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Shreeram Abhyankar

S
hreeram Abhyankar was an influential
mathematician and an inspiring teacher.
His infectious enthusiasm for research
and steadfast devotion to teaching have
been truly inspirational not only for us,

his students, but for all who came in contact
with him. His attractive and accessible lectures,
delivered in his inimitable style, presented their
mathematical content with such clarity that the
audience was not just impressed, but sensed an
irresistible invitation to try their hand at the topic.
Whether it was algebraic geometry or algebra,
he always preferred concrete over abstract and
was admirably adept at detecting key elementary
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motivations that opened the doors to a novel
mathematical treasure. As a self-proclaimed high
school algebraist, he proved the beauty and power
of high school algebra through his research while
extolling its virtues with missionary zeal in his
expositions. He solemnly wrote:

Polynomials and power series
May they forever rule the world.

Most remarkably, he did not erect any ego-
tistical barriers around his personality, never
exuded any exclusiveness, and welcomed all stu-
dents/researchers to his Gurukul (guru’s extended
family). One never felt the weight of his accom-
plishments in his company. Although not related
by blood, we were a part of his family and he was
a beloved member of ours; we will miss him dearly
for the rest of our lives.

In this article, contributing authors describe the
impact of Abhyankar’s multifaceted mathematical
work and their remembrances of him. Abhyankar’s
better half, Yvonne, presents a short biographical
sketch and a glimpse into their life together.
We, the coordinating editors, feel fortunate to
have received the contributions and are sincerely
grateful to the contributors.

Yvonne Abhyankar
On November 2, 2012, Ram went to sit at his desk
after taking a short nap after breakfast and waking
up to answer a call from his brother in Pune. I
left the room for a few minutes, and when I came
back I found him leaning back in his desk chair
and I could not rouse him. The Purdue paramedics
came quickly, and he was taken to the hospital,
but nothing could be done. He had died of “natural
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causes” according to the death certificate. We had
known each other for about fifty-eight years and
were married for over fifty-four.

I went to college at Barnard College, which was
affiliated with Columbia. As a Barnard student it
was possible to take courses at Columbia, so in
1955 I registered for a math course at Columbia.
The instructor turned out to be Ram. After some
weeks he suggested we go out, and then for a time
we went out quite often. Of course, as my friends
tell me, this was a highly improper thing to do.
Eventually we drifted apart. After some time I heard
that Ram had been in a car accident in Maine, so I
wrote him a short letter hoping that he would soon
be well. Somehow we continued corresponding. He
had, by that time, begun teaching at Cornell. I was
by then a graduate student at Boston University.
Since Ram had studied at Harvard, getting his
Ph.D. under Oscar Zariski, he came frequently to
Boston to see Zariski, and since I was also there, he
visited me. In this way our courtship and lifelong
friendship began.

He told me that he was born in Ujjain, but
spent most of his life in Gwalior, where his father
taught mathematics at a college and later became
its principal. Mathematics was the household
business, and Ram was surrounded by it since he
was a child. Ram fell in love with mathematics as
soon as he learned to count and would spend hours
on end in the pursuit of further knowledge. Ram
became so obsessed with mathematics at a young
age that it worried his father; once Ram’s father
locked up his math books. This disturbed young
Ram greatly; with the help of his uncle he would
wake at the crack of dawn before anyone else and
sneak away and unlock the hidden treasure.

Family was always very important to Ram. Ram
was surrounded by a large extended family growing
up. He was the second eldest; he had two sisters
and three living brothers and many cousins. He
told many stories of his life growing up with his
siblings.

His father and uncles were able to teach him
the foundations of mathematics, but Ram knew
that he needed to find a teacher who could teach
him more. Ram had studied first in Gwalior, but
then he shifted to Bombay and studied at what was
then known as the Royal Institute of Science. Since
his father was a mathematician, Ram felt it would
be better to say that he wanted to go to Bombay to
study physics. He referenced the Gateway of India
in Bombay as his gateway as well, for he knew
that he needed to leave his beloved country to
find his true passion. While in Bombay he attended
lectures at the new Tata Institute. Among the guest
lecturers he mentioned was Professor Stone, who
was visiting from Chicago. He also met Masani, who

had recently received a Ph.D. from Harvard. These
encounters solidified Ram’s belief that he had to
leave India. In 1950 this was not an easy task, as
he could not afford to go without financial help.
He managed to get some study grants from India,
and thus his journey began. He got free passage
on a ship to the US. He fell ill on the ship going
to the US and ended up in a seamen’s hospital in
England, fortunately after socialized medicine had
been established there. Ram took some time to
recover enough to finish his trip to Harvard.

