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Abstract

Let Ω be an open, bounded domain in R
n (n ∈ N) with smooth boundary ∂Ω. Let p, q, r, d1, τ be

positive real numbers and s be a non-negative number which satisfies 0 < p−1

r
< q

s+1
. We consider

the shadow system of the well-known Gierer-Meinhardt system:




ut = d1∆u − u +
up

ξq
, in Ω × (0, T ),

τξt = −ξ +
1

|Ω|

∫

Ω

ur

ξs
dx, in (0, T ),

∂u

∂ν
= 0, on ∂Ω × (0, T ),

ξ(0) = ξ0 > 0, u(·, 0) = u0(·) ≥ 0 in Ω.

We prove that solutions of this system exist globally in time under some conditions on the coefficients.
Our results are based on a priori estimates of the solutions and improve the global existence results
of F. Li and W.-M. Ni in [4].

1 Introduction

Let Ω be an open, bounded domain in R
n (for n ∈ N) with smooth boundary ∂Ω. We are interested in

the global (in time) existence of solutions (u, ξ) of the following shadow system:




ut = d1∆u − u +
up

ξq
, in Ω × (0, T ),

τξt = −ξ +
1

|Ω|

∫

Ω

ur

ξs
dx, in (0, T ),

∂u

∂ν
= 0, on ∂Ω × (0, T ),

ξ(0) = ξ0 > 0, u(·, 0) = u0(·) ≥ 0 in Ω,

(1.1)

where ν is the outward normal vector on ∂Ω, |Ω| is the volume of Ω, 0 < T ≤ ∞, ∆ is the Laplace
operator on R

n, and ξ0, u0 are given initial data. Moreover, p, q, r, τ, d1 are given fixed positive numbers
and s is a given fixed non-negative number satisfying

0 <
p − 1

r
<

q

s + 1
. (1.2)
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The system (1.1) is the shadow system corresponding to a famous model proposed by Gierer-
Meinhardt [2] in 1972:





ut = d1∆u − u +
up

vq
, in Ω × (0, T ),

τvt = d2∆v − v +
ur

vs
, in Ω × (0, T ),

∂u

∂ν
=

∂v

∂ν
= 0, on ∂Ω × (0, T ),

u(·, 0) = u0(·) ≥ 0, v(·, 0) = v0(·) ≥ 0 in Ω.

(1.3)

The problem on global (in time) existence of solutions (u, v) to (1.3) is almost completely understood.
Precisely, solutions of (1.3) exist globally if p−1

r < 1 and blow up in finite time if p−1
r > 1. However,

in the borderline case p−1
r = 1, the question of global existence of solutions of (1.3) remains open.

Interested readers can find more details in [3, 4], and references therein.

For the shadow system (1.1), little is known on the global (in time) existence of its solutions. In a
very recent paper [4], Li and Ni prove that solutions of (1.1) exist for all t > 0 provided that p−1

r < 2
n+2

(strict inequality). They also construct finite time blow-up solutions of (1.1) when p = r, τ = s+1− q,
0 < 2

n < p−1
r < q

s+1 < 1, n ≥ 3 and Ω is an open unit ball in R
n. Therefore, comparing (1.1) with (1.3),

we see that the results in [4] demonstrate that there are serious discrepancies between the dynamics
of the reaction-diffusion systems and that of their corresponding shadow systems. Moreover, as it is
posed in [4], for the case 2

n+2 ≤ p−1
r ≤ 2

n , the question of global existence of solutions of (1.1) remains
open and needs to be investigated. In this short note, we show that in the borderline case of [4] (i.e.

2
n+2 = p−1

r ), solutions of (1.1) also exist globally in time. Precisely, we prove the following theorem:

Theorem 1.1. Assume that ξ0 > 0, and u0 is non-negative bounded function. Assume also that
p−1

r ≤ 2
n+2 and (1.2) holds. Then every solution of (1.1) exists globally in time.

The rest of this paper is devoted to the proof of Theorem 1.1. Our proof is carried using standard
techniques of parabolic equations: suitable applications of Sobolev’s embedding theorems, the Hölder,
Young and Gronwall inequalities. Particularly, for the case p−1

r = 2
n+2 which is critical for the approach

in [4], besides those standard techniques, we use a key observation that any non-negative solution g of
the ordinary differential equation ġ(t) = m(t)g(t) does not blow up in finite time if m(t) is integrable
on (0, t′) for all t′ > 0.

