)p−1η ∧ Ei(∗ω)
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Thus for x ∈ H and ω ∈ Λp we have

(I ⊗ ∗)∂∗T,p−1(x⊗ ω) =
d∑

i=1

T ∗
i x⊗ (∗E∗

i ω)

= (−1)p−1

d∑
i=1

T ∗
i x⊗ Ei(∗ω)

= (−1)p−1∂T ∗,d−p(I ⊗ ∗)(x⊗ ω)

Now note that elementary functional analysis results imply that for any
p ran ∂T,p is closed if and only if ran ∂∗T,p is closed, and by the above
this happens if and only if ran ∂T ∗,d−(p+1) is closed. Thus, if it is known
for some p that ran ∂T,p is closed and K(T ) is exact at Λp, then K(T ∗)
is exact at Λd−p.

It is known that if α > 0 and Kα is the Hilbert space of analytic
functions on Bd with reproducing kernel kλ(z) = (1−〈z, λ〉)−α, then the
Koszul complex for S = (Mz,Kα) is exact at all stages p = 0, .., d−1 and
at the last stage we have dim ker ∂S,d/ran ∂S,d−1 = 1 (see Proposition
2.6 of [15]). Thus, ran ∂S,p is closed for all p. From this and the above
remarks about the Hodge ∗-operator it follows that for T = S∗ we have
ran ∂T,p is closed for all p and K(T ) is exact at Λp(H) for each p ≥ 1.

In the following let T be a commuting d-tuple of operators on H. We
will later take T so that (T ∗,H) = (Mz, H

2
d) is the d-shift. Suppose

that we have an extension R ∈ B(H⊕K)d of T . Then

Ri =

(
Ti Ai

0 Bi

)
.

Define

∂T : Λ(H) → Λ(H), ∂T =
d∑

i=1

Ti ⊗ Ei

∂A : Λ(K) → Λ(H), ∂A =
d∑

i=1

Ai ⊗ Ei

∂B : Λ(K) → Λ(K), ∂B =
d∑

i=1

Bi ⊗ Ei

Lemma 3.1. If R is a tuple of commuting operators, then

∂T ∂A + ∂A∂B = 0.
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Proof. Since Λ(H⊕K) = Λ(H)⊕ Λ(K) we can write

∂R =

(
∂T ∂A

0 ∂B

)
.

The Lemma follows easily, because the expression equals the (1,2)-entry
of the matrix for ∂2

R = 0. ¥
Proposition 3.2. Let d ≥ 2 and let T = (T1, ..., Td) ∈ B(H)d be a
commuting tuple of operators which is graded in the sense that there is
a decomposition of H as a direct sum of mutually orthogonal subspaces,

H = H0 ⊕H1 ⊕ ...

such that Tj(H0) = (0) and Tj(Hn) ⊆ Hn−1 for all n ≥ 1 and all
1 ≤ j ≤ d. Assume that the Koszul complex K(T ) is exact at Λp(H)
for p = 1 and p = 2.

If R ∈ B(H⊕K)d is a commuting extension of T of the form

Ri =

(
Ti Ai

0 Bi

)
, i = 1, ..., d,

and if
∑d

j=1 A∗
jTj = 0, then Ai = 0 for all i = 1, ..., d.

Proof. We start by noting that in terms of the Koszul complex the
hypothesis

∑d
j=1 A∗

jTj = 0 can be restated as ∂∗A,0∂T,0 = 0 and that we
have to show that ∂∗A,0 = 0.

Since Tj(Hn) ⊆ Hn−1 we see that ∂T,p(Λ
p(Hn)) ⊆ Λp+1(Hn−1) for all

n ≥ 1. Furthermore, one easily checks that for all n ≥ 0 and all 1 ≤ j ≤
d we have T ∗

j (Hn) ⊆ Hn+1. Thus for each p the selfadjoint operators
∂T,p−1∂

∗
T,p−1 and DT,p (see equation (3.1)) leave Λp(Hn) invariant, and

the hypothesis implies that

(3.2) DT,1(Λ
1(Hn)) = Λ1(Hn)

and that

(3.3) DT,2(Λ
2(Hn)) is dense in Λ2(Hn)

for each n ≥ 0.
Define C = ∂T,1∂A,0, then

(3.4) C∗∂T,1 = ∂∗A,0DT,1,

because ∂∗A,0∂T,0∂
∗
T,0 = 0. We also have

C∗DT,2 = ∂∗A,0∂
∗
T,1(∂T,1∂

∗
T,1 + ∂∗T,2∂T,2) = ∂∗A,0∂

∗
T,1∂T,1∂

∗
T,1(3.5)

= −∂∗B,0∂
∗
A,1∂T,1∂

∗
T,1,

by Lemma 3.1 and because ∂∗T,1∂
∗
T,2 = 0.
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We shall now show inductively that

∂∗A,0(Λ
1(Hn)) = (0) and C∗(Λ2(Hn)) = (0) for each n ≥ 0.

We start by applying (3.4) to Λ1(H0). Since ∂T,1(Λ
1(H0)) = 0 and

DT,1(Λ
1(H0)) = Λ1(H0) we have ∂∗A,0(Λ

1(H0)) = 0. This implies that

for each i we have A∗
i (H0) = 0, thus ∂∗A,1∂T,1∂

∗
T,1(Λ

2(H0)) = 0. In light

of (3.5) and (3.3) this means that C∗ = 0 on a dense subset of Λ2(H0),
hence C∗(Λ2(H0)) = (0).

Next suppose that for some n ≥ 0 we have ∂∗A,0(Λ
1(Hn)) = (0) and

C∗(Λ2(Hn)) = 0. Then since ∂T,1(Λ
1(Hn+1)) ⊆ (Λ2(Hn)) we can use

(3.4) and the induction hypothesis to see that 0 = ∂∗A,0DT,1(Λ
1(Hn+1)) =

∂∗A,0(Λ
1(Hn+1)). Thus, for each i we have A∗

i (Hn+1) = 0 and so

∂∗A,1∂T,1∂
∗
T,1(Λ

2(Hn+1)) = 0.

In light of (3.5) and (3.3) this means that C∗ = 0 on a dense subset of
Λ2(Hn+1), hence C∗(Λ2(Hn+1)) = (0). ¥

Theorem 3.3. If S = (Mz, H
2
d), then S∗ is extremal for the family of

spherical contractions.