By the time he reached Cambridge, it was quite
late in the semester. Upon arrival Ram immediately
went to the mathematics department at Harvard.
It was a Saturday morning when he arrived at the
department. He enquired whom he could see, and
the secretary suggested seeing Professor Oscar
Zariski, who happened to be in the department,
perhaps getting his mail. Ram often spoke of this
first meeting. Zariski apparently asked him various
questions about mathematics and at the end asked
what courses Ram proposed to take. On seeing
the list, which had been suggested by Masani,
Zariski proposed that Ram take more advanced
courses except for one in projective geometry
which Zariski was teaching. Zariski later said it
was a beautiful subject but not one to do research
in. Later Ram told me that this turned out to be
incorrect. Zariski asked Ram what his father did,
and Ram reported that he was a college math
professor. Then, not knowing that one should
not ask personal questions, Ram enquired what
Zariski’s parents did and was told that his father
was dead and that his mother had a cloth shop.
Zariski suggested that Ram come to his house and
pick up some books since Ram had arrived after
the semester had begun so he thought this might
be helpful. In this way Ram found the mentor that
he had so greatly wanted and his embarkation into
algebraic geometry began.

His early days at Harvard were mathematically
invigorating but financially challenging, as one
grant that he believed he had existed only on paper
and the money did not arrive at Harvard. Thus he
had some financial difficulties and was obliged to
eat all his meals at the college since he could charge
them. From his second year onward he got financial
aid from Harvard. Ram told many stories of his
stay at Harvard and his good fortune in meeting
Zariski. He also spoke often of Mrs. Zariski and
how kind she had been to him on many occasions.
After we were married we often visited the Zariskis
in Cambridge, and later they spent time at Purdue.

In 1958 Ram and I decided to get married. Ram
came from a culture of arranged marriages, and
clearly I did not fit into this scenario. He wrote
his father a letter asking permission to marry me,

November 2014 Notices of the AMS 1197



and his father agreed to the marriage. When I
enquired what he would have done had his father
said no, he said he would have married me anyway.
We married on June 5, 1958, which he thought
convenient, as it was also my birthday. After getting
married we went to Paris for a month. J.-P. Serre
arranged the hotel and also told Ram that he did
not expect him to do much mathematics during
that month, though that had been the original plan,
saying that after all he was a Frenchman. He found
us a room at a hotel, Montalembert, which was a
modest hotel. One of the nice things was that one
could have breakfast at any time. Later, when we
returned to Paris, as we did often, it had turned
into a really elegant, fancy hotel which we could no
longer easily afford. At the time we were in Paris
on our honeymoon we could afford wonderful
meals. After our honeymoon in Paris we went to
Gwalior, India, where Ram’s parents had lived for
many years, and were again married in a Hindu
ceremony. It had been seven years since Ram had
been in India, and his mother was so excited to
see him that she fell down some stairs, fortunately
not injuring herself. Ram’s parents welcomed me
with open arms. Most of his family spoke English,
so it was very easy for me to communicate with
them. Ram’s mother on the other hand did not
speak English, and so I decided to learn Marathi.

By the time we were married Ram had a job at
Johns Hopkins, and I registered as a student there
and got a master’s in physics. After some years at
Hopkins, Ram accepted a job at Purdue. Here Ram
established his career and built his mathematical
legacy. Over the years he had twenty-one graduate
students and many unofficial students. Ram mostly
worked from home, and his collaborators would
spend many hours at our house. Over the years
he also got to meet faculty in engineering and
computer science, and gradually they began to
learn mathematics from him as well. During our
marriage Ram lectured in many places, was a
visiting professor in several universities, and we
traveled a lot, first the two of us and later, when
we had children, we traveled with them.

In 1970 our son, Hari, was born and in 1973
our daughter, Kashi. Ram was determined to have
his children speak his language, Marathi, and also
know something of the culture of India. For this
we spent many years in India. Ram loved having
his children around; he said their noise helped
him concentrate on his work. After the children
grew up and left the house he found it hard to be
without them, so we traveled more than ever. When
our children married and each had two daughters,
Ram very much enjoyed playing with them. Our
son and his family visited West Lafayette just the

Igusa, Abhyankar and Nagata, 1957.

week before Ram died. Hari said he somehow felt
a strong urge to come. Kashi and her younger
daughter were to come the week after he died, and
we both were very much looking forward to their
upcoming visit.