2 Proof of Theorem 1.1

For given initial data ξ0, u0 and the parameters p, q, r, s, τ, d1 satisfying conditions in Theorem 1.1, let
T be the maximal existence time of the solution (u, ξ) of (1.1). It follows from the standard theory of
parabolic equations that T > 0. We argue by contradiction to prove Theorem 1.1. We assume that
T < ∞ and we shall derive a contradiction. Without loss of generality, we assume that |Ω| = 1. We
first estimate ξ(t) from below by the following simple lemma which is due to [4]:

Lemma 2.1. ξ(t) ≥ ξ0e
−t/τ for all 0 ≤ t < T .
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Proof. From the second equation of (1.1) and since u ≥ 0 on Ω × [0, T ), we get

d

dt
(e

t
τ ξ) = e

t
τ [ξt +

1

τ
ξ] =

e
t
τ

τ

∫

Ω

ur

ξs
dx ≥ 0.

Therefore, e
t
τ ξ ≥ ξ0. Thus, Lemma 2.1 follows.

From Lemma 2.1 and standard parabolic regularity theory, we shall obtain a contradiction if we can
prove that for sufficiently large l > 0, under the conditions of Theorem 1.1 and T < ∞, there exists a
finite constant Cl(T ) > 0 such that

||u(·, t)||Ll(Ω) ≤ Cl(T ), ∀ t ∈ [0, T ). (2.1)

The estimate (2.1) follows directly from Lemma 2.3 below. To prove Lemma 2.3, we need the following
a priori estimate:

Lemma 2.2. For each a > 0, let ga(x, t) = ur(x,t)
ξs+1+a(t)

, for all (x, t) ∈ Ω × [0, T ). Then, we have

∫ t2

t1

∫

Ω
ga(x, t)dxdt ≤

τ

a

{
e

a
τ

t2 − e
a
τ
t1

ξa
0

+
1

ξa(t1)
−

1

ξa(t2)

}
, ∀ 0 ≤ t1 ≤ t2 < T.

In particular,
∫ t′

0

∫

Ω
ga(x, t)dxdt ≤ Ca(t

′)
def
==

τe
at′

τ

aξa
0

, 0 ≤ t′ < T.

Proof. Let us denote ζ = ξ−a. Then, we have

ζ̇ = −a
ζ

ξ
ξt = −

aζ

τξ

[
−ξ +

∫

Ω

ur

ξs
dx

]
=

a

τ
ζ −

a

τ

∫

Ω
ga(x, t)dx.

From this and Lemma 2.1, it follows that

∫ t2

t1

∫

Ω
ga(x, t)dxdt =

∫ t2

t1

ζdt −
τ

a

∫ t2

t1

ζ̇dt ≤
1

ξa
0

∫ t2

t1

e
a
τ

tdt +
τ

a
[ζ(t1) − ζ(t2)]

=
τ

a

[
e

a
τ

t2 − e
a
τ

t1

ξa
0

+ ζ(t1) − ζ(t2)

]
.

Therefore, the first claim of Lemma 2.2 follows. The last claim of Lemma 2.2 follows from its first
claim when t1 = 0 and t2 = t′.

Lemma 2.3. For any α, β ≥ 0, let

gα,β(t) =

∫

Ω

uα(x, t)

ξβ(t)
dx, 0 ≤ t < T.

Assume that T < ∞ and all conditions in Theorem 1.1 hold true. Then there exits a constant C(T ) =
Cα,β(T ) < ∞ such that

gα,β(t) ≤ C(T ), for all 0 ≤ t < T.
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Proof. We follow the ideas in [5, 4]. Since p−1
r ≤ 2

n+2 and p−1
r < q

s+1 , we can choose a constant a > 0
such that

ρ
def
==

p − 1

r
=

q

s + 1 + a
≤

2

n + 2
.

Note that it is sufficient to prove Lemma 2.3 for α > 1, which we shall assume from now on. Let
w = uα/2, from (1.1) we have

ġα,β(t) = −β
gα,β

ξ
ξt +

α

ξβ

∫

Ω
uα−1utdx

= −β
gα,β

τξ

[
−ξ +

∫

Ω

ur

ξs
dx

]
+

α

ξβ

∫

Ω
uα−1

[
d1∆u − u +

up

ξq

]
dx

=

(
β

τ
− α

)
gα,β(t) −

βgα,β(t)

τ

∫

Ω

ur

ξs+1
dx −

4d1(α − 1)

αξβ

∫

Ω
|∇w|2dx + α

∫

Ω

up−1+α

ξβ+q
dx

≤

(
β

τ
− α

)
gα,β(t) −

4d1(α − 1)

αξβ

∫

Ω
|∇w|2dx +

α

ξβ

∫

Ω

up−1+α

ξq
dx. (2.2)

Now, we write
up−1+α

ξq
=

(
ur

ξs+1+a

)ρ

uα = (ga)
ρ w2.

