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Abstract. We investigate optimal control of the advective coefficient in a

class of parabolic partial differential equations, modeling a population with

nonlinear growth. This work is motivated by the question: Does movement

toward a better resource environment benefit a population? Our objective

functional is formulated with interpreting “benefit” as the total population

size integrated over our finite time interval. Results on existence, uniqueness,

and characterization of the optimal control are established. Our numerical

illustrations for several growth functions and resource functions indicate that

movement along the resource spatial gradient benefits the population, meaning

that the optimal control is close to the spatial gradient of the resource function.

1. Introduction. The reaction of a species to spatially heterogeneous resources

is an important ecological issue (see [1, 3, 12, 13]). The reaction may result in

movement with two features: directed advection and random diffusion [23, 21]. If a

species could choose the direction for advective movement, how would such a choice

be made? One would expect directed movement to be beneficial to the species,

perhaps to increase the population level. Recent papers have given some answers to

such a question (see [1, 5]) and we consider this issue using tools of optimal control

theory ([17, 18, 10]).

In [1], Belgacem and Cosner studied the effects of advection along an environ-

mental resource gradient in a logistic model

ut = ∇ · [D∇u− αu∇m(x)] + u[m(x)− u], on Ω× (0,∞), (1.1)
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with no-flux boundary condition

D
∂u

∂ν
− αu

∂m

∂ν
= 0, on ∂Ω× (0,∞).

For α sufficiently large, they showed persistence of the population. This result

was in contrast to the results in [22], which imply that the advection constant

α is not beneficial for a population modeled with lethal zero Dirichlet boundary

condition and constant resource functionm. Note that Belgacem and Cosner obtain

“mixed” results in the Dirichlet boundary case, meaning sometimes advection is

beneficial or sometimes not. Continuing along this line of investigation, Cosner and

Lou [9] asked the question: Does movement towards better environments always

benefit a population? They showed that advection in the direction of gradient of

the resource is beneficial to the population if Ω is convex and there is a specific

derivative condition on m. “Beneficial” for the population means the existence of

a unique positive globally attracting steady state. They showed that for thin non-

convex domains, advection may not be beneficial, perhaps such a domain restricts

the movement.

In related work, Cantrell, Cosner and Lou [5, 6] investigated both the effect of

diffusion coefficient and advection along the “fitness” gradient, i.e. ∇[m(x)−u]. In
some cases, this mechanism is advantageous due to allowing populations to track

resource approximately. They also showed that if the set of critical points of m(x)

has Lebesgue measure 0, then the population size tends to 0 as α → ∞. See also

[8, 15, 16] for related work regarding α. Cantrell et. al [7] proved that m is the

positive steady state if the advection term is ln(m(x)) +C, a constant. Also in [7],

a two species competition model was considered to investigate whether one species

can be invaded by other, with advection term, ln(m(x)).

In a finite temporal setting, we seek to use the tools of optimal control to inves-

tigate a “different goal”. In a parabolic PDE, we investigate the choice of advection

direction to maximize the population over a region Ω while minimizing the cost of

choosing such a direction. In our model, we use a more realistic spatial-temporal re-

source functionm(x, t) and a growth function more general than logistic. Movement

usually comes with some risk or “cost” to populations. Optimal control methods

can treat two competing goals - increasing population level while minimizing the

costs incurred. The techniques of optimal control theory are extensions of Pon-

tryagin’s Maximum Principle [4] to partial differential equations. To justify the

existence and characterization of an optimal control, using adjoint functions, one

needs appropriate apriori estimates on solutions of the partial differential equations

and analysis results. Interested readers can see the books by Lions [19] or Li and

Yong [18] for background on such techniques.

Ding et. al [10] choose the control as the resource function m(x) in an elliptic

PDE (like the equation (1.1) with no advection) to maximize the population with an
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integral constraint on m (fixed amount of resource). The optimal control depended

on the diffusion coefficient and the amount of total resource.

In the next section, we formulate our control problem giving the model with

PDE with general nonlinearity and setting the objective functional. Section 3 gives

apriori estimates and existence of non-negative solutions to our PDE problems.

The existence of an optimal control is shown in section 4. The necessary conditions

satisfied by an optimal control are derived in section 5. Uniqueness of optimal

control and the stability dependence of the optimal control on the resource function

m are in section 6. Our numerical results are illustrated in section 7 followed by

the last section with conclusions.

2. Problem Formulation. Let u represent the population density of a species

occupying a spatial open bounded domain Ω in d–dimensional space Rd, d ∈ N,
and with smooth boundary ∂Ω of Ω. For some given fixed time 0 < T < ∞, let us

denote QT = Ω× [0, T ), and ST = ∂Ω× [0, T ). We consider the following model in

population dynamics with nonlinear growth, and zero flux boundary condition:
ut −∇ · [µ∇u− uh⃗] = u[m− f(x, t, u)], QT ,

µ
∂u

∂ν
− uh⃗ · ν = 0, ST ,

u(·, 0) = u0, Ω.

(2.1)

Here µ > 0 is the diffusion coefficient which is fixed, ν is the outward normal

vector on ∂Ω, and m = m(x, t) is the “resource” function which is assumed to be

bounded. Unlike in the previous work, our m is allowed to depend on time. Our

control function h⃗ ∈ L∞(QT )
d is an advective vector field which again is allowed to

be time dependent

h⃗ : QT → Rd, h⃗(x, t) = (h1(x, t), h2(x, t), · · · , hd(x, t)), (x, t) ∈ QT .

The initial function u0 is given and assumed to be non-negative bounded and is

in the Sobolev space H1(Ω). In the growth term, we assume that the function

f : QT × R 7→ R satisfies the following natural conditions:

(i) f is continuous on QT ×R and there are positive constants C and α such that

0 < α < 4
(d−2)+ , where (d− 2)+ = max{d− 2, 0}, and

0 ≤ f(x, t, u) ≤ C[1 + |u|α], ∀ (x, t) ∈ QT , ∀ u ∈ R.

(ii) f is locally Lipschitz with respect to u ∈ [0,∞), i.e. for all R > 0, there is

CR > 0 such that

|f(x, t, u)− f(x, t, v)| ≤ CR|u− v|, ∀ (x, t) ∈ QT , ∀ u, v ∈ [0, R].

(iii) For each (x, t) ∈ QT , the function u 7→ uf(x, t, u) is differentiable on [0,∞),

and

g(x, t, u) =
∂[uf(x, t, u)]

∂u
, |g(x, t, u)| ≤ C[1 + |u|α], (x, t) ∈ QT , u ≥ 0.
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(iv) g is locally Lipschitz with respect to u ∈ [0,∞), i.e.

|g(x, t, u)− g(x, t, v)| ≤ CR|u− v|, ∀ (x, t) ∈ QT , ∀ u, v ∈ [0, R].

Throughout this paper, we shall denote by H1(Ω) the usual Sobolev space and

its dual space is H1(Ω)∗. Also, we denote by V2(QT ) the space of all functions

u ∈ L2((0, T ),H1(Ω)) such that its norm

||u||V2(QT ) =

{
sup

0≤t≤T

∫
Ω

u(x, t)2dx+

∫
QT

|∇u(x, t)|2dxdt
}1/2

<∞.

The function u ∈ L2((0, T ),H1(Ω)) with ut ∈ L2((0, T ),H1(Ω)∗) and u(0, ·) = u0

is said to be a solution (in weak sense) of (2.1) if and only if for a.e. t ∈ (0, T )∫
Ω

utϕdx+

∫
Ω

[µ∇u− h⃗u] · ∇ϕdx =

∫
Ω

[m− f(x, t, u)]uϕdx, ∀ ϕ ∈ H1(Ω). (2.2)

The reaction-diffusion equation (2.1) is a general model which arises naturally in

many mathematical and biological settings. In particular, when f(x, t, u) = |u|,
the equation (2.1) has logistic growth and it has been studied extensively (e.g. see

[3, 4, 17, 21] and references therein). Also, we would like to remark that for this

type of nonlinearity, we require that our dimensional space satisfies 1 ≤ d ≤ 5 (recall

that α < 4
(d−2)+ ).