Ram greatly enjoyed teaching and having stu-
dents, and just as Zariski had invited him to his
house, Ram, who generally worked at home, had
students coming over very often. This continued
until he died very suddenly on November 2, 2012.
He was fortunate in that he could continue to
teach and have students until he died. He greatly
enjoyed doing mathematics and also collaborating
with other mathematicians in his research. In fact,
the day after he died, a student, who had not heard
the sad news, appeared at our house to discuss
mathematics with him. Ram never wanted to retire
and he had his wish fulfilled.

A number of his former students and friends
came to our house when they heard the news,
as they were very much a part of his family. A
former student, Avinash Sathaye, who was like a
son to him, in addition to being a mathematician
is also very well versed in Sanskrit, and so helped
a great deal by conducting the funeral. Ram was
cremated as is the Hindu tradition, and his ashes
were scattered in the Wabash River by Hari while
Kashi and I looked on. While he remained mentally
as acute as ever until he died, in retrospect I
realize that he had been physically declining for
some time. Walking any distance had become
difficult; he needed a wheelchair when we traveled
by air. Without being able to do mathematics he
would have been miserable. He often said that
mathematics was his religion and it was his life.
He spent most of his day thinking and breathing
mathematics.
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Nagata and Abhyankars, 1958.

Chanderjit Bajaj
I greatly valued the opportunity to have Dr. Shree-
ram Abhyankar as one of my mathematical mentors
and collaborators. While I and several others are
deeply saddened by his death on November 2,
2012, we are greatly indebted for his many contri-
butions to mathematics (both pure and applied,
with the latter sometimes unbeknownst to him)
and for the many ways he imparted his love of this
great subject to others. His wisdom and continual
encouragement to pursue mathematics are most
appreciated.

Shortly after I started graduate school at Cornell
in 1981 to study theoretical computer science,
my advisor, Dr. John Hopcroft, introduced me to
Tarski’s theorem [37], where algorithmic quantifier
elimination yielded a decision procedure for the
first order theory of reals. A goal was to explore
more efficient algorithms, albeit exponential in
the number of alternating quantifications, for
the decidability of quantified real algebraic and
semialgebraic equations, as several problems in
geometric motion planning [36] and geometric
optimization [24] were reducible to it. Little did
I know at the time that Shreeram Abhyankar, a
famous algebraic geometer and chaired professor
of mathematics, had been resurrecting and advanc-
ing the theory of polynomials/power series [17],
factorizations, weighted expansions and birational
mappings [14], [13], and the algorithmic formulae
(resultants) of elimination theory [18] pioneered
by Cayley, Sylvester, popularized by Salmon and
later van der Waerden [38], and of course Macaulay
[35]. Quantifier elimination would recur several
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times in my career and also influence the scientific
careers of many computer scientists, applied math-
ematicians, including those interested in geometric
finite element modeling, computer-aided curve and
surface geometric design, algorithmic robotics and
control, all united by a search for efficient charac-
terizations and solutions of systems of algorithmic
polynomial equations and power series [30].

When I took up my first faculty job in the
computer science department of Purdue University
in 1984, my office quite fortuitously turned out to
be on the same floor as Abhyankar’s office in the
mathematical sciences building. At that time the
offices of the faculty and postdocs/graduate stu-
dents of the Purdue departments of mathematics,
statistics, and computer science were somewhat
commingled, with half or quarter floors sectioned
for each. After spending several late nights in my
office befriending a few of Abhyankar’s students, I
was soon led to meet the great man himself. Ab-
hyankar, who did most of his work out of his home
office (a couple of blocks away from mathematical
sciences), seemed to work tirelessly all day and
late nights discussing with his collaborators and
lecturing to his students. It was easy for me to
join these postdinner sessions, with my own list
of questions and problems, attempting to learn
the breadth and depth of the intertwined fields
of algebra and geometry. It was one of the most
intense yet interesting and enjoyable times of my
young faculty life, with the day spent teaching
computer science to undergraduates and then
evenings and nights consumed in learning un-
dergraduate algebraic geometry from Abhyankar
interspersed duly with some mythology and work
of Indian sages and scholars Bhaskaracharya and
Shreedharcharya [1], [3], [7], [8], [11], [39], [21],
[12].