Proof. Set T = S∗ and let R ∈ B(H2
d ⊕K)d be a commuting spherical

contraction which extends T . Then R is of the form R = (R1, ..., Rd),

Ri =

(
Ti Ai

0 Bi

)
.

We shall use Proposition 3.2 to show that each Ai equals 0. To this
end let Hn be the homogeneous polynomials of degree n, so that H2

d =
H0 ⊕ H1 ⊕ ..., Tj(H0) = (0) and Tj(Hn) ⊆ Hn−1 for all n ≥ 1 and
all 1 ≤ j ≤ d (see (1.4)). We noted earlier in this Section that the
Koszul complex K(T ) = K(S∗) is exact at stages 1 and 2. Thus by

Proposition 3.2 it suffices to show that
∑d

j=1 A∗
jTj = 0.

The condition I − ∑d
i=1 R∗

i Ri ≥ 0 implies that for all f ∈ H2
d and

y ∈ K we have
(3.6)

‖f‖2−
d∑

i=1

‖Tif‖2−2 Re 〈
d∑

i=1

A∗
i Tif, y〉+‖y‖2−

d∑
i=1

(‖Aiy‖2 + ‖Biy‖2
) ≥ 0.

Now we recall that I−∑d
i=1 T ∗

i Ti = I−∑d
i=1 SiS

∗
i equals the projection

ontoH0 (the constants, see equation (1.1)). Thus, if f ⊥ H0, then (3.6)

implies that
∑d

i=1 A∗
i Tif =

∑d
i=1 A∗

i S
∗
i f = 0. If f ∈ H0, then S∗i f = 0

for all 1 ≤ i ≤ d, hence
∑d

i=1 A∗
i Ti = 0. ¥



EXTENSIONS OF COMMUTING OPERATOR TUPLES 17

4. A proposition about tuples of the type S∗ ⊕ V

In this Section we shall prove the following Proposition which will
easily imply one of the implications of Theorem 1.4.

Proposition 4.1. Let T ∈ B(H)d be a commuting operator tuple which
satisfies the following two conditions:

(a)
∑d

i=1 T ∗
i Ti is a projection, and

(b) if x1, .., xd ∈ H with Tixj = Tjxi for all i, j, then there is an
x ∈ H with xi = Tix for all i.

Then T is unitarily equivalent to S∗⊕ V , where S is a direct sum of
d-shifts, and V is a spherical isometry.

Note that for d = 1 condition (b) says that T is surjective, while
condition (a) implies that T is a partial isometry. Thus T must be
a coisometry, and if T ∗ = S ⊕ V ∗, then V ∗ must be isometric. This
means that for d = 1 the operator V in the Proposition is automatically
unitary. If d > 1, then the operator tuple T = (Mz, H

2(∂Bd)) provides
an example of a d-tuple that satisfies conditions (a) and (b) of the
Proposition, but is not a spherical unitary tuple.

Let E0 =
⋂d

i=1 ker Ti. Inductively define a sequence of positive oper-
ators by

(4.1) P0 = I and PN+1 =
d∑

i=1

T ∗
i PNTi for N = 0, 1, ...

One verifies that for N ≥ 1

PN =
∑

|α|=N

(
N
α

)
T ∗αTα.

Hence it follows that ker PN =
⋂
|α|=N ker T α, and E0 = ker P1.

Note that for N ≥ 1 we have PN − PN+1 =
∑d

i=1 T ∗
i (PN−1 − PN)Ti.

Hence part (a) of the hypothesis and an induction argument imply that
{PN}N∈N is a non-increasing sequence of positive operators which thus
converges strongly to a positive operator P . Our first step will be to
show that P and each PN are projections, and that TiP = PTi for
all 1 ≤ i ≤ d. This means that M = ran P reduces each Ti and we
will see that T |M is a spherical isometry and that T ∗|M⊥ is unitarily
equivalent to the d-shift acting on H2

d(E0).

Lemma 4.2. Let T ∈ B(H)d be as in Proposition 4.1. Then for each
N ∈ N the operator PN is a projection such that TiPN = PN−1Ti for
all i ∈ {1, ..., d}.
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Proof. We will start by using induction on N ∈ N to show that TiPN =
PN−1Ti for all i ∈ {1, ..., d}. The hypothesis (a) of Proposition 4.1 im-

plies that P1 is a projection, hence ran (I −P1) = ker P1 =
⋂d

i=1 ker Ti.
This implies Ti(I−P1) = 0 for all i ∈ {1, ..., d}. Thus P0Ti = Ti = TiP1

and the statement is true for N = 1.
Next suppose that N > 1 and that TiPN−1 = PN−2Ti for all i ∈

{1, ..., d}. For x ∈ H and j ∈ {1, .., d} set zj = PN−1Tjx. Then for all
i and j we have

Tizj = TiPN−1Tjx = PN−2TiTjx = PN−2TjTix = Tjzi.

Thus the hypothesis (b) of Proposition 4.1 implies that there exists
y ∈ H such that PN−1Tjx = zj = Tjy for all j. Then for all i we have

TiPNx = Ti

d∑
j=1

T ∗
j PN−1Tjx = Ti

d∑
j=1

T ∗
j Tjy = TiP1y = Tiy = PN−1Tix.

Thus TiPN = PN−1Ti for all N ∈ N and i ∈ {1, ..., d}. For N > 1 we
can iterate this to obtain

TiTjPN = TiPN−1Tj = PN−2TiTj

for all i, j. Continuing the same way and using that P0 = I we see
that for all N ∈ N and all multiindices α ∈ Nd

0 with |α| = N we have
TαPN = Tα. Thus

P 2
N =


 ∑

|α|=N

(
N
α

)
T ∗αTα


 PN =

∑

|α|=N

(
N
α

)
T ∗αTα = PN ,

which shows that each PN is a projection. ¥
Lemma 4.3. Let T be a commuting operator tuple on H which satisfies
condition (b) of Proposition 4.1, and let N ∈ N. Suppose that for each
α ∈ Nd with |α| = N we are given an element xα ∈ H.