Turning to the optimal control formulation, for a given “cost constant” B > 0,

we search for h⃗∗ ∈ U such that

J (⃗h∗) = sup
h⃗∈U

J (⃗h),

where the objective functional is defined by

J (⃗h) =

∫
QT

[
u−B |⃗h|2

]
dxdt. (2.3)

with u = u(⃗h) is the solution of the equations (2.1) for the corresponding given h⃗,

and our control set U is defined as

U = {h⃗ ∈ [L∞(QT )]
d : |hi| ≤M for , i = 1, 2, · · · , d}, (2.4)

for some given fixed constantM > 0. Our objective functional represents the benefit

less the cost where the benefit is the total population integrated over time and the

cost of the control reflects the risk due to the movement of individuals. Note that

a similar problem for the elliptic case where the resource m is considered to be the

control was considered in [10] when f(x, t, u) = |u|. Also, note that unlike in the

mentioned works [3, 4, 5, 9, 10], our resource function m and the advective vector

field h⃗ are allowed to be time-dependent.
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3. Apriori Estimates and Existence of Solutions. In this section, we establish

some preliminary results needed for proving the existence and characterizing our

optimal solutions. In the first lemma, we prove that all solutions u of (2.1) must

be positive.

Lemma 3.1. Assume that |⃗h| and m are in L∞(QT ) and u0 ≥ 0. Then, any

solution u of (2.1) must be non-negative on QT .

Proof. First of all, note that in [3, 4, 5, 9], the advection term h⃗ is assumed to be

the gradient of some time-independent function. Because of this and by a simple

change of variables, it follows from the classical maximum principle that solutions

u must be non-negative. In our case here, it seems impossible to have such a

change of variables. Therefore, we need a different approach. In what follows,

we use Stampacchia’s truncation method (see [2, p. 301] for the elliptic version

of this method). For arbitrary 0 ≤ T ′ < T , and for (x, t) ∈ QT ′ , let w(x, t) =

max{−u(x, t), 0}. Multiplying (2.1) with w and using integration by parts, we get∫
Ω

utwdx+µ

∫
Ω

∇u∇wdx =

∫
Ω

[u∇w · h⃗]dx+
∫
Ω

uw[m−f(x, t, u)]dx, 0 ≤ t ≤ T ′.

Note that on the set {(x, t) ∈ QT ′ : u(x, t) < 0},

w = −u, ut = −wt, ∇u = −∇w.

Thus, it follows from Young’s inequality and Hölder’s inequality that

1

2

d

dt

∫
Ω

w2dx+ µ

∫
Ω

|∇w|2dx =

∫
Ω

[w∇w · h⃗+ w2(m− f(x, t, u)]dx

≤
∫
Ω

[w|∇w||⃗h|dx+ w2m+]dx

≤ CT ′

∫
Ω

[w|∇w|+ w2]dx

≤ CT ′

∫
Ω

[ϵ|∇w|2 + (1 +
1

4ϵ
)w2]dx, 0 ≤ t ≤ T ′.

Here CT ′ := max{||⃗h||L∞(QT ′ ), ||m+||L∞(QT ′ )} < ∞ and ϵ is any positive number.

By choosing ϵ so small that CT ′ϵ < µ/2, we obtain

d

dt

∫
Ω

w2dx ≤ d

dt

∫
Ω

w2dx+ µ

∫
Ω

|∇w|2dx ≤ CT ′(2 +
1

2ϵ
)

∫
Ω

w2dx, 0 ≤ t ≤ T ′.

Since u0 ≥ 0, it follows that w(·, 0) = 0 on Ω. Applying Grownwall’s inequality, we

get ∫
Ω

w2(x, t)dx = 0, ∀ t ∈ [0, T ′].

Hence, w = 0 a.e on QT ′ , and we conclude that u ≥ 0 a.e. on QT ′ . Since T ′ is

arbitrary, it follows that u ≥ 0 a.e. on QT .

Next, we show that our objective functional J is bounded above.
5



Lemma 3.2. Assume that Cm = sup
QT

|m| < ∞, u0 ∈ L∞(QT ) and u0 ≥ 0. Then

for each h⃗ ∈ U , any solution u of (2.1) satisfies∫
Ω

u(x, t)dx ≤ etCm

∫
Ω

u0(x)dx, ∀ t ∈ [0, T ).

In particular,

J (⃗h) ≤ [eTCm − 1]||u0||L∞

Cm
, ∀ h⃗ ∈ U.

Proof. From Lemma 3.1, we see that u ≥ 0. Then, the lemma follows directly by

integrating (2.1) on Ω and using integration by parts.

The rest of the section is devoted to prove the existence and apriori estimates of

the solutions u of the equations (2.1). Our first result is a simple energy estimate.

Lemma 3.3. Assume that ||m||L∞(QT ) ≤ β <∞, u0 ∈ L∞(QT ) and u0 ≥ 0. Then,

for every h⃗ in U , there exists a constant C > 0 depending on β,M, µ, |Ω| and T

such that the following estimate holds for any solution u of (2.1)

||u||2V2(QT ) = sup
t∈[0,T ]

∫
Ω

|u(x, t)|2dx+

∫
QT

|∇u(x, t)|2dxdt ≤ C||u0||2L2(Ω).

Proof. It follows from Lemma 3.1 that u ≥ 0. Thus, multiplying the first equation

of (2.1) with u and applying integration by parts, we get

1

2

d

dt

∫
Ω

u2dx+ µ

∫
Ω

|∇u|2dx =

∫
Ω

[u∇u · h⃗+mu2 − u2f(x, t, u)]dx

≤
∫
Ω

[u∇u · h⃗+m+u2]dx

Then, from Young’s inequality, it follows

1

2

d

dt

∫
Ω

u2dx+ µ

∫
Ω

|∇u|2dx ≤ µ

2

∫
Ω

|∇u|2dx+

∫
Ω

(
2

µ
|⃗h|2 +m+)u2dx.

This implies that there is a constant C1 depending on M,β, µ such that

d

dt

∫
Ω

u(x, t)2dx+ µ

∫
Ω

|∇u(x, t)|2dx ≤ C1

∫
Ω

u2dx. (3.1)

By Grownwall’s inequality, we obtain∫
Ω

u(x, t)2dx ≤ eC1T

∫
Ω

u0(x)dx, ∀ 0 ≤ t < T.

The lemma then follows from this and (3.1).

Next, we show that all solutions u must be bounded. Moreover, the bounds only

depend on M and the upper bound of the resource m, not on the structure of the

resourcem nor the advective vector field h⃗. This is essential in studying our optimal

control problem and it is also the most important result of this section. To prove

this apriori result, we adapt a well-known iteration technique in [20].
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Lemma 3.4. Assume that ||m||L∞(QT ) ≤ β < ∞. Then, for every non-negative

bounded u0 and for every h⃗ ∈ U , there exists C > 0 depending on β,M, µ, |Ω|, T, d
and ||u0||L∞(Ω) such that every weak solution u of (2.1) satisfies

||u||L∞(QT ) ≤ C.

Proof. For any fixed K ∈ N, let 0 = t0 < t1 < · · · < tK = T be a partition of [0, T ]

which will be determined. For each i = 1, 2, · · · ,K let Qi = Ω× [ti−1, ti] and

||u||2V2(Qi)
= sup
t∈[ti−1,ti]

∫
Ω

u2(x, t)dx+

∫
Qi

|∇u(x, t)|2dxdt.

By Lemma 3.1, we have u ≥ 0. Therefore, we only need to show that u is bounded

above. It suffices to show that u is bounded above on Qi for all i = 1, 2, · · · ,K.