One of my initial challenges was to develop
computer shape modeling with real algebraic
curves and surfaces. Abhyankar taught me the
algorithmic work of Newton, Hensel, Tschirnhaus,
Weierstrass, and Zariski and how they were theo-
retical computer scientists in our now agreed-upon
distinctions and similarities between computer sci-
ence, pure, and applied mathematics. This helped
develop and implement (in a software package we
called GANITH) effective algorithms for computa-
tions of the arithmetic genus, curve factorizations,
adjoint curve systems, as well as global and lo-
cal polynomial and rational parameterizations
of complex algebraic curves and surfaces, and
moreover characterize them to work in nonalge-
braically closed fields, finite fields, and in finite
precision [19], [20]. The nightly meetings were
also an excellent way for me to learn algebraic
geometry from a guru, namely, valuations [23], [2],
ramifications and local uniformization [4], [3], [8],
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tame coverings and fundamental groups [5], ho-
momorphisms and birational transformations [22],
and, in particular, algorithmic desingularization
theory [6], [9], [10], and nonzero characteristic,
by far his favorite topic. There were of course
many other computational challenges, namely, in
harnessing compactly bounded portions of real
algebraic curves, surfaces to support computa-
tional free-form geometric design and analysis
(a.k.a. real algebraic finite elements) [25], [29], [26],
[31], [32], [33]. The blossoming world of CAGD
(computer-aided geometric design) was already
replete with a variety of parametric finite elements,
including Bernstein-Bezier and B-splines (where
the B- stood for basis) [28]. Abhyankar in a series
of lectures and articles [16], [15] outlined relevant
theorems and techniques that proved useful for
several researchers, including me, in developing
the real algebraic finite elements with applications.

There was also an implicit trade agreement. I
had helped him gravitate from a Windows laptop
(that Yvonne used) to a UNIX workstation where he
eventually did all his writing, and so he would save
his questions for our evening learning sessions, as
he learned the UNIX OS as well as AMS-TEX, and
emails with attachments, etc.

Although some of these computational accom-
plishments are significant, Abhyankar is recognized
for his superlative achievements in mathematics,
which I’ll let others extol. Suffice it to say that
his sixtieth and seventieth birthday conferences
[27], [34] had speakers who were the veritable
who’s who in algebraic geometry. It also soon
became apparent to a growing number of com-
puter scientists and engineers that Abhyankar’s
algorithmic methods in algebra and geometry
had the potential to yield efficient algorithms.
He received invitations to speak and teach at
numerous workshops by computational geometers
in Barbados and symbolic computation folks in
Italy and Germany. His aforementioned birthday
conference speakers also included a veritable mix
of renowned computer scientists and engineers.
At the BIRS (Banff International Research Station)
Workshop on Algebraic Geometry and Geometric
Modeling, January 27–February 1, 2013, an evening
program was devoted to remembrances of Profes-
sor Abhyankar and the influence and impact of
his work on algorithmic algebraic geometry with
applications to geometric modeling.
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Steven Dale Cutkosky
Abhyankar’s interest in resolution of singularities
began when he was a graduate student at Harvard in
the mid-1950s. This was a subject that his advisor
and mentor Zariski was particularly interested
in. Zariski had discovered the general definition
of nonsingularity over all fields and in mixed
characteristic: the local ring of a nonsingular
point is a regular local ring [48]. Zariski had
also proven resolution of singularities of three-
dimensional varieties over an algebraically closed
field of characteristic zero [47] and proven local
uniformization in any dimension over an arbitrary
field of characteristic zero [46], introducing general
valuation theory into the subject. Zariski was
very interested in the question of resolution of
singularities of positive characteristic surfaces and
mentioned this to Abhyankar as an important
problem which was probably too difficult for a
Ph.D. problem. Abhyankar became fascinated with
this problem, and after a tremendous effort solved
it as his Ph.D. thesis.

If X is a projective variety over a field k, then
a resolution of singularities of X is an algebraic
mapping (morphism) f : Y → X such that Y is
projective and nonsingular. The local form of
resolution of singularities is local uniformization.
If ν is a valuation of the function field of X, then ν
determines a unique point of X, called the center
of ν on X. The valuation ring of ν dominates the
local ring R of the point. A local uniformization of
X along ν is a morphism f : Y → X such that Y is
projective and the center of ν on Y is a nonsingular
point on Y . If S is the local ring of this point, then
we have inclusions of local rings

R → S → Vν,
where Vν is the valuation ring of ν and S is
a regular local ring. Much of the difficulty of
local uniformization comes from the fact that the
value groups for general valuations can be very
complicated. Some examples are given on pages
99–106 of [49]. For instance, the value group can
be the rational numbers.