Then there is an x ∈ H such that xα = Tαx for all |α| = N if and
only if
(4.2)
Tixβ+ej

= Tjxβ+ei
for all 1 ≤ i, j ≤ d and all β ∈ Nd

0 with |β| = N −1.

Proof. It is clear that if xα = Tαx for all |α| = N , then Tixβ+ej
=

Tjxβ+ei
for all 1 ≤ i, j ≤ d and all β ∈ Nd

0 with |β| = N − 1. We
will use induction on N to verify the sufficiency of condition (4.2). For
N = 1 this is just the hypothesis of the lemma.

Suppose that the lemma holds for N ≥ 1, and suppose that {xα}|α|=N+1

satisfies (4.2) with N + 1 instead of N . Let |β| = N . For i = 1, .., d
set zi = xβ+ei

. Then we have Tjzi = Tizj for all i and j. Thus by our
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hypothesis on T there exists xβ ∈ H with xβ+ei
= zi = Tixβ for all i.

The collection {xβ}|β|=N satisfies (4.2). Indeed, let |γ| = N − 1 and
1 ≤ i, j ≤ d, then Tjxγ+ei

= x(γ+ei)+ej
= x(γ+ej)+ei

= Tixγ+ej
. Hence

the induction hypothesis and the construction imply that there is a
x ∈ H such that xβ = T βx and xβ+ei

= Tixβ = T β+ei for all |β| = N
and 1 ≤ i ≤ d. Thus, xα = Tαx for all |α| = N + 1. ¥
Lemma 4.4. Let T ∈ B(H)d be as in Proposition 4.1 and let N ∈ N.

Then for all x ∈ E0 and all α, β ∈ Nd
0 with |α| = |β| = N we have

√(
N
α

)√(
N
β

)
TαT ∗βx = δαβx,

where δαβ = 1 if α = β and δαβ = 0 otherwise.
Of course, the definition of E0 then immediately implies that T γT ∗βx =

0 for all x ∈ E0 and β, γ ∈ Nd
0 with |γ| > N = |β|.

Proof. Define the column operator T (N) : H → ⊕|α|=NH by

T (N)x =

{√(
N
α

)
Tα

}

|α|=N

.

Then

T (N)∗T (N) =
∑

|α|=N

(
N
α

)
T ∗αTα = PN .

Lemma 4.2 implies that T (N)∗T (N) is a projection and hence it follows
that T (N)T (N)∗ is the orthogonal projection onto ran T (N).

Now let x ∈ E0, fix β ∈ Nd
0 with |β| = N , and define a column vector

z = {xα}|α|=N ∈ ⊕|α|=NH by xα = 0 if α 6= β and xβ = x. Then
Tixγ+ej

= 0 = Tjxγ+ei
for all 1 ≤ i, j ≤ d and all |γ| = N − 1. Thus it

follows from Lemma 4.3 that there is a w ∈ H such that xα = Tαw for
all |α| = N and hence z ∈ ran T (N) and

z = T (N)T (N)∗z =

{√(
N
α

)√(
N
β

)
T αT ∗βx

}

|α|=N

.

The lemma now follows from the definition of z. ¥
Proof of Proposition 4.1. From Lemma 4.2 and the remarks preceding
it we know that the sequence {PN}N∈N forms a decreasing sequence of
projections. Let P denote the strong limit of this sequence. Then P
is a projection and the assertion PN−1Ti = TiPN of Lemma 4.2 implies
that PTi = TiP for all 1 ≤ i ≤ d. Thus M = ran P reduces T and the
identity P =

∑d
i=1 T ∗

i PTi shows that T |M is a spherical isometry.
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Let S denote the d-shift acting on H2
d(E0), then S is unitarily equiva-

lent to Mz⊗I acting on H2
d ⊗E0. We will show that Mz⊗I is unitarily

equivalent to T ∗|M⊥. Since E0 ⊆M⊥ we can define a linear transfor-
mation U : H2

d ⊗ E0 → M⊥ by setting U(p ⊗ x) = p(T ∗)x for every
polynomial p and x ∈ E0. Note that for x, y ∈ E0 and α, β ∈ Nd

0 Lemma
4.4 implies

√(|α|
α

)√(|β|
β

)
〈T ∗αx, T ∗βy〉 = δαβ〈x, y〉.

Thus if p(z) =
∑

α p̂(α)zα and q(z) =
∑

β q̂(β)zβ are polynomials, then
for all x, y ∈ E0 we have

〈p(T ∗)x, q(T ∗)y〉 =
∑

α,β

p̂(α)q̂(β)〈T ∗αx, T ∗βy〉

=
∑

α

p̂(α)q̂(α)(|α|
α

) 〈x, y〉 = 〈p, q〉H2
d
〈x, y〉,

where the identity for the H2
d -inner product follows from (1.2). This

implies that

‖U(
∑

j

pj ⊗ xj)‖2 =
∑
i,j

〈pi(T
∗)xi, pj(T

∗)xj〉 =
∑
i,j

〈pi, pj〉H2
d
〈xi, xj〉

= ‖
∑

j

pj ⊗ xj‖2
H2

d⊗E0 ,

thus U extends to be an isometric operator on H2
d ⊗ E0.

We shall now finish the proof by showing that U has dense range.
Let [E0]T ∗ denote the smallest common invariant subspace for T ∗

1 , ..., T ∗
d

that contains E0. We have to show that [E0]T ∗ = M⊥ = ran (I − P ).
For k ≥ 0 we set Qk = Pk − Pk+1, then each Qk is a projection and
I − P = limN→∞ I − PN =

∑∞
k=0 Qk. Note that ran Q0 = E0. Thus

if we define Ek = ran Qk then we must show that for each k ≥ 0 we
have Ek ⊆ [E0]T ∗ . This is trivially true for k = 0. Thus assume that
Ek ⊆ [E0]T ∗ for some k ≥ 0. Then for x ∈ H we have

Qk+1x =
d∑

i=1

T ∗
i QkTix ∈

d∑
i=1

T ∗
i Ek ⊆ [E0]T ∗ .

Hence the density of ran U in M⊥ follows by induction. ¥
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5. Finite rank extensions of spherical contractions and
isometries

We start out with a trivial lemma that will be used repeatedly and
without further mention.