From Lemma 3.3, we see that there exists a finite constant C0 = C(µ,M, T, |Ω|, u0)
such that

||u||V2(Qi) ≤ C0, ∀ i = 1, 2, · · · ,K. (3.2)

Next, for each k > k̂
def
== ||u0||L∞(Ω) + 1, let us denote

u(k)(x, t) = max{u(x, t)− k, 0}.

Also, denote the sets

Ak(t) = {x ∈ Ω : u(x, t) > k}, Qi(k) = {(x, t) ∈ Qi : u(x, t) > k}, i = 1, · · · ,K.

Multiplying the first equation of (2.1) by u(k) and using integration by parts, we

get

1

2

d

dt

∫
Ω

u(k)(x, t)2dx+ µ

∫
Ω

|∇u(k)|2dx =

∫
Ω

[uh⃗ · ∇u(k) + uu(k)[m− f(x, t, u)]dx

=

∫
Ak(t)

[uh⃗ · ∇u(k) + uu(k)[m− f(x, t, u)]dx

≤
∫
Ak(t)

[uh⃗ · ∇u(k) + uu(k)m+]dx.

As in the proof of Lemma 3.3, we can use the Young’s inequality and the fact that

h⃗ and m+ are in L∞(QT ) to get

1

2

d

dt

∫
Ω

u(k)(x, t)2dx+
µ

2

∫
Ω

|∇u(k)|2dx ≤
∫
Ak(t)

[
2

µ
|⃗h2u2 + uu(k)m+]dx

≤ 4

∫
Ak(t)

(
2

µ
|⃗h|2 +m+)[(u− k)2 + k2]dx

≤ C2

∫
Ak(t)

[(u− k)2 + k2]dx.

(3.3)

for some constants C2 > 0 depending only on µ,M, β. Note that u(k)(·, 0) = 0.

Thus, by integrating this equation in time on [0, t] with 0 < t < t1, we obtain

||u(k)||2V2(Q1)
≤ C3

∫
Q1(k)

[(u−k)2+k2]dxdt, with C3 = 2min{1, µ}−1C2. (3.4)
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Note that∫
Q1(k)

(u− k)2dxdt =

∫
Q1(k)

[u(k)]2dxdt

≤ t1 sup
0<t<t1

∫
Ω

[u(k)(x, t)]2dx ≤ t1||u(k)||2V2(Q1)
.

Therefore, choosing t1 sufficiently small such that t1C3 <
1
2 yields

||u(k)||2V2(Q1)
≤ 2C3k

2σ(k), where σ(k) = |Q1(k)| =
∫ t1

0

|Ak(t)|dt.

Equivalently,

||u(k)||V2(Q1) ≤ µ1kσ(k)
1
2 , ∀ k > k̂, (3.5)

for some positive constant µ1 which depends on β, µ and M only. From (3.5), we

claim that there is a constant c1 > 0 depending only on β, µ, T, |Ω|, d and ||u0||L∞(Ω)

such that

sup
Q1

u(x, t) ≤ c1. (3.6)

The proof of (3.6) is standard (see [20, Theorem 6.1, p. 102]). However, since we

need to keep track all of the constants in the estimates to make sure that they only

depend on the upper bound of the control function h⃗, but not on its structure, and

also for completeness, we provide the details of the proof here. First of all, for all

2 ≤ r ≤ 2(d+2)
d , by the Sobolev embedding theorem (see [20, eqn (3.8), p. 77], we

can find a constant β0 > 0 depending only on |Ω|, d, r and T such that

||w||Lr(Qk) ≤ β0||w||V2(Qk), ∀ w ∈ V2(Qk), ∀ k ∈ {1, 2, · · · ,K}. (3.7)

Let M0 = m0k̂ for some m0 > 1 which will be determined. Also, for i = 0, 1, 2, · · · ,
let us denote ki =M0(2− 2−i). It follows directly from the definition of σ that

(ki+1 − ki)σ
1
r (ki+1) ≤ ||u(ki)||Lr(Q1), ∀ i ∈ N ∪ {0}. (3.8)

From now, we fix 2 < r < 2(d+2)
d and write r = 2(1 + κ) with some κ > 0. Since

ki > k̂ for all i, it follows from the inequalities (3.5) and (3.7) that

||u(ki)||Lr(Q1) ≤ β0||u(ki)||V2(Q1) ≤ β0µ1kiσ(ki)
1+κ
r , ∀ i ∈ N ∪ {0}. (3.9)

Then, combining the inequalities (3.8) and (3.9), we obtain

σ(ki+1)
1
r ≤ β0µ1ki

ki+1 − ki
σ(ki)

1+κ
r ≤ 4β0µ12

iσ(ki)
1+κ
r , ∀ i ∈ N ∪ {0}. (3.10)

For all i = 0, 1, · · · , let yi = σ(ki)
1
r . Then, it follows directly from the recursion

formula (3.10) and a simple calculation that

yi ≤ [4β0µ1]
(1+κ)i−1

κ 2
(1+κ)i−1

κ2 − i
κ y

(1+κ)i

0 , ∀ i = 0, 1, 2, · · · (3.11)

On the other hand, by substituting k̂ for ki andM0 for ki+1 in (3.8) and using (3.9),

we obtain

σ(M0)
1
r ≤ β0µ1

m0 − 1
σ(k̂)

1+κ
r ≤ β0µ1

m0 − 1
[T |Ω|] 12 .
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Thus, by choosing

m0 = 1 + β0µ1[T |Ω|]
1
2 (4β0µ1)

1
κ 2

1
κ2 ,

we have

y0 = σ(k0)
1
κ = σ(M0)

1
κ ≤ (4β0µ1)

− 1
κ 2−

1
κ2 . (3.12)

Then, it follows from the inequalities (3.11) and (3.12) that

yi ≤ [4β0µ1]
− 1

κ 2−
1
κ 2−

i
κ , for all i = 0, 1, 2, · · · .

In particular, yi = σ(ki)
1
κ → 0 as i→ ∞. Hence, σ(2M0) = 0 and therefore, on Q1,

u ≤ c1
def
== 2m0k̂ = 2

{
1 + β0µ1[T |Ω|]

1
2 (4β0µ1)

1
κ 2

1
κ2

}{
||u0||L∞(QT ) + 1

}
. (3.13)

This proves (3.6). Next, note that similar to the choice of t1, we choose K ∈ N
sufficiently large so that

C3|tk − tk−1| <
1

2
and k = 2, · · · ,K, (3.14)

where C3 is defined in (3.4) which only depends on β, µ,M . Therefore, by the same

proof as that of (3.6) using u1(·)
def
== u(·, t1) as u0, we can prove that u is bounded

above on Q2 by a constant c2. Keep doing this, we arrive at

sup
Qi

u(x, t) ≤ ci, for all i = 2, 3, · · · ,K,

where all of the constants ci can be explicitly defined as

ci = 2
{
1 + β0µ1[T |Ω|]

1
2 (4β0µ1)

1
κ 2

1
κ2

}
(ci−1 + 1). (3.15)

Note that at the ith step, for i = 2, · · · ,K, ui = u(·, ti−1) is used as the initial data.

That is how we derived (3.15). Also, it follows from (3.15) that c1 ≤ c2 ≤ · · · ≤ cK .

Moreover, from (3.14), we see that we can chose K that depends only on β, µ,M

and T , explicitly K > 2TC3. Therefore, it follows from (3.13) and (3.15) that cK

depends only on β, µ,M, |Ω|, T, ||u0||L∞ and the dimension d. Moreover,

sup
QT

u ≤ C, with C = cK = max{ci, i = 1, 2, · · · ,K}.

The proof of the theorem is therefore complete.