Throughout the history of resolution, ramifica-
tion has played a major role. In 1908, Jung [30]
showed that if a normal complex surface S is finite
over a nonsingular surface and the branch divisor
has only simple normal crossing singularities, then
S has only Abelian quotient singularities. As a
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consequence, the singularities of S are not difficult
to resolve. Abhyankar discovered that this theorem
holds if the extension has only tame ramification
(which always holds in characteristic zero) but fails
if the ramification is not tame. This theorem is of-
ten called the Abhyankar-Jung theorem. It appears
in Abhyankar’s 1955 paper “On the ramification of
algebraic functions” [1].

Abhyankar proved local uniformization along a
valuation in a two-dimensional algebraic function
field over an algebraically closed field of positive
characteristic using his development of ramifica-
tion theory. The proof is published in his 1956
paper “Local uniformization of algebraic surfaces
over ground fields of characteristic p 6= 0” [2].
Abhyankar uses an ingenious method of descent
and ascent to reduce to the case of an extension
of function fields of prime degree and where the
center of the valuation is a regular point in the
smaller field and a singular point above which
needs to be resolved. The difficult case is an Artin-
Schreier extension. Abhyankar gives a direct proof
in this case and deduces resolution of singularities
of projective surfaces over an algebraically closed
field of positive characteristic.

Abhyankar later gave a proof of embedded
resolution of algebraic surfaces in all character-
istics. Most of the proof appears in the series
of papers [4], [5], [6], [7], and the final part of
the proof appears in the 1966 book Resolution of
Singularities of Embedded Algebraic Surfaces [8].
Using this result, he proved that a resolution of
singularities exists for a three-dimensional alge-
braic variety over an algebraically closed field of
characteristic p greater than 5. In [21] Cutkosky
gave a simplified proof of this result. Recently,
Cossart and Piltant [17] have succeeded in proving
that resolutions of singularities exist for algebraic
varieties of dimension three over fields of the
remaining characteristics 2, 3, and 5. Their proof
draws heavily on ideas from Abhyankar’s papers.
It is still unknown if resolutions of singularities
always exist for varieties of dimension greater than
or equal to 4 and of positive characteristic.

Abhyankar outlined a proof of resolution for
arithmetic surfaces in [10], and Hironaka outlined
a simplified proof of resolution of surfaces in
[28]. There are very general proofs of resolution of
excellent surfaces in [36] and [16]. After taking a
suitable generically finite morphism, De Jong [23]
has shown that it is possible to find a resolution
in positive characteristic. Some recent papers on
the problem of resolution in positive characteristic
are by Bravo and Villamayor [13], Hauser [26],
Hironaka [29], Kawanoue [32], Kawanoue and
Matsuki [33], Knaf and Kuhlmann [34], Moh [37],
Spivakovsky [41], Teissier [42], and Temkin [43]. A

Abhyankar, Akizuki and Remmert, 1960s.

self-contained introduction to the problem can be
found in [19].

In characteristic zero, Abhyankar showed that
hypersurfaces of maximal contact always exist for
singularities. This allows a reduction of resolution
of singularities to one dimension or less and
allows an inductive formulation of resolution. He
found an explicit construction, which he called
a Tschirnhausen transformation in honor of the
seventeenth-century mathematician. The trans-
formation is a generalization of the method of
completing the square to solve quadratic equations.
It is absolutely remarkable that this simple idea
makes resolution of singularities possible. In the
equation

f = zd + a1zd−1 + · · · + ad,
where the ai are polynomials or series in the
variables x1, . . . , xn which vanish at the origin to
order ≥ i, make the substitution

z = z + a1

d!
.

Then we have a new equation

(1) f = zd + a2zd−2 + · · · + ad .
Abhyankar showed that blowing up the most
singular points of f = 0 makes the singularity
better, except possibly at points which are on the
transform of z = 0. The transform of f continues
to have the form (1) at these points. Points where
the singularity is not better are always on the
transform of z = 0, no matter how many times you
blow up. z = 0 is called a hypersurface of maximal
contact for f = 0.

Hironaka used the Tschirnhausen transforma-
tion as the starting point of his 1964 proof [27] of
resolution of singularities of algebraic varieties of
any dimension in characteristic zero.

In recent years there have been great simplifi-
cations of Hironaka’s original proof of resolution
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in characteristic zero. Some of these important
papers are by Bierstone and Millman [12], Enci-
nas and Villamayor [24], Hauser [25], Kollár [35],
Villamayor [44], and Włodarczyk [45].

The Tschirnhausen transformation is the major
part of Hironaka’s proof which does not extend
to characteristic p > 0. The transformation is not
possible if p divides the degree d of f , as p times
the identity is zero in characteristic p.