Lemma 5.1. Let T be a commuting d-tuple of operators acting on
a Hilbert space H and let R = (R1, ..., Rd) be a nontrivial rank one
extension of T acting on H⊕ C i.e.

Ri =

(
Ti Ai

0 Bi

)
,

where Ai1 = εxi and Bi1 = bi for some ε > 0, x1, ..., xd ∈ H,∑d
i=1 ‖xi‖2 = 1, and b = (b1, ..., bd) ∈ Cd.
Then R is a commuting d-tuple if and only if for all i, j we have

(Ti − bi)xj = (Tj − bj)xi. ¥

The following two lemmas are only preliminary results. A more
definitive result for spherical contractions will be presented in Theorem
6.1, the result about spherical isometries will follow in Corollary 5.4.

Lemma 5.2. Let Fsc be the family of commuting spherical contrac-
tions, let T ∈ Fsc ∩ B(H)d, and let D = (I −∑d

i=1 T ∗
i Ti)

1/2.
Then T has a nontrivial rank one extension in Fsc if and only if

there exist b = (b1, ..., bd) ∈ Cd, x1, ..., xd ∈ H such that

(i)
∑d

i=1 ‖xi‖2 = 1,
(ii) (Ti − bi)xj = (Tj − bj)xi for all i, j
(iii) |b| < 1, and

(iv)
∑d

i=1 T ∗
i xi ∈ ran D.

Proof. Let R be a commuting rank 1 extension of T as in Lemma 5.1.
Let x ∈ H and y ∈ C and calculate

d∑
i=1

‖Ri

(
x
y

)
‖2 =

d∑
i=1

‖Tix + εxiy‖2 + |b|2|y|2

=
d∑

i=1

‖Tix‖2 + 2ε Re y〈x,

d∑
i=1

T ∗
i xi〉+ (ε2

d∑
i=1

‖xi‖2 + |b|2)|y|2

We now set x0 =
∑d

i=1 T ∗
i xi and recall

∑d
i=1 ‖xi‖2 = 1. Then we see

that R is a spherical contraction if and only if for all x ∈ H and y ∈ C
we have

2ε Re y〈x, x0〉+ (ε2 + |b|2)|y|2 ≤ ‖Dx‖2 + |y|2.(5.1)
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Assume now that R is a spherical contraction for some ε > 0, then
clearly |b| < 1. By changing the argument of y if necessary, it fol-
lows from (5.1) that 2ε|y||〈x, x0〉| ≤ ‖Dx‖2 + |y|2 for all x ∈ H and
y ∈ C. Thinking of this as a quadratic inequality in |y| we conclude
that ε2|〈x, x0〉|2 ≤ ‖Dx‖2 for all x ∈ H. By the Douglas lemma ([12])∑d

i=1 T ∗
i xi = x0 ∈ ran D. This proves the necessity of the four condi-

tions.
Conversely assume (i)-(iv). In particular, x0 = Dz0 for some z0 ∈ H.

Then

2ε Re y〈x, x0〉+ (ε2 + |b|2)|y|2 ≤ 2ε|y〈Dx, z0〉|+ (ε2 + |b|2)|y|2
≤ ε‖Dx‖2‖z0‖2 + (ε + ε2 + |b|2)|y|2,

which will be ≤ ‖Dx‖2 + |y|2 for sufficiently small ε > 0. ¥
Lemma 5.3. Let Fsi be the family of commuting spherical isometries
and let T ∈ Fsi ∩ B(H)d. Then the following are equivalent:

(a) T has a nontrivial rank one extension in Fsi,
(b) T has a nontrivial rank one extension in Fsc,
(c) there exist b = (b1, ..., bd) ∈ Cd and x1, ..., xd ∈ H such that

(i)
∑d

i=1 ‖xi‖2 = 1,
(ii) (Ti − bi)xj = (Tj − bj)xi for all i, j
(iii) |b| < 1, and

(iv)
∑d

i=1 T ∗
i xi = 0.

Proof. (i) ⇒ (ii) is trivial and (ii) ⇒ (iii)follows immediately from
Lemma 5.2, because D = 0. The implication (iii) ⇒ (i) follows from
the proof of Lemma 5.2. Indeed since D = 0 and x0 = 0 we can take
ε =

√
1− |b|2 to obtain equality in (5.1). ¥

Using the definition as given e.g. in Section 3 one checks that the
Koszul complex for a commuting operator tuple R = (R1, ..., Rd) acting
on H is exact at Λ1(H) if and only if whenever x1, ..., xd ∈ H are such
that Rixj = Rjxi for all i, j, then there is an x ∈ H such that xi = Rix
for all i.

Corollary 5.4. Let T ∈ B(H)d be a commuting spherical isometry.
Then the following are equivalent:

(i) T has a nontrivial rank one extension in Fsi,
(ii) T has a nontrivial rank one extension in Fsc,
(iii) there exists b ∈ Bd such that the Koszul complex for T − b is

not exact at Λ1(H).

For example, if Mz = (Mz, H
2(∂D)) is the unilateral shift, then

T = (Mz, 0) is a commuting spherical isometry. One easily checks that
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for (b1, b2) ∈ B2 the Koszul complex for T − b is exact at Λ1(H2(∂D))
if and only if b2 6= 0, and since Mz has a nontrivial rank 1 extension
it is of course clear that T has a nontrivial rank one extension. On
the other hand, if d > 1 and if T = Mz = (Mz1 , ...,Mzd

) acting on
H2(∂Bd), then it is known that the Koszul complex for Mz− b is exact
at Λ1(H2(∂Bd)) for all b ∈ Bd (see e.g. Proposition 2.6 of [15]). Thus
Mz does not have a nontrivial rank one extension in Fsi.

Proof. We have already seen the equivalence of (i) and (ii). To prove
(i) ⇒ (iii) suppose that T has a nontrivial rank one extension in Fsi,
then there exist a b ∈ Bd and x1, ..., xd ∈ H such that (i)-(iv) of Lemma
5.3 (c) are satisfied. We will show that the Koszul complex for T − b
is not exact at Λ1(H). If it were exact, then by (ii) and the definition
of exactness at Λ1(H) there is an x ∈ H such that xi = (Ti − bi)x for
all i. By (i) we have x 6= 0, and by (iv) we have

0 =
d∑

i=1

T ∗
i xi =

d∑
i=1

T ∗
i (Ti − bi)x = x−

d∑
i=1

T ∗
i bix.