We conclude this section with the following important theorem:

Theorem 3.1. Let 0 < T < ∞, m ∈ L∞(QT ) and u0 be non-negative, bounded

and in H1(Ω). Then, for each h⃗ ∈ U , there is a unique weak solution u =

u(⃗h) of (2.1). Moreover, there is a finite constant C > 0 depending only on

|Ω|, µ, d, T, ||m||L∞ , ||u0||L∞ and M such that

||u(⃗h)||V2(QT ) ≤ C, and 0 ≤ u(⃗h) ≤ C, ∀ (x, t) ∈ QT . (3.16)
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Proof. We look for u ∈ L2((0, T ), H1(Ω)), ut ∈ L2((0, T ),H1(Ω)∗) such that

u(·, 0) = u0 and for a.e. 0 ≤ t ≤ T ,∫
Ω

utϕdx+

∫
Ω

[µ∇u− h⃗u] · ∇ϕdx =

∫
Ω

[m− f(x, t, u)]uϕdx, ∀ ϕ ∈ H1(Ω). (3.17)

Note that since α < 4
(d−2)+ , we can choose constants p > 1, q > 1 such that

1

p
+

1

q
= 1, and p(1 + α), q <

2d

(d− 2)+
.

Thus, by using the Hölder’s inequality, (i) and the Sobolev’s embedding theorem,

we get∣∣∣∣∫
Ω

f(x, t, u)uϕdx

∣∣∣∣ ≤ C
[
||ϕ||L2 ||u||L2 + ||ϕ||Lq ||u||1+α

Lp(1+α)

]
≤ C||ϕ||H1 ||u(·, t)||α+1

H1 .

This implies that all of the integrals in (3.17) are all well-defined. From this and the

apriori estimates (Lemmas 3.1 - 3.4), it follows easily from the Galerkin’s method

(e.g. see [11]) that there exists at least one weak solution of (2.1) which satisfies

(3.16).

Next, we show that for each h⃗ ∈ U , there is only one weak solution of (2.1).

Again, we shall use Stampacchia’s truncation method. Indeed, for each h⃗ ∈ U let

us denote u and v be two solutions of (2.1). It follows from Lemmas 3.1 - 3.4 that

0 ≤ u, v ≤ C, ||u||V2(QT ), ||v||V2(QT ) ≤ C. (3.18)

Let w = u− v, we obtain
wt −∇ · [µ∇w − wh⃗] = w[m− b], QT ,

ν · [µw − wh⃗] = 0, ST ,

w(·, 0) = 0, Ω.

(3.19)

Here,

b(x, t) =
u(x, t)f(x, t, u(x, t))− v(x, t)f(x, t, v(x, t))

u(x, t)− v(x, t)
, ∀ (x, t) ∈ QT .

From the assumptions (i)-(ii) and the L∞-estimates of u and v as in (3.18), it follows

that b is bounded on QT . Therefore, we can chose K > 0 and sufficiently large such

that m− b−K < 0 on QT . Let z(x, t) = e−Ktw(x, t). It follows from (3.19) that z

solves the equations
zt −∇ · [µ∇z − zh⃗] = z[m− b−K], QT ,

ν · [µ∇z − zh⃗] = 0, ST ,

z(·, 0) = 0, Ω.

Multiplying this equation by z and using integration by parts gives

1

2

d

dt

∫
Ω

z2dx+ µ

∫
Ω

|∇z(x, t)|2dx =

∫
Ω

[m− b−K]z2 −
∫
Ω

∇z · h⃗z(x, t)dx.

As in the proof of Lemma 3.1, we can find a constant C > 0 such that

d

dt

∫
Ω

z2(x, t)dx ≤ C

∫
Ω

z2(x, t)dx, ∀ t ∈ [0, T ).
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From this and since z(·, 0) = 0, it follows that z = 0 and then w = 0. Therefore,

u = v and this completes the proof of Theorem 3.1.

4. Existence of an Optimal Control. To investigate the maximum of our ob-

jective functional, we first show the existence of an optimal control.

Theorem 4.1. Assume that 0 < T <∞, m ∈ L∞(QT ), u0 ∈ L∞(Ω) ∩H1(Ω) and

u0 is non-negative. There exists an optimal control h⃗∗ ∈ U maximizing the objective

functional J (⃗h).

Proof. By Lemma 3.2, J (⃗h) ≤ C where C is a constant depending on ||m||L∞(QT ),

||u0||L∞(QT ) and T only. Therefore, suph⃗∈U J (⃗h) exists. Let us denote {h⃗n} ⊂ U,

be a maximizing sequence, i.e.

lim
n→∞

J (⃗hn) = sup
h⃗∈U

J (⃗h). (4.1)

Let un = u(⃗hn), the corresponding solutions of (2.1) when the control h⃗ is h⃗n. It

follows from Lemma 3.3 and Lemma 3.4 that

||un||V2(QT ), ||un||L∞(QT ) ≤ C <∞, ∀ n ∈ N, (4.2)

for some constant C > 0 depending only on µ, d, |Ω|, T, ||u0||L∞ , ||m||L∞(QT ) and

M , where M is a fixed constant defined in (2.4).

From (4.2) and by passing to a subsequence, we can assume that

un ⇀ u∗ in L2(0, T,H1(Ω)). (4.3)

On the other hand, for each n and each ϕ ∈ L2(0, T,H1(Ω)), the weak form of the

solution un is∫
QT

unt ϕdxdt = −µ
∫
QT

∇un · ∇ϕdxdt+
∫
QT

(
h⃗n · ∇ϕ

)
un dxdt

+

∫
QT

munϕdxdt−
∫
QT

unf(x, t, un)ϕdxdt.

Thus, it follows from this and (4.2) that∣∣∣∣∫
QT

unt ϕdxdt

∣∣∣∣ ≤ C||ϕ||L2(0,T,H1(Ω)), ∀ n ∈ N.

Therefore,

∥unt ∥L2(0,T,H1(Ω)∗) ≤ C, ∀n ∈ N. (4.4)

Again, the constant C here depends only on µ, d, |Ω|, T,M, ||u0||L∞ and ||m||L∞ .

From the estimates (4.2) - (4.4), the results in [24], and by passing to a subsequence,

it follows that

un → u∗ in L2(QT ), ∇un ⇀ ∇u∗ in L2(QT ), and

unt ⇀ u∗t in L2((0, T ), H1(Ω)∗).
(4.5)
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By the definition of the control set U in (2.4) and the fact that L2(QT ) is weakly

compact, there exists h⃗∗ ∈ U such that

h⃗n ⇀ h⃗∗ in L2(QT ). (4.6)

Again, for each fixed v ∈ L2(0, T,H1(Ω)), the solution un satisfies∫
QT

unt v dxdt = −
∫
QT

µ∇un · ∇v dxdt+
∫
QT

(⃗hn · ∇v)un dxdt

+

∫
QT

mvun dxdt−
∫
QT

unf(x, t, un)v dxdt, ∀ n.
(4.7)

From the weak convergences in (4.3), (4.5) and (4.6), it follows

lim
n→∞

∫
QT

unt v dxdt =

∫
QT

u∗t v dxdt,

lim
n→∞

∫
QT

∇un · ∇v dxdt =
∫
QT

∇u∗ · ∇v dxdt,

lim
n→∞

∫
QT

mvun dxdt =

∫
QT

mvu∗ dxdt.

(4.8)

Moreover, from the strong convergence of the sequence {un}n∈N (see (4.5)) and the

weak convergence of the sequence {hn}n∈N (see (4.6)), we obtain∣∣∣ ∫
QT

(
h⃗n · ∇v

)
un dxdt−

∫
QT

(
h⃗∗ · ∇v

)
u∗ dxdt

∣∣∣
=

∣∣∣ ∫
QT

(
h⃗n · ∇v

)
(un − u∗) dxdt−

∫
QT

(
(⃗hn − h⃗∗) · ∇v

)
u∗ dxdt

∣∣∣
≤M∥∇v∥L2(QT )∥un − u∗∥L2(QT ) +

∣∣∣ ∫
QT

(
[⃗hn − h⃗∗] · ∇v

)
u∗ dxdt

∣∣∣
→ 0, as n→ ∞.