Here, ga is defined in Lemma 2.2. Then, applying Hölder’s inequality, we get
∫

Ω

up−1+α

ξq
dx ≤

(∫

Ω
gadx

)ρ (∫

Ω
w

2

1−ρ dx

)1−ρ

= ‖ga‖
ρ
L1(Ω)

‖w‖2

L
2

1−ρ (Ω)
.

Since 0 < ρ ≤ 2
n+2 < 2

n , using Gagliardo-Nirenberg’s inequality (see [1]), we can find a constant C1

depending only on Ω, n and ρ such that

‖w‖
L

2
1−ρ (Ω)

≤ C1[‖∇w‖γ
L2(Ω)

‖w‖1−γ
L2(Ω)

+ ‖w‖L2(Ω)], where γ =
nρ

2
∈ (0, 1).

Thus, it follows that
∫

Ω

up−1+α

ξq
dx ≤ 2C2

1 ‖ga‖
ρ
L1(Ω)

[
‖∇w‖2γ

L2(Ω)
‖w‖

2(1−γ)
L2(Ω)

+ ‖w‖2
L2(Ω)

]
.

From this last inequality and (2.2), we obtain

ġα,β(t) ≤

(
β

τ
− α

)
gα,β(t) −

4d1(α − 1)

αξβ

∫

Ω
|∇w|2dx+

+
2αC2

1

ξβ
‖ga‖

ρ
L1(Ω)

[
‖∇w‖2γ

L2(Ω)
‖w‖

2(1−γ)
L2(Ω)

+ ‖w‖2
L2(Ω)

]
.

(2.3)

Now, let ǫ be a positive number. Using Young’s inequality, we get

‖ga‖
ρ
L1(Ω)

‖∇w‖2γ
L2(Ω)

‖w‖
2(1−γ)
L2(Ω)

=
[
ǫ ‖∇w‖2γ

L2(Ω)

] [
1

ǫ
‖ga‖

ρ
L1(Ω)

‖w‖
2(1−γ)
L2(Ω)

]

≤ γ
[
ǫ ‖∇w‖2γ

L2(Ω)

]1/γ
+ (1 − γ)

[
1

ǫ
‖ga‖

ρ
L1(Ω)

‖w‖
2(1−γ)
L2(Ω)

] 1

1−γ

= γǫ
1

γ ‖∇w‖2
L2(Ω) +

(1 − γ)

ǫ
1

1−γ

‖ga‖
ρ

1−γ

L1(Ω)
‖w‖2

L2(Ω) . (2.4)
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Then, by choosing ǫ sufficiently small so that αγC2
1 ǫ1/γ <

d1(α−1)
α , it follows from (2.3) and (2.4) that

we can find a universal C2 > 0 such that

ġα,β(t) ≤

(
β

τ
− α

)
gα,β(t) −

2d1(α − 1)

αξβ

∫

Ω
|∇w|2dx +

C2

ξβ

[
‖ga‖

ρ

1−γ

L1(Ω)
+ ‖ga‖

ρ
L1(Ω)

]
‖w‖2

L2(Ω)

≤

{
β

τ
− α + C2

[
‖ga‖

ρ

1−γ

L1(Ω)
+ ‖ga‖

ρ
L1(Ω)

]}
gα,β(t).

Now, let us denote

m(t) =
β

τ
− α + C2

[
‖ga(·, t)‖

ρ

1−γ

L1(Ω)
+ ‖ga(·, t)‖

ρ
L1(Ω)

]
, 0 ≤ t < T.

We obtain
ġα,β(t) ≤ m(t)gα,β(t). (2.5)

Since γ = nρ
2 ∈ (0, 1) and ρ = p−1

r ≤ 2
n+2 , it follows that ρ

1−γ ≤ 1. By using Lemma 2.2 and Hölder’s

inequality, we can find a constant C̃a = C̃a(T ) < ∞ such that

∫ t′

0

[
‖ga(·, t)‖

ρ
1−γ

L1(Ω)
+ ‖ga(·, t)‖

ρ
L1(Ω)

]
dt ≤ C̃a, for all 0 ≤ t′ < T.

Thus, for all 0 ≤ t′ < T , we get

∫ t′

0
m(t)dt =

(
β

τ
− α

)
t′ + C2

∫ t′

0

[
‖ga(·, t)‖

ρ

1−γ

L1(Ω)
+ ‖ga(·, t)‖

ρ
L1(Ω)

]
dt ≤

(
β

τ
− α

)
T + C2C̃a.

Hence, it follows from (2.5) that

gα,β(t′) ≤ gα,β(0)e
R t′

0
m(t)dt ≤ C(T ) < ∞, for all 0 ≤ t′ < T.

This completes the proof of Lemma 2.3.

Finally, by taking β = 0, it follows from Lemma 2.3 that (2.1) holds for all l > 0. The proof of
Theorem 1.1 is now complete.
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