In his 1982 Ph.D. thesis with Abhyankar,
Narasimhan [38] gave an example showing that
hypersurfaces of maximal contact do not generally
exist in positive characteristic.

Abhyankar was also very interested in the
structure of birational mappings of algebraic
varieties, a problem which is closely related to
resolution. A birational mapping of a variety X
to a variety Y is an algebraic isomorphism from
an open subset U of X to an open subset V of
Y . Such a mapping may not extend to a globally
defined mapping of X, although there is some
largest open subset of X on which the map is
defined. When the birational mapping is defined
everywhere on X, then we will call it a morphism.
If X and Y are nonsingular projective curves, then
the only possible birational mapping of X to Y
is an isomorphism. The structure of birational
morphisms of nonsingular projective surfaces was
found by Zariski for surfaces over a perfect field k
[47]. This result was known by Castelnuovo within
the context in which he worked [14]. Zariski’s
theorem is that every birational morphism of
nonsingular projective surfaces can be factored
as a sequence of blowups of points. The blowup
of a point can be understood locally as being an
algebraic substitution

x = x1, y = x1y1.

Abhyankar proved as part of his Ph.D. thesis and
in “On the valuations centered in a local domain”
[3] that an arbitrary birational extension of two-
dimensional regular local rings can be factored
by local rings of blowups of maximal ideals. As a
consequence, the general statement that birational
morphisms of nonsingular projective surfaces over
an arbitrary field factor as a sequence of blowups
of points follows.

Birational geometry in higher dimensions is
much harder. The factorization theorem in dimen-
sion two does not extend in a simple way to higher
dimensions. In dimension three, besides blowing
up points, we can also blow up nonsingular curves.
However, there are examples of birational mor-
phisms of nonsingular projective three-folds which
cannot be factored by compositions of blowups
of points and nonsingular curves. Examples show-
ing that this fails even locally were found and
published by Judy Sally [39] (Ph.D. thesis with

Kaplansky) and David Shannon [40] (Ph.D. thesis
with Abhyankar).

This led Abhyankar to reformulate the problem
locally as a conjecture (Section 8 of [9]): Given
a valuation ν dominating a birational extension
of regular local rings R → S, does there exist
a regular local ring T which is dominated by ν
and is obtained from both R and S by sequences
of local blowups of regular prime ideals along
ν? This local factorization problem was solved
in dimension three for the case of valuations of
maximal rank by Christensen in his thesis with
Abhyankar [15]. In this case, the value group is Zd

where d = 3 is the dimension of the variety, and
the problem is readily translated into a (difficult)
problem in combinatorics. Karu [31] has given a
proof of local factorization along a maximal rank
valuation in all dimensions and characteristic zero
using toric geometry. A proof of the maximal
rank case is given using determinantal identities
by Cutkosky and Srinivasan in [22]. Cutkosky
proved local monomialization in characteristic zero
along an arbitrary valuation in [18], which proves
Abhyankar’s local conjecture (in characteristic
zero).

Abhyankar (Section 8 of [9]) and earlier Hironaka
(in [27]) conjectured that, in dimensions greater
than or equal to three, a birational morphism
of nonsingular projective varieties f : X → Y can
be factored by first performing a sequence of
blowups of nonsingular subvarieties above X and
then performing a sequence of inverse blowups
of nonsingular subvarieties above Y (blowdowns)
to reach Y . This conjecture is still open, even for
the case of morphisms of toric varieties, although
there has been a lot of progress in characteristic
zero. It was shown by Abramovich, Karu, Matsuki
and Włodarczyk [11] that it is possible to construct
a finite sequence of blowups and blowdowns with
nonsingular centers to obtain a factorization. Their
proof uses methods from geometric invariant
theory and Mori theory. Cutkosky has given
a completely different proof of this theorem
in dimension three as a consequence of his
monomialization theorem for maps of projective
threefolds [20].

Abhyankar’s conjectures on factorization in pos-
itive and mixed characteristic remain completely
open.
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David Harbater
One day in 1989 I was surprised to receive a
letter in the mail from Prof. Shreeram Abhyankar.
Although I had known of his work since I was a
graduate student, we had not met, and in those days
before email was commonplace, an unsolicited
letter from a well-known senior mathematician was
quite unexpected. The contents were a surprise
as well: he wrote that after a long hiatus in his
work on algebraic fundamental groups, he wished
to resume research in that direction, and he was
asking if I could provide a summary of recent
developments on that topic.