In other words,

lim
n→∞

∫
QT

(
h⃗n · ∇v

)
un dxdt =

∫
QT

(
h⃗∗ · ∇v

)
u∗ dxdt. (4.9)

Finally, from the assumption (ii) on f , the uniform boundedness of the sequence

{un}n∈N (see (4.2)), and its strong convergence in L2(QT ) (see (4.5)), the following

convergence holds∣∣∣∣∫
QT

unf(x, t, un)v dxdt−
∫
QT

u∗f(x, t, u∗)v dxdt

∣∣∣∣
≤

∣∣∣∣∫
QT

unv[f(x, t, un)− f(x, t, u∗)] dxdt

∣∣∣∣+ ∣∣∣∣∫
QT

vf(x, t, u∗)[un − u∗] dxdt

∣∣∣∣
≤ C∥un − u∗∥L2(QT )∥v∥L2(QT ) +

∣∣∣∣∫
QT

vf(x, t, u∗)[un − u∗] dxdt

∣∣∣∣
→ 0, as, n→ ∞.

(4.10)

12



Collecting those convergence terms in (4.8), (4.9) and (4.10), and using the equation

(4.7), we arrive at∫
QT

u∗t v dxdt = −
∫
QT

µ∇u∗ · ∇v dxdt+
∫
QT

(⃗h∗ · ∇v)u∗ dxdt

+

∫
QT

mvu∗ dxdt−
∫
QT

u∗f(x, t, u∗)v dxdt

(4.11)

This implies that u∗ is the solution of (2.1) with respect to the control h∗. In other

words, u∗ = u(h∗). On the other hand, using the strong convergence in L2(QT ) of

the sequence {un}n∈N (see (4.5)), and the fact that the function h⃗ 7→
∫
QT

|⃗h|2dxdt

is weakly lower semi-continuous in L2(QT ) (see e.g. [2]), we also get

sup
h⃗∈U

J (⃗h) = lim
n→∞

J (⃗hn) = lim
n→∞

[∫
QT

un −B |⃗hn|2 dxdt
]

≤
∫
QT

u∗ −B |⃗h∗|2 dxdt = J (⃗h∗).

This implies that J(h∗) = suph⃗∈U J (⃗h). Therefore, h∗ ∈ U is an optimal control

and the proof of Theorem 4.1 is complete.

5. Necessary Conditions. In order to characterize the optimal control, we need

to differentiate the map h → J(h) with respect to the control h⃗. We denote by

u = u(⃗h) the unique, positive solution of (2.1). Since u = u(⃗h) is involved in J (⃗h),

we first must prove appropriate differentiability of the mapping h⃗ −→ u(⃗h) whose

derivative is called the sensitivity.

Lemma 5.1 (Sensitivity). The mapping h⃗ ∈ U −→ u(⃗h) is differentiable in the

following sense: for each h⃗, l⃗ in U such that h⃗+ ϵ⃗l ∈ U for all ϵ sufficiently small,

then there is a uniform constant C > 0 such that ψϵ =
u(⃗h+ ϵ⃗l)− u(⃗h)

ϵ
satisfies

||ψϵ||V2(QT ), ||ψϵ||L∞(QT ) ≤ C.

Moreover, there exists ψ = ψ(⃗h, l⃗) ∈ L2((0, T ),H1(Ω)), such that

ψϵ ⇀ ψ weakly in L2((0, T ),H1(Ω)) as ϵ→ 0,

and the sensitivity ψ satisfies
ψt −∇ · (µ∇ψ − h⃗ψ)− [m− g(x, t, u)]ψ = −∇ · (ul⃗), QT ,

µ∂ψ∂ν − ψh⃗ · ν = ul⃗ · ν, ST ,

ψ(x, 0) = 0, Ω.

(5.1)

Proof. For each h⃗ ∈ U and h⃗ + ϵ⃗l ∈ U , let us denote uϵ = u(⃗h + ϵ⃗l), u = u(⃗h).

Recall that u solves (2.1) and uϵ solves
uϵt −∇ ·

[
µ∇uϵ − uϵ

(
h⃗+ ϵ⃗l

)]
= muϵ − uϵf(x, t, uϵ), QT ,

µ∂u
ϵ

∂ν − uϵ
(
h⃗+ ϵ⃗l

)
· ν = 0, ST ,

uϵ(·, 0) = u0, Ω.

(5.2)
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Also, note that it follows from Lemma 3.3 and Lemma 3.4 that there is a constant

depending on µ, d, T, |Ω|, ||m||L∞ , ||u0||L∞ and M such that

||uϵ||V2(QT ), ||u||V2(QT ), ||uϵ||L∞(QT ), ||u||L∞(QT ) ≤ C <∞, ∀ ϵ > 0. (5.3)

Let us define

cϵ(x, t) =
uϵ(x, t)f(x, t, uϵ(x, t))− u(x, t)f(x, t, u(x, t))

uϵ(x, t)− u(x, t)
, ∀ (x, t) ∈ QT .

It follows from (ii), (iii) and (5.3) that cϵ(x, t) and g(x, t, u) are uniformly bounded.

On the other hand, as in the proof of Theorem 4.1 and by the uniqueness of solution

of u = u(⃗h) of (2.1), we have

uϵ → u in L2(QT ); uϵt ⇀ ut in L
2(QT ); and uϵ ⇀ u in L2(0, T,H1(Ω)).

In particular, this gives

uϵ → u a.e. in QT , and cϵ(x, t) → g(x, t, u(x, t)), a.e. in QT .

By (5.3) and (iii), it follows that |cϵ(x, t)− g(x, t, u(x, t))| is uniformly bounded on

QT with respect to ϵ. Thus, the Lebesgue Dominated Convergence Theorem implies

lim
ϵ→∞

∫
QT

|cϵ(x, t)− g(x, t, u(x, t))|pdxdt = 0, ∀ 1 ≤ p <∞. (5.4)

Recall that ψϵ =
uϵ − u

ϵ
. Then subtracting (5.2) from (2.1) and dividing by ϵ, we

obtain
ψϵt −∇ ·

(
µ∇ψϵ − ψϵh⃗− uϵ l⃗

)
= [m− cϵ(x, t)]ψϵ, QT ,

µ∂ψ
ϵ

∂ν − ψϵh⃗ · ν = uϵ l⃗ · ν, ST ,

ψϵ(·, 0) = 0, Ω.

(5.5)

As in the proofs of Lemma 3.3 and Lemma 3.4, we have

||ψϵ||V2(QT ) ≤ C, ||ψϵ||L∞ ≤ C, ∀ ϵ.

Therefore, by passing to a subsequence, we can assume that that ψϵ ⇀ ψ in

L2(0, T,H1(Ω)). Using the estimates (5.3)–(5.4), the equation (5.5), and as in

the proof of Theorem 4.1, we obtain (5.1). This concludes the proof of Lemma

5.1.

Next, we characterize our optimal control solution h⃗∗ by differentiating the map

h⃗ → J (⃗h). We use the sensitivity equation to find our adjoint equation and our

characterization.

Theorem 5.1. Given an optimal control h⃗∗ and corresponding state u∗, there exists

a solution p in L2(0, T,H1(Ω)) which satisfies pt ∈ L2((0, T ),H1(Ω)∗) and
−pt − µ∆p− h⃗∗ · ∇p− [m− g(x, t, u∗)]p = 1, in QT ,
∂p

∂ν
= 0, in ST ,

p(·, T ) = 0 in Ω.

(5.6)
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Furthermore, h⃗∗ is characterized by

h∗i = max

{
min

{
M,

u∗pxi

2B

}
,−M

}
, for each i ∈ {1, . . . , d}. (5.7)

Proof. Suppose h⃗∗ is an optimal control. Let l⃗ ∈ U such that h⃗∗ + ϵ⃗l ∈ U for

sufficiently small ϵ > 0. Let us denote uϵ = u(⃗h∗ + ϵ⃗l) be the unique solution of

(2.1) when the control term is h⃗∗ + ϵ⃗l.