Thus ‖x‖2 = ‖∑d
i=1 T ∗

i bix‖2 ≤ ∑d
i=1 ‖bix‖2 = |b|2‖x‖2, because the

adjoints of spherical isometries must be row contractions. Since x 6= 0
we conclude |b| ≥ 1 which is a contradiction. Hence the Koszul complex
for T − b cannot be exact at Λ1(H).

We now prove (iii) ⇒ (i). Suppose that b ∈ Bd such that the Koszul
complex for T − b is not exact at Λ1(H). First we will assume that
b = 0. Since T is a spherical isometry, the range of ∂0 : H → H⊕...⊕H,
x → (T1x, ..., Tdx) must be closed. Thus if the Koszul complex is not
exact at Λ1(H) ' H ⊕ ... ⊕H, then there is (x1, ..., xd) ⊥ ran ∂0 such

that
∑d

i=1 ‖xi‖2 = 1 and Tixj = Tjxi for all i, j. Then
∑d

i=1 T ∗
i xi =

∂∗0(x1, ..., xd) = 0, so (i)-(iv) of Lemma 5.3 (c) are satisfied with b = 0
and hence T has a nontrivial rank one extension in Fsi.

If b 6= 0, then we consider a ball automorphism ϕb that takes b to
0. As in the paragraph preceding Lemma 2.4 of [15] we can define
S = ϕb(T ). Then one checks that S is a commuting spherical isometry.
Thus it is clear that T has a nontrivial rank one extension in Fsi if and
only if S has a nontrivial rank one extension in Fsi. By Lemma 2.4 of
[15] the Koszul complex for S is isomorphic to the Koszul complex for
T − b. Hence the result follows from the case b = 0. ¥

If F is a family and if an operator tuple T ∈ F has a nontrivial finite
rank extension R ∈ F acting on H⊕K, then the compressions of the
Ri to K will have a common eigenvector x0 and R′ = R|(H⊕Cx0) will
be a rank one extension of T in F . However, it may happen that R′
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is a trivial extension of T . For such situations the following lemma is
useful.

Lemma 5.5. Let H1,H2,H3 be Hilbert spaces, let K = H1⊕H2⊕H3,
and let R = (R1, ..., Rd) be a operator tuple acting on K with matrix
representation of the form

Ri =




Ti 0 Ai

0 Bi Ci

0 0 Di


 .

If R is a commuting spherical contraction (resp. commuting row
contraction), then S = (S1, ..., Sd),

Si =

(
Ti Ai

0 Di

)

is a commuting spherical contraction (resp. commuting row contrac-
tion).

Proof. Write H13 = H1 ⊕ H3 and note that S = PH13R|H13. The
contractiveness assertions thus follow immediately. The commutativity
follows from the special form of R. For all i, j we have

SiSj = PH13RiPH13Rj|H13

= PH13RiRj|H13 − PH13RiPH2Rj|H13

= PH13RiRj|H13 since PH13RiPH2 = 0

= PH13RjRi|H13 = SjSi.

¥

Corollary 5.6. Let F = Fsc or F = Frc and let T ∈ F . Then T has
a nontrivial finite rank extension in F if and only if T has a nontrivial
rank one extension in F .

Proof. Suppose T acts on a Hilbert space H and let R be a nontrivial
finite rank extension of T in F acting on H⊕K with 1 < dimK < ∞.
Let B = PKR|K be the compression of R to K. Then B is a commuting
tuple of linear transformations on a finite dimensional space, thus the
transformations Bi will have a common eigenvector x0 6= 0. Then either
R′ = R|(H ⊕ Cx0) is a nontrivial rank one extension of T in F or R
is of the form as in Lemma 5.5 with H1 = H and H2 = Cx0. In the
latter case we can use the lemma to get a nontrivial extension R′ of
T acting on H ⊕ K′ with R′ ∈ F and dimK′ = dimK − 1. Thus the
result follows by an induction argument. ¥
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6. Extensions of spherical contractions

Theorem 6.1. Let T be a commuting spherical contraction. Then the
following are equivalent:

(i) T has only trivial rank one extensions in Fsc,
(ii) T has only trivial finite rank extensions in Fsc,
(iii) T = S∗ ⊕ V , where S is a direct sum of d-shifts and V is a

spherical isometry such that for all b ∈ Bd the Koszul complex
for V − b is exact at Λ1,

(iv) (a)
∑d

i=1 T ∗
i Ti is a projection, and

(b) for all b ∈ Bd the Koszul complex for T − b is exact at Λ1.

Proof. (i) and (ii) are equivalent by Corollary 5.6.
(iii) ⇒ (i): If R is a rank one extension of T = S∗ ⊕ V in Fsc, then

since S∗ is extremal in Fsc Lemma 2.1 (a) implies that R = S∗⊕R′ for
some R′ ∈ Fsc with R′ ≥ V . Then clearly R′ is a rank one extension of
V and (i) follows from the hypothesis and the equivalence of (ii) and
(iii) of Corollary 5.4.

(iv) ⇒ (iii): By Proposition 4.1 the conditions (iv) (a) and (b) with
b = 0 imply that T is of the form T = S∗ ⊕ V , where S is a direct
sum of d-shifts and V is a spherical isometry. The Koszul complex of
S∗ ⊕ V splits into a direct sum of Koszul complexes. Thus it is clear
that (iv) (b) implies that for each b ∈ Bd the Koszul complex for V − b
is exact at Λ1.

(i) ⇒ (iv): We will show the contrapositive. First suppose that

(iv)(a) is not satisfied, i.e.
∑d

i=1 T ∗
i Ti is not a projection. We will use

Lemma 5.2 with b = 0.
If E is the spectral measure for

∑d
i=1 T ∗

i Ti, then there are real num-
bers r, s such that 0 < r < s < 1 and such that Q = E([r, s]) 6= 0. Let
x0 ∈ ran Q, ‖x0‖ 6= 0 and set xi = Tix0. Then

d∑
i=1

‖xi‖2 =
d∑

i=1

‖Tix0‖2 =

∫ 1

0

t d〈Etx0, x0〉 ≥ r‖x0‖2 6= 0.