That letter led to many exchanges, including a
number of visits of mine to West Lafayette and
of his to Philadelphia, where we discussed (and
sometimes argued about) mathematics for long
hours. Our discussions during my visits to Purdue
took place, not in his office in the mathematics
department, but in the office/seminar room that
was set up in his house, where grad students and
others would gather for long mathematical sessions

David Harbater is Christopher H. Browne Distinguished
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in front of his large blackboard. The discussions
were lively to say the least, and at times even a
bit unnerving, as he sought to see the underlying
essence beneath the surface presentation of the
mathematics.

Besides the mathematical discussions during
my visits, he would also tell me tales of his “guru”
(and my mathematical grandfather), Oscar Zariski,
as well as about his other interests, such as the
characters in Indian lore. There were often crowds
of mathematicians who would come to the house in
the evening, and all would graciously be fed Indian
food by his wife and loyal companion, Yvonne.

Before I met Ram I had been aware of two
seemingly distinct threads in his research. One
concerned the resolution of singularities on al-
gebraic varieties, especially in finite and mixed
characteristic. The other concerned the study of
branched covers of varieties and, in particular, the
formulation of “Abhyankar’s Conjecture” on the
fundamental group of affine curves in characteris-
tic p. But as I learned from him during our many
talks, these two threads were in fact intimately
intertwined, and both grew out of his Ph.D. thesis.

For the thesis Zariski had proposed that he study
resolution of singularities of algebraic surfaces in
characteristic p. Zariski had proven resolution over
algebraically closed fields of characteristic zero,
and he had suggested that a proof in arbitrary
characteristic could be obtained by translating
into algebra an even earlier analytic argument of
H. W. E. Jung that concerned complex surfaces. As
Ram liked to tell the story, there were two parts
to his thesis: the successful part and the “failure”
part. What he meant was that he discovered that
Jung’s method breaks down in characteristic p [1],
and as a result he had to use another approach to
prove resolution of singularities in that context
[2]. But the failure of Jung’s method to generalize
did not prove to be a dead end. Instead, it led to
Ram’s work on branched coverings of varieties
and to his introduction of the idea of an algebraic
fundamental group that can be viewed as analogous
to the fundamental group in topology [3].

To obtain resolution of singularities, what was
needed was to prove “local uniformization,” which
asserted that the given variety could be written as
a union of finitely many Zariski open sets, each of
which is the image of a birational morphism from a
smooth variety. In Jung’s strategy for surfaces, the
idea was to express the given variety as a branched
cover of a linear space and then to blow up so
that the branch locus has only ordinary double
points. This relied on the fact that the variety is
smooth at any point lying over a smooth point of
the branch locus, with cyclic inertia group, and that
over an ordinary double point of the branch locus
the inertia group is a product of two cyclic groups.
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This indeed holds over an arbitrary algebraically
closed field of characteristic zero.

But, as Abhyankar found in the “failure” part of
his thesis, these properties of branched covers do
not hold in characteristic p. To use his phrase, in
characteristic p there can be “local splitting of a
simple branch variety by itself” [3, Sect. 1], meaning
that the inertia group can increase over a smooth
point of the branch locus, as distinct components
of the ramification locus meet at a point on the
cover lying over that smooth point. In addition, as
he found, inertia groups over an ordinary double
point of the branch locus can be quite compli-
cated, even being nonsolvable. Rather than simply
abandoning this approach to resolution in favor
of his successful desingularization strategy, he
initiated a serious study of covers in characteristic
p. This included not only surfaces and varieties of
higher dimension [4] but also of curves. What he
observed was that, by taking a slice of a cover of
the plane that has nonsolvable inertia, he could
obtain an unramified cover of the affine line with
nonsolvable Galois group. Although it was well
known by Artin-Schreier theory that the affine line
in characteristic p has nontrivial unramified covers
with Galois group a p-group, the proliferation of
covers with much more complicated Galois groups
was a real surprise.

This work also led to his defining a “fundamental
group” for varieties that would make sense even in
characteristic p (and later, in mixed characteristic).
For a variety over the complex numbers, the finite
quotients of the (topological) fundamental group
are the Galois groups of finite Galois (or “normal”)
covering spaces, and these quotients form an
inverse system. Abhyankar defined the algebraic
fundamental group to be the collection of Galois
groups of finite unramified covers of the given
variety. Of course this is a set, not a single group.
But he added that “eventually one may have to
consider the Galois group…of the compositum” of
the function fields of the finite unramified covers
[3, 4.2]. This is equivalent to taking the inverse
limit of the finite groups in the corresponding
inverse system (which is what Grothendieck later
did in his work on étale fundamental groups in
SGA1).