The operator in the adjoint equation is the formal analysis “adjoint” of the

operator in the sensitivity equation (5.1) at h⃗∗. The nonhomogeneous term, 1,

comes from differentiating the integrand of the objective functional with respect

to the state. The final time condition on the adjoint function is the transversality

condition.

The equation (5.6) is linear in p and its coefficients are measurable and bounded.

By the change of variable t → T − t, the existence and uniqueness of the weak

solution p of (5.6) follows by Galerkin’s method (e.g. see [11]).

Now, observe that the directional derivative of J with respect to the control at

h⃗∗ in the direction of l⃗ satisfies

0 ≥ lim
ϵ→0+

J (⃗h∗ + ϵ⃗l)− J (⃗h∗)

ϵ

= lim
ϵ→0+

1

ϵ

[ ∫
QT

uϵ −B |⃗h∗ + ϵ⃗l|2 dxdt−
(∫

QT

u∗ −B |⃗h∗|2 dxdt
)]

= lim
ϵ→0+

[∫
QT

uϵ − u∗

ϵ
dxdt−

∫
QT

B(2h⃗∗ · l⃗ + ϵ|⃗l|2) dxdt
]

=

∫
QT

ψ dxdt−
∫
QT

2Bh⃗∗ · l⃗ dxdt.

Using the weak solution formulation for the adjoint problem with test function ψ,

we obtain

0 ≥
∫
QT

ψ dxdt−
∫
QT

2Bh⃗∗ · l⃗ dxdt

=

∫
QT

pψt dxdt+

∫
QT

{
µ∇p · ∇ψ − ψh⃗∗ · ∇p− [m− g(x, t, u∗)]pψ

}
dxdt

−
∫
QT

2Bh⃗∗ · l⃗ dxdt

=

∫
QT

u∗ l⃗ · ∇p− 2Bh⃗∗ · l⃗ dxdt =
∫
QT

l⃗ · (u∗∇p− 2Bh⃗∗) dxdt

(5.8)

From Theorem 3.1 and Lemma 5.2 below, we see that there is a constant C0 > 0

such that

|u∗∇p− 2Bh⃗∗| ≤ C0, on QT .

Now, for each fixed i = 1, 2, · · · , d, and each 0 < δ < 1, let Γδ be the set {(x, t) ∈
QT : |hi(x, t)| ≤ δM}. Then, let

li = [u∗
∂p

∂xi
− 2Bh∗i ]χΓδ

, lk = 0, k ̸= i,
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where χΓδ
(x, t) is a function which is one if (x, t) ∈ Γδ and zero otherwise. It

follows that for all ϵ > 0 and sufficiently small such that ϵC0 < (1− δ)M , we have

h∗ + ϵl ∈ U . Therefore, from (5.8), we see that∫
Γδ

|u∗ ∂p
∂xi

− 2Bh⃗∗i |2dxdt ≤ 0

Thus, h∗i = [u∗ ∂p
∂xi

]/(2B) on Γδ. Since δ is arbitrary, we conclude that on the set

where |h∗i | < M ,

h∗i =
u∗ ∂p

∂xi

2B
.

Now assume that h∗i = M on some non-empty set Γ ⊆ QT . We can take l⃗ ∈ U

to be such that its support lies in Γ and lj = 0 if i ̸= j, and li < 0 on Γ. Then

h⃗∗ + ϵ⃗l ∈ U and we have ∫
Γ

|li|(u∗
∂p

∂xi
− 2BM) dxdt ≥ 0

Since li is arbitrary as long as h⃗∗ + ϵ⃗l ∈ U , we have u∗ ∂p
∂xi

− 2BM ≥ 0 almost

everywhere on Γ. Thus, h∗i = M ≤
u∗ ∂p

∂xi

2B on Γ. Therefore, we conclude that

h∗i = min{M,
u∗ ∂p

∂xi

2B } on Γ ∪ {(x, t) ∈ QT : |h∗i | < M}. We can continue similarly

on the set {(x, t) ∈ QT : h∗i (x, t) = −M} to show that

h∗i = max

{
min

{
M,

u∗pxi

2B

}
,−M

}
.

This completes the proof of Theorem 5.1.

Finally, we conclude the section by establishing some estimates of p which will

be useful for the coming section.

Lemma 5.2. Let p be the solution of (5.6). Then, there is constant C depending

on d, µ, |Ω|, T, β,M such that

0 ≤ p(x, t) ≤ C, and |∇p(x, t)| ≤ C, ∀ (x, t) ∈ QT .

Proof. Let us denote q(x, t) = p(x, T − t), then it follows that q solves the equation
qt − µ∆q + b · ∇q + cq = 1, QT ,

∇q · ν = 0, ST ,

q(·, 0) = 0, Ω.

(5.9)

Here, b(x, t) = −h⃗∗(x, T − t) and c(x, t) = g(x, T − t, u∗(x, T − t))−m(x, T − t) for

all (x, t) ∈ QT . From the assumption (iii) and Theorem 3.1, it follows the equation

(5.9) is a linear parabolic equation with bounded coefficients. By the maximum

principle, it follows that p ≥ 0. On the other hand, by the parabolic regularity

theory (see [20, Theorem 9.1, p. 341-342 and its Remark, p. 351]), we have

||p||W 2,1
l (QT ) = ||q||W 2,1

l (QT ) ≤ C = C(l), ∀ l ≥ 2.
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Here,

||p||W 2,1
l (QT ) = ||p||Ll(QT ) + ||pt||Ll(QT ) + ||∇p||Ll(QT ) +

d∑
i,j=1

||pxixj ||Ll(QT ).

Now, for l > d+ 2, it follows from the embedding theorem that

|p(x, t)|, |∇p(x, t)| ≤ C(l), ∀ (x, t) ∈ QT .

This yields the desired estimates.

6. Uniqueness and Stability Results. The equations (2.1), (5.6) with boundary

conditions and the control characterization (5.7) form the optimality system. In this

section, we show the uniqueness of solutions to this optimality system under some

conditions on B and T , which gives the uniqueness of the optimal control.

Theorem 6.1. There exist two positive numbers T0 and B0 such that if 0 < T ≤ T0

and B ≥ B0, then there is a unique solution of the optimality system.

Proof. By Theorem 4.1 and Theorem 5.1, there exist an optimal control, and cor-

responding adjoints and states satisfy the optimality system. Thus, we only need

to prove the uniqueness. Let h⃗∗ and h⃗∗ be two controls corresponding to solu-

tions of the optimal system. Also, let us denote u = u(⃗h∗), p = p(⃗h∗) to be the

state solution and the solution of the adjoint problem (5.6). Similarly, we also have

v and q for h⃗∗. Now, for some λ > 0 which will be determined, let us denote

w(x, t) = [u(x, t)− v(x, t)]e−λt and z(x, t) = [p(x, t)− q(x, t)]eλt, and

b(x, t) = m(x, t)− g(x, t, u)− v(x, t)
g(x, t, u(x, t))− g(x, t, v(x, t))

u(x, t)− v(x, t)
,

d(x, t) =
{
[⃗h∗(x, t)− h⃗∗(x, t)] · ∇q(x, t) + [g(x, t, u(x, t))− g(x, t, v(x, t))]q(x, t)

}
eλt.

In the sequel, C,Ck, k = 1, 2, · · · denote constants which may change from lines to

lines and they depends on T,M, β, |Ω|, d but do not depend on B and λ. From the

assumptions (i) - (iii) and Theorem 3.1, it follows that

|b(x, t)| ≤ C, ∀ (x, t) ∈ QT . (6.1)

On the other hand, from the characterization formula in Theorem 5.1 and Theo-

rem 3.1, we see that

|⃗h∗ − h⃗∗| ≤
1

2B
|u∇p− v∇q|

≤ 1

2B
[|u||∇z|e−λt + eλt|∇q||w|] ≤ C

B
[|∇z|e−λt + |w|eλt].