Thus by scaling x0 we may assume that
∑d

i=1 ‖xi‖2 = 1, and we have
(i), (ii), and (iii) of Lemma 5.2. Furthermore, since s < 1 we have
Q = D

∫ s

r
1√
1−t

dE, so ran Q ⊆ ran D. Hence

d∑
i=1

T ∗
i xi =

d∑
i=1

T ∗
i Tix0 =

d∑
i=1

T ∗
i TiQx0 = Q

d∑
i=1

T ∗
i Tix0 ∈ ran D
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and (iv) of Lemma 5.2 is also satisfied. Thus T must have a nontrivial
rank one extension in Fsc i.e. condition (i) of Theorem 6.1 does not
hold.

Next suppose that
∑d

i=1 T ∗
i Ti = P1 is a projection, but that the

Koszul complex for T is not exact at Λ1. This implies that the column
operator T (1) : H → Hd defined by

T (1)x =




T1x
.
.
.

Tdx




satisfies P1 = T (1)∗T (1) and hence T (1) is a partial isometry and in
particular has closed range. Furthermore, there exist x1, ..., xd ∈ H

such that Tixj = Tjxi for all i, j, but




x1

.

.

.
xd




/∈ ran T (1). Since ran T (1)

is closed we may assume that




x1

.

.

.
xd



⊥ ran T (1) and

∑d
i=1 ‖xi‖2 = 1.

But this means that




x1

.

.

.
xd



∈ ker T (1)∗ or

∑d
i=1 T ∗

i xi = 0 ∈ ran D.

Thus again we can use Lemma 5.2 to see that condition (i) of Theorem
6.1 does not hold.

Finally we suppose that
∑d

i=1 T ∗
i Ti is a projection, that the Koszul

complex for T is exact at Λ1, but that there is a b ∈ Bd, b 6= 0 such
that the Koszul complex for T − b is not exact at Λ1. Then Proposition
4.1 implies that T = S∗ ⊕ V , where S is a direct sum of d-shifts and
V is a spherical isometry. Since the Koszul complex of S∗ − b is exact
at Λ1, it follows that the Koszul complex for V − b cannot be exact at
Λ1. Thus in this case it follows from Corollary 5.4 that T would have
a nontrivial rank one extension in Fsc. The concludes the proof of (iv)
⇒ (i). ¥
Corollary 6.2. Theorem 1.4 holds.
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Proof. The implication (ii) ⇒ (i) follows from Theorems 3.3 and 2.2
and Lemma 2.1.

We now show (iii) ⇒ (ii). If T satisfies the conditions (a), (b), and
(c) of part (iii) of Theorem 1.4, then by Proposition 4.1 T is unitarily
equivalent to S∗ ⊕ V , where S is a direct sum of d-shifts and V =
(V1, ..., Vd) is a spherical isometry. We will see that V is a spherical
unitary. Condition (b) implies that

0 ≤
d∑

i=1

ViV
∗
i − I =

d∑
i=1

ViV
∗
i − V ∗

i Vi.

We already mentioned that each operator in a spherical isometric tuple
must be subnormal (also see Theorem 1.3), thus for each i we have
ViV

∗
i − V ∗

i Vi ≤ 0. Hence ViV
∗
i = V ∗

i Vi for all 1 ≤ i ≤ d.
Finally we prove (i) ⇒ (iii). If T is extremal then it has no nontriv-

ial rank one extension, hence conditions (iii) (a) and (c) follow from
the equivalence of (i) and (iv) in Theorem 6.1. Then it follows from
Proposition 4.1 that T = S∗ ⊕ V for a spherical isometry V . Since
T is extremal Theorem 2.2 implies that V must in fact be a spherical
unitary tuple. Then T ∗ = S ⊕ U for some spherical unitary tuple U
and a direct sum of d-shifts S. Condition (iii)(b) follows easily (see
(1.3)). ¥

Corollary 6.3. Corollary 1.5 holds.

Proof. Let T = S ⊕ U , where S is a direct sum of d-shifts and U is a
spherical unitary tuple. It follows from (1.1) and (1.3) that T satisfies
conditions (a) and (b) of Corollary 1.5. Furthermore, in Section 3 we
mentioned that the Koszul complex for the d-shift is exact at Λp(H)
for all p with 1 ≤ p ≤ d − 1. The Taylor spectrum of any spherical
unitary tuple U must be contained in ∂Bd. Since such U is normal this
can easily be deduced from Proposition 7.2 of [11]. Hence the Koszul
complex of T = S ⊕ U is exact at Λd−1(H), i.e. (c) of Corollary 1.5
holds as well.

Conversely suppose that T satisfies (a), (b), and (c) of Corollary
1.5. Then the adjoint tuple T ∗ satisfies (iii)(a) and (iii)(b) of Theorem

1.4. Since
∑d

i=1 TiT
∗
i is a projection the operator H → Hd defined

by x → (T ∗
1 x, ..., T ∗

d x) is a partial isometry and thus has closed range.
This operator is unitarily equivalent to ∂T ∗,0, hence ∂T ∗,0 has closed
range in Λ1(H). Thus, as the hypothesis (c) is that K(T ) is exact at
Λd−1(H) the discussion about the Hodge ∗-operator at the beginning of
Section 3 implies that K(T ∗) is exact at Λ1(H), i.e. T ∗ satsfies (iii)(c)
of Theorem 1.4. Hence Theorem 1.4 implies that T ∗ = S∗⊕U , where S
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is a direct sum of d-shifts and U (and hence U∗) is a spherical unitary
tuple. This concludes the proof of the Corollary. ¥

7. Rank one extensions of row contractions

Next we consider row contractions. Let Frc denote the family of
commuting row contractions, let T = (T1, .., Td) ∈ Frc ∩ B(H)d and

write D∗ = (I−∑d
i=1 TiT

∗
i )1/2 for the defect operator. If R ∈ B(H⊕K)

is an operator tuple that extends T , then we will use the notation

Ri =

(
Ti Ai

0 Bi

)
, i = 1, .., d.(7.1)

Note that R will be a commuting tuple if and only if

TiAj − TjAi = AjBi − AiBj and BiBj = BjBi for all i, j.(7.2)

Lemma 7.1. Let T be a commuting row contraction.
(a) If b = (b1, ..., bd) ∈ Cd, |b| = 1, then ker(I −∑d

i=1 biTi) ⊆ ker D∗.
(b) If R is a row contraction that extends T , then

∑d
i=1 AiA

∗
i ≤ D2

∗
and for each i we have ran Ai ⊆ ran D∗.