This work also led him to make his conjecture
stating which finite groups can be Galois groups
over a curve in characteristic p of a given genus
and with a given number of punctures. What
he proposed is a type of “maximal conjecture,”
asserting that anything that cannot be ruled out
must occur (a sort of Murphy’s Law). Namely, he
said that a group will occur as a Galois group of
some unramified cover of a given affine curve if
and only if its maximal prime-to-p quotient can
occur over a characteristic zero curve of the same

genus with the same number of punctures [3, 4.2].
(The groups that occur in characteristic zero are
well known by topology.) This condition is seen to
be necessary once one knows that the prime-to-p
Galois groups are the same in characteristics 0
and p. But it was a nonobvious leap to conjecture,
based on the examples he had found, that it is also
sufficient.

Years later, after his conjecture was proven
[9], [8], his “maximal” philosophy led him to
formulate possible analogous conjectures in related
situations. These included higher-dimensional
varieties over an algebraically closed field of
characteristic p, affine curves over finite fields,
and local fundamental groups in the higher-
dimensional situation. In some cases, further
investigation led to additional obstructions to the
Galois groups that can occur in those situations,
leading to difficulties in formulating the correct
“maximal conjecture,” and these problems remain
wide open. Two other problems that also remain
wide open are determining which groups can be
inertia groups over infinity for a given Galois group
over the affine line (the maximal conjecture in
this setting was Ram’s “inertia conjecture”) and
determining the structure of the fundamental
group of the affine line as a profinite group (on
which he and Serre had some amusing exchanges).
Also, motivated by the inexplicit nature of the
proof of his conjecture, he worked on obtaining
explicit realizations of interesting groups as Galois
groups over the affine line in characteristic p,
which often provided realizations as well in the
case of the affine line over the field of p elements.
These realizations appeared in a number of papers,
particularly in his “nice equations” series in the
1990s (beginning with [6]).

Ram liked to say that what he did was just “high
school mathematics.” But this would have to have
been a very good high school indeed to include his
work on resolution of singularities on arithmetic
surfaces [5] in the curriculum! His point, though,
was that one could get far by thinking concretely,
e.g., in terms of polynomials, and that rushing to
use abstractions such as categories and functors
(which he called “university mathematics”) could
well distract one from the deeper issues.

Still, there is a bit of a paradox here. As
I mentioned above, his work on the algebraic
fundamental group led to the development and
presentation of this topic in Grothendieck’s SGA1,
whose capstone result [7, XIII, Corollaire 2.12] was
similar in spirit to Abhyankar’s results in his 1950s
papers. The proof of Abhyankar’s Conjecture on
Galois groups over curves relied heavily on results
in “university mathematics,” though those results
were analogs of the GAGA theorem of his friend
J.- P. Serre. Ram’s work on arithmetic surfaces would
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surely be viewed by most mathematicians today
as being part of the abstract algebraic geometry
of schemes. His efforts to find covers of the affine
line given by polynomials whose coefficients are
just 0 or 1 (as in his nice equations series) could be
viewed as studying fundamental groups of curves
over the highly speculative object F1. And his
study of the structure of the fundamental group of
affine curves in characteristic p, including how it
depends on the curve and its base field, is related
to Grothendieck’s anabelian conjecture.

Regardless of one’s own views on “high school
mathematics” and “university mathematics,” Shree-
ram Abhyankar’s work has had a major impact
on mathematics and the mathematical community
and continues to influence the direction of research
in algebra and algebraic geometry. He certainly
had a profound influence on my own mathematical
career, for which I am grateful.
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William Heinzer and David
Shannon
Abhyankar’s research career spanned the period
from 1954 through 2012. A great deal of his
work during this period of nearly sixty years
has connections to commutative algebra. At the
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Ed Davis and the Abhyankars.

suggestion of his advisor, Oscar Zariski, Ram
studied the papers of Krull and Chevalley, in
particular [20] and [22]. Ram also often mentioned
his friendship with I. S. Cohen and the influence
Cohen’s work [23] had on his career. Ram’s 1956
paper on simultaneous resolution [4] is dedicated
to the memory of Cohen.

Ram’s work in commutative algebra was almost
always motivated by concepts in algebraic geom-
etry. For example, his work on valuations was
motivated by his interest in local uniformization
and resolution. Indeed, these concepts can be
formulated in algebraic terms, but Ram often
stressed that the motivation and intuition came
from algebraic geometry. However, while Ram saw
the