(6.2)

Then, it follows from (6.2) and (iv) that

|d(x, t)| ≤ |⃗h∗ − h⃗∗|eλt + C|u− v|eλt ≤ C

[
1

B
|∇z|+ |w|e2λt

]
. (6.3)

17



Now, by subtracting the equations of u and v, (see (2.1)), we see that w solves
wt −∇ · [µ∇w − wh⃗∗ + v(⃗h∗ − h⃗∗)e−λt] = [b− λ]w, QT ,

[µ∇w − wh⃗∗ + v(⃗h∗ − h⃗∗)e−λt] · ν = 0, ST ,

w(·, 0) = 0, Ω.

(6.4)

Similarly, z also solves
zt + µ∆z + h⃗∗ · ∇z = [m− g(x, t, u) + λ]z + d(x, t), QT ,

∇z · ν = 0, ST ,

z(·, T ) = 0, Ω.

(6.5)

Multiplying (6.4) by w and using the integration by parts, Hölder’s inquality,

Young’s inequality and the estimate (6.2), we get

1

2

d

dt

∫
Ω

w2dx+ µ

∫
Ω

|∇w|2dx

≤
∫
Ω

[b− λ]w2dx+

∫
Ω

[
|w||⃗h∗|+ |v|e−λt |⃗h∗ − h⃗∗|

]
|∇w|dx

≤
∫
Ω

[b− λ]w2dx+ C

∫
Ω

[
(1 +

1

B
)|w|+ e−2λt

2B
|∇z|

]
|∇w|dx

≤ [C +
C

B2
− λ]

∫
Ω

w2dx+
µ

2

∫
Ω

|∇w|2dx+
C

B2

∫
Ω

|∇z|2dx.

Thus,

1

2

d

dt

∫
Ω

w2dx+
µ

2

∫
Ω

|∇w|2dx ≤ [C1 +
C1

B2
− λ]

∫
Ω

w2dx+
C1

B2

∫
Ω

|∇z|2dx.

Integrating this inequality with respect to time, we get

sup
t

∫
Ω

w2dx+µ

∫
QT

|∇w|2dxdt ≤ 2[C1+
C1

B2
−λ]

∫
QT

w2dxdt+
2C1

B2

∫
QT

|∇z|2dxdt.

(6.6)

Doing the same thing for the equation (6.5), we also get

− 1

2

d

dt

∫
Ω

z2dx+ µ

∫
Ω

|∇z|2dx

≤
∫
Ω

[g(x, t, u)−m(x, t)− λ]z2dx+

∫
Ω

[
|⃗h∗||∇z|+ |d(x, t)|

]
|z|dx

≤
∫
Ω

[g(x, t, u)−m(x, t)− λ]z2dx+ C

∫
Ω

[
|∇z|+ |w|e2λt

]
|z|dx

≤ [C2 + C3e
4λT − λ]

∫
Ω

z2dx+
µ

2

∫
Ω

|∇z|2dx+ C4

∫
Ω

|w|2dx

Thus,

−1

2

d

dt

∫
Ω

z2dx+
µ

2

∫
Ω

|∇z|2dx ≤ [C2 + C3e
4λT − λ]

∫
Ω

z2dx+ C4

∫
Ω

|w|2dx.

Again, integrating this in time, we get

sup
t>0

∫
Ω

z2dx+µ

∫
QT

|∇z|2dxdt ≤ 2[C2+C3e
4λT −λ]

∫
QT

z2dxdt+2C4

∫
QT

|w|2dxdt.

(6.7)
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Note that the constants C1, C2, C3, C4 all depend on β, T, |Ω|,M, d. We write

Ck = Ck(T ) for all k = 1, 2, 3, 4. Also, note that these constants are decreasing

with respect to T . From now, we choose B0 > 0 and sufficiently large so that

2C1(1)/B
2
0 < µ. Moreover, we also choose λ sufficiently large so that

C1(1) + µ+ C4(1)− λ < 0, and C2(1) + C3(1)− λ < 0.

Then there exists T0 > 0 and sufficiently small such with T ≤ T0 and B ≥ B0, we

have

C1(T ) +
C1(T )

B2
+ C4(T )− λ < 0, and C2(T ) + e4λTC3(T )− λ < 0.

It follows from this, (6.6) and (6.7) that

sup
t

∫
Ω

w2dx+sup
t>0

∫
Ω

z2dx+µ

∫
QT

|∇w|2dxdt+µ
∫
QT

|∇z|2dx ≤ 2C1

B2

∫
QT

|∇z|2dxdt.

Also, since 2C1(T )
B2 < µ, it follows that

sup
t

∫
Ω

w2dx+ sup
t>0

∫
Ω

z2dx ≤ 0.

This implies u = v, p = q. Thus, h⃗∗ = h⃗∗.

Next, it is mathematically and biologically interesting to see how the solutions of

the optimality system depend on the resource m. For this purpose, we let h⃗ = h⃗(m)

be the optimal control with the corresponding resource m, recalling that we need

B ≥ B0 and 0 < T ≤ T0 for the uniqueness of h⃗. We then obtain the following

stability result which is more general than Theorem 6.1:

Theorem 6.2. Let β > 0 be as in Lemma 3.4. There exist 0 < T1 ≤ T0 and

B1 ≥ B0 such that if B > B1 and 0 < T < T1, there exists a constant C = CT > 0

such that the estimate

||⃗h(m1)− h⃗(m2)||L2(QT ) ≤ C||m1 −m2||L2(QT ),

holds for all m1,m2 in L∞(QT ) with |m1|, |m2| ≤ β.

Proof. Let h⃗∗ = h⃗(m1) and h⃗∗ = h⃗(m2) be the two controls corresponding to

solutions of the optimal system. As in the proof of Theorem 6.1, we denote

u = u(⃗h∗), p = p(⃗h∗), v = u(⃗h∗), and, q = q(⃗h∗).

Also, for λ > 0 which will be determined, we set

w(x, t) = e−λt[u(x, t)− v(x, t)], z(x, t) = eλt[p(x, t)− q(x, t)], (x, t) ∈ QT .

As in the proof of Theorem 6.1, w solves
wt −∇ · [µ∇w − wh⃗∗ + v(⃗h∗ − h⃗∗)e−λt] = [b− λ]w + e−λt[m1 −m2], QT ,

[µ∇w − wh⃗∗ + v(⃗h∗ − h⃗∗)e−λt] · ν = 0, ST ,

w(·, 0) = 0, Ω,

(6.8)
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and z also solves
zt + µ∆z + h⃗∗ · ∇z = [m− g(x, t, u) + λ]z + d(x, t) + eλt[m1 −m2], QT ,

∇z · ν = 0, ST ,

z(·, 0) = 0, Ω.

(6.9)

Here, b, d are defined as

b(x, t) = m1(x, t)− g(x, t, u)− v(x, t)
g(x, t, u(x, t))− g(x, t, v(x, t))

u(x, t)− v(x, t)
,

d(x, t) =
{
[⃗h∗(x, t)− h⃗∗(x, t)] · ∇q(x, t) + [g(x, t, u(x, t))− g(x, t, v(x, t))]q(x, t)

}
eλt.

As in the proof of Theorem 6.1, we can fix λ > 0 sufficiently large and then choose

B1 ≥ B0 and 0 < T1 ≤ T0 such that if B ≥ B1 and 0 < T ≤ T1, it follows that

||z||2V2(QT ) + ||w||2V2(QT ) ≤ Ce2λT ||m1 −m2||2L2(QT ).

This and (6.2) yield

||h∗ − h∗||L2(QT ) ≤ CeλT
{
||∇z||L2(QT ) + ||w||L2(QT )

}
≤ CT ||m1 −m2||L2(QT ).

The proof is now complete.

7. Numerical Results. We illustrate some numerical results using a variety of

function f and source functions m.