Proof. (a) Let |b| = 1 and let x ∈ ker(I −∑d
i=1 biTi). Then

‖x‖4 =|〈x,

d∑
i=1

biTix〉|2 = |
d∑

i=1

bi〈T ∗
i x, x〉|2

≤ |b|2
d∑

i=1

‖T ∗
i x‖2‖x‖2 = (‖x‖2 − ‖D∗x‖2)‖x‖2.

This implies ‖D∗x‖ = 0.
(b) Recall that R is a row contraction if and only if R∗ is a spherical

contraction, i.e. for all x ∈ H, y ∈ K we have

d∑
i=1

‖R∗
i

(
x
y

)
‖2 ≤ ‖x‖2 + ‖y‖2.

A short calculation shows that this happens if and only if

d∑
i=1

‖A∗
i x + B∗

i y‖2 ≤ ‖D∗x‖2 + ‖y‖2.(7.3)

In particular, we see that if R is a row contraction, then
∑d

i=1 AiA
∗
i ≤

D2
∗ and hence for each i we must have ran Ai ⊆ ran D∗ (by the Douglas

Lemma ([12]). This proves (b). ¥
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Lemma 7.2. Let Frc be the family of commuting row contractions, let
T ∈ Frc ∩ B(H)d, and let D∗ = (I −∑d

i=1 TiT
∗
i )1/2.

Then T has a nontrivial rank one extension in Frc, if and only if
there exist b = (b1, ..., bd) ∈ Cd, x1, ..., xd ∈ H such that

(i)
∑d

i=1 ‖xi‖2 = 1,
(ii) (Ti − bi)xj = (Tj − bj)xi for all i, j
(iii) |b| < 1, and
(iv) xi ∈ ran D∗ for each i,

Proof. First assume that we are given b ∈ Cd and x1, ..., xd ∈ H such
that (i)-(iv) are satisfied. For any ε > 0 we define a rank one extension
R of T as in Lemma 5.1. By (i) and (ii) it will be non-trivial and
commutative. Thus by (7.3) R will be a row contraction if and only if∑d

i=1 |ε〈x, xi〉+ biy|2 ≤ ‖D∗x‖2 + |y|2 for all x ∈ H, y ∈ C.
Since each xi ∈ ran D∗, there are zi ∈ H such that xi = D∗zi. Then

for x ∈ H and y ∈ C we have

d∑
i=1

|ε〈x, xi〉+ biy|2 ≤ ε2

d∑
i=1

|〈D∗x, zi〉|2 + 2ε
d∑

i=1

|〈D∗x, zi〉||bi||y|+ |b|2|y|2

≤ ε2

d∑
i=1

‖zi‖2‖D∗x‖2 + 2ε


‖D∗x‖

√√√√
d∑

i=1

‖zi‖2


 |b||y|+ |b|2|y|2

≤ (ε2 + ε)
d∑

i=1

‖zi‖2‖D∗x‖2 + (1 + ε)|b|2|y|2 ≤ ‖D∗x‖2 + |y|2,

whenever ε is sufficiently small. Thus T has a nontrivial rank one
extension in Frc.

Conversely, assume that T has a nontrivial rank one extension R in
Frc. Then R can be written as in Lemma 5.1. Thus we have ε > 0, b ∈
Cd and x1, ..., xd ∈ H satisfying (i) and (ii). Furthermore, a calculation
similar to what was done in the first part of the proof shows that since
R is a row contraction we must have

d∑
i=1

|ε〈x, xi〉+ biy|2 = ε2

d∑
i=1

|〈x, xi〉|2 + 2ε Re
d∑

i=1

〈x, xi〉biy + |b|2|y|2

≤ ‖D∗x‖2 + |y|2

for all x ∈ H and all y ∈ C. By taking y = 0 we see that the Douglas
Lemma ([12]) implies that (iv) must be satisfied, and by taking x = 0
it follows that |b| ≤ 1. We will be done if we can rule out the possibility
that |b| = 1.
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Note that R∗ is a nontrivial extension in Fsc of the tuple of scalars
b : C → C. Hence Theorem 2.2 implies |b| < 1. A somewhat more
direct argument goes as follows: If |b| = 1, then the above inequality

implies that Re
∑d

i=1〈x, xi〉biy = 0 for all x and y. Hence
∑d

i=1 bixi =

0. Now we multiply (ii) by bi and sum in i to obtain (
∑d

i=1 biTi−I)xj =

(Tj − bj)
∑d

i=1 bixi = 0 for each j. Thus each xj ∈ ker(I −∑d
i=1 biTi)

and hence by Lemma 7.1 (a) xj ∈ ker D∗. This contradicts (i) and (iv),
which are already known to hold. ¥

8. Extensions of row contractions

In this Section we shall prove Theorems 1.6 and 1.8 and Corollary
1.7.

Proposition 8.1. (a) If D∗ = 0, then T ∈ ext(Frc).
(b) If D∗ is onto, then T has a rank one extension in ext(Frc).
(c) If D∗ is a projection, then the following are equivalent:

(i) T has a nontrivial rank one extension in Frc,
(ii) T /∈ ext(Frc),

(iii) there are x1, .., xd ∈ ⋂d
j=1 ker T ∗

j with
∑d

i=1 ‖xi‖2 > 0 and
Tixj = Tjxi for all i, j.

Proof. (a) follows directly from Lemma 7.1 (b).
(b) Clearly the zero tuple, T = (0, .., 0), is not extremal. Thus

assume that D∗ is onto and one of the Ti’s is not zero. Then we can
set b = 0 and choose x ∈ H such that the hypothesis of Lemma 7.2 is
satisfied with xi = Tix.

(c) (iii) ⇒ (i) follows directly from Lemma 7.2 with b = 0. (i) ⇒ (ii)
is trivial.