7.1. Logistic Growth Nonlinearity. For f(x, t, u) = |u|, the equation (2.1) be-

comes 
ut −∇ · [µ∇u− uh⃗] = u[m− |u|], QT ,

µ
∂u

∂ν
− uh · ν = 0, ST ,

u(·, 0) = u0 ≥ 0, Ω.

(7.1)

Indeed, from Lemma 3.1, all solutions of (7.1) are non-negative. Hence, the nonlin-

ear part of (7.1) can be written as u(m− u).

We have run several examples for this case, with both time-independent and

time-dependent functions m. To solve the optimality system, we use an iterative

scheme with an explicit finite difference method of order 2 in MATLAB. Starting

with an initial guess for the control function and using a forward-backward sweep

[17], we approximate first the state, then the adjoint. We then obtain the next

approximation to the optimal control by evaluating our optimal control characteri-

zation. This is iterated until the optimal state and optimal control converge.

Our first two examples below have time-independent functions m. The clear

pattern that emerged from all examples that we ran is that at any given time,

the optimal control has a form very similar to that of the derivative of m, with

corrections made near the boundary for the control value to be zero at each end

when necessary. In all of the examples that follow, µ = .1 and the final time is

taken as T = .2.
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In our first example, the graph of the resource function,

m(x) = 20x(1− x) + 0.1

is given in Figure 1, with the optimal control and state given in Figure 2. As with

all of the the time-independent m, the shape of the optimal control remains similar

for all time, though its scale changes, so we include only a time slice early in the

time interval in Figure 3. Changing B appears to have little effect on the shape

of the optimal control, but changes its scale. Using the same resource function m,

and changing B from B = .05 to B = 1, we place the resulting optimal controls at

time t = 0.02 side by side for comparison. In all other examples, B is taken to be

B = .05.

Figure 1. m(x) = 20x(1− x) + .1

Figure 2. Optimal Control and Corresponding State in 1D Over Time
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Figure 3. Time Slices of the Optimal Controls in 1D for B = .05

and B = 1

Now we look at another example with time-independent

m(x) = cos(6πx) + 1.1 ,

whose graph is shown in Figure 4, and whose derivative is zero at the boundary.

In contrast to the first example, there is no correction needed for the shape of the

control to match the derivative of m near the boundary. See the corresponding

optimal control and state results in Figures 5 and 6, again showing the control

following the derivative of m.

Figure 4. m(x) = cos(6πx) + 1.1
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Figure 5. Optimal Control and Corresponding State in 1D Over Time
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Figure 6. Time Slices of the Optimal Control

Now we give results for time-dependent

m(x, t) = (1− t/T )(cos(2πx) + 1) + (t/T )|x− .5|

shown in Figure 7 with B = 0.05. We include not only the full results for the

optimal control and state, but three time slices as well - one early, one midway

through the time interval, and one later slice. Figures 8 and 9 allow us to see that

there is still some similarity in the shape of the control to the spatial derivative of

m. In some of the examples we ran, the similarity is not nearly as close as in the m

time-independent case, as the control is clearly is influenced at any given time by

the form of m in the near future.
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Figure 7. m(x, t) = (1− t/T )(cos(2πx) + 1) + (t/T )|x− .5|

Figure 8. Optimal Control and Corresponding State in 1D Over Time
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Figure 9. Early, Mid, and Late Time Slices of the Optimal Control

Next is another time-dependent example

m(x, t) = (1− t/T )[x2(6− 4x) + .2] + .5(t/T )[cos(6πx) + 1],

shown in Figure 10. As illustrated in Figures 11 and 12, this example better illus-

trates the difference between the time-dependent and time-independent cases.

Figure 10. m(x, t) = (1− t/T )[x2(6− 4x) + .2] + .5(t/T )[cos(6πx) + 1]

Figure 11. Optimal Control and Corresponding State in 1D Over Time
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Figure 12. Early, Mid, and Late Time Slices of the Optimal Control

7.2. Some Other Nonlinearities. We are also interested in the behavior of the

optimal control solutions for different type nonlinearities (see [14]). In this section,

we give two examples of two different nonlinearities f . Our first example is the

following nonlinearity

f(x, t, u) = |u|+ 1

1 + |u|
(7.2)

The resulting optimal control and state, shown in Figures 13 and 14, for this

situation are actually strikingly similar to the results we obtain with the same m

as in Figure 1 and B = 0.05 for f = |u| given in Figure 2 and the first graph of

Figure 3. The form of the resulting controls for the two different functions f is very

similar, though the scale is slightly different.
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Figure 13. Optimal Control and Corresponding State in 1D Over Time
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Figure 14. Time Slices of the Optimal Control and Optimal State

We now look at the results with the nonlinearity,

f(x, t, u) = |u|+ |u|
1 + u2

. (7.3)

Here we exclude the figures, as we again have very similar results to what was

obtained for the previous function f and for f = |u|.
Moreover, we obtained similar results for each case of m that we ran, whether

f = |u|, or f = |u| + 1
1+|u| or f = |u| + |u|

1+|u|2 . These results might be further

indication that, generally speaking, the shape of the optimal control really is driven

by the form of m, with only small variation due to the form of f , however further

investigation clearly must be done before any definite conclusion may be drawn. For

example, would it be possible to construct an f such that the shape of the resulting

control would vary strongly from that of ∇m?

8. Conclusions. We have investigated the problem of determining the optimal

advection direction for a population with nonlinear growth and diffusive movement

in a heterogeneous resource environment with zero flux across the boundary, where

optimality is defined by maximizing the total population size integrated over the

time domain and minimizing the cost of energy expended in directed movement.
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The existence and characterization of an optimal control are established and, more-

over, we show the optimal control is unique for a small enough time horizon T and

large enough cost B. Necessary conditions are provided for the characterization of

the optimal control.

Numerical results are presented for one-dimensional habitats, and we illustrate

our investigation into the dependence of our optimal control on the form of m, on

whether m is time dependent or independent, and on the form of f . Our research

suggests that an optimal strategy for directed advection (away from the boundary)

is to follow the form of the gradient of m, or in other words for the population to go

toward regions of better resources. This appears to be fairly robust, and the form

of f appears to have little influence on the form of the optimal control, relative

to the influence of m. We do see variation in some instances in the case when m

is time-dependent, as the coming changes in the resource allocation is reflected in

the current form of the optimal advection, and we see a kind of combination of the

gradient of m at the current time and near future time. This seems to suggest that

in the case of a changing resource environment, it is optimal to have a strategy that

combines moving toward better resources as they are allocated at the current time

while also incorporating influence from predicting changes in the distribution of

resources that will come in the near future. Of course, unless the time dependence

in m is seasonally driven, the population may not be able to predict m values in

the future. Finally, while the form of f does not appear to have much effect on the

form of the optimal control according to our particular investigations, further work

must be done to conclusively determine the effect of f on the optimal control in

general.

Relating to [7] about advection along lnm, when doing the numerical investiga-

tions we also looked at the resulting optimal control given that the initial guess for

the control was the gradient of lnm, in which case the result was that the control

inevitably moved away from this initial guess and toward the gradient of m.

Many interesting questions remain open for future investigation. How does the

choice of boundary conditions affect the optimal control? For instance, past work by

Belgacem and Cosner shows that persistence of the species is enhanced by advection

along ∇m in the case of no-flux boundary conditions, but in the case of Dirichlet

boundary conditions this same type of movement can be harmful or beneficial de-

pending on other parameters. It is possible that in the case of Dirichlet boundary

conditions we may get a very different optimal advection pattern. Another ques-

tion that arises is whether or not it is possible to construct an f that results in an

optimal advection which is very dissimilar from ∇m, or if the optimal advection

always follow the shape of ∇m away from the boundary regardless of the choice

of f . Obviously, it would be intriguing to obtain an analytical characterization

of the optimal control in which the dependence on ∇m is explicit, but this seems
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quite difficult to achieve. It may be interesting to look at changing the objective

functional to understand different strategies for populations with differing goals.
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