(ii) ⇒ (iii): We assume that D∗ is a projection and that we have
a nontrivial extension in Frc. Then with the notation as in (7.1) we

set xi = Aix, where x is chosen so that
∑d

i=1 ‖xi‖2 > 0. Lemma 7.1
(b) implies that for all k we have ran Ak ⊆ ran D∗. Thus x1, .., xd ∈
ran D∗. Furthermore, since D∗ is a projection we have

d∨

k=1

ran Ak ⊆ ran D∗ =
d⋂

j=1

ker T ∗
j =

(
d∨

j=1

ran Tj

)⊥

.

Thus, commutativity implies that for all i and j

Tixj−Tjxi = TiAjx−TjAix = AjBix−AiBjx ∈
d∨

k=1

ran Ak∩
d∨

j=1

ran Tj = (0).

This establishes (iii). ¥
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Proposition 8.2. If T ∈ Frc and if there is a u ∈ ran D∗, ‖u‖ = 1,
such that dim span {u, T1u, .., Tdu} ≤ 2, then T has a nontrivial rank
one extension in Frc.

Proof. The hypothesis implies that there is v ∈ H, v ⊥ u and α =
(α1, ..., αd), β = (β1, ..., βd) ∈ Cd, β 6= 0 such that Tiu = αiu + βiv for
i = 1, ..., d. Indeed, if dim span {u, T1u, .., Tdu} = 2, then we can find
such a unit vector v satisfying this, while if dim span {u, T1u, .., Tdu} =
1 we take v = 0 and any β 6= 0.

We set γ = Pβ⊥α = α − cβ, where c = 〈α,β〉
|β|2 . Then 〈β, γ〉 = 0 and

〈α, γ〉 = 〈α, Pβ⊥α〉 = |γ|2.
The conclusion will follow from Lemma 7.2 with xi = βi

|β|u and b = γ.

Conditions (i) and (iv) are obvious from the definition of the xi. In
order to verify (iii) we calculate

(Ti − γi)xj =
βiβj

|β| (v − cu) = (Tj − γj)xi

for all i, j.
Finally,

∑d
i=1 γiTiu = 〈α, γ〉u + 〈β, γ〉v = |γ|2u. Since T is a row

contraction this implies

|γ|4 = ‖
d∑

i=1

Ti(γiu)‖2 ≤
d∑

i=1

‖γiu‖2 = |γ|2.

Hence |γ| ≤ 1.

If |γ| = 1, then (I − ∑d
i=1 γiTi)u = 0, thus Lemma 7.1 (a) implies

that u ∈ ker D∗. But since u ∈ ran D∗ this would mean u = 0, which
is impossible. Hence |γ| < 1. ¥

We shall now prove part (iv) of Theorem 1.6.

Theorem 8.3. Let T be a commuting row contraction with D∗ = u⊗u
for some u ∈ H, u 6= 0. Then the following are equivalent

(i) T ∈ ext(Frc),
(ii) T has only trivial rank one extensions in Frc,
(iii) dim span {u, T1u, .., Tdu} ≥ 3.

Proof. (i) ⇒ (ii) is trivial and (ii) ⇒ (iii) follows directly from Propo-
sition 8.2.

(iii) ⇒ (i): Suppose that dim span {u, T1u, .., Tdu} ≥ 3. Since u 6= 0
we may without loss of generality assume that the set {u, T1u, T2u} is
linearly independent. Let R be an extension of T in Frc and assume
each Ri is of the form as in (7.1). We must show that each Ai = 0.
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Since D∗ = u⊗u Lemma 7.1 (b) implies the existence of x1, ..., xd ∈ K
such that Aix = 〈x, xi〉u for each i. Then commutativity (see (7.2))
implies for all x ∈ K and all i, j

〈x, xj〉Tiu− 〈x, xi〉Tju = 〈Bix, xj〉u− 〈Bjx, xi〉u = 〈x,B∗
i xj −B∗

j xi〉u
(8.1)

Take i = 1 and j = 2. Then the linear independence of {u, T1u, T2u}
shows that 〈x, x1〉 = 〈x, x2〉 = 0 for all x ∈ K. Thus x1 = x2 = 0. Next
consider (8.1) with i = 1 and j > 2. Since x1 = 0 we get

〈x, xj〉T1u = 〈x,B∗
1xj〉u.

Again linear independence implies xj = 0. Thus Aj = 0 for all j, and
T must be extremal. ¥

Corollary 8.4. Corollary 1.7 holds.

Proof. Write P = PM⊥ for the projection of H2
d onto M⊥. Recall that

if S denotes the d-shift on H2
d , then I − ∑d

i=1 SiS
∗
i = 1 ⊗ 1 is the

projection onto the constants. For i = 1, ..., d we have Ti = PSi|M⊥,
hence

D2
∗ = IM⊥ −

d∑
i=1

TiT
∗
i = P

(
I −

d∑
i=1

SiS
∗
i

)
P = ϕ⊗ ϕ,

where ϕ = P1. Since we are assuming M 6= H2
d we have 1 /∈ M, thus

ϕ 6= 0 and rank D∗ = 1.
Let α0, ..., αd ∈ C, then

α0ϕ +
d∑

i=1

αiTiϕ = 0 ⇔ α0 +
d∑

i=1

αizi ∈M.

This implies that span{ϕ, T1ϕ, ..., Tdϕ} is isomorphic to L/M∩L. But
dimL/M∩L = d + 1− dim(M∩L). Thus Corollary 8.4 follows from
Theorem 8.3. ¥

9. An example

Let S = (Mz,Mw) be the 2-shift on H2
2 and let M = {f ∈ H2

2 :
f(z, 0) = 0}. M is invariant for S, thus T = S|M is a non-extremal
row contraction. We claim that T has no nontrivial finite rank exten-
sions in Frc.
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Note that the linear span of monomials of the form znwm, n ≥ 0,m >
0 are dense in M and one computes

D2
∗z

nwm =





1
n+1

znw if m = 1

0 if m > 1

From this one easily sees that there are no nonzero f, g ∈ ran D∗
and b = (b1, b2) ∈ B2 such that (z − b1)f = (w − b2)g. Hence Theorem
1.8 applies to show the claim.

References

[1] Jim Agler. An abstract approach to model theory. In Surveys of some recent
results in operator theory, Vol. II, volume 192 of Pitman Res. Notes Math.
Ser., pages 1–23. Longman Sci. Tech., Harlow, 1988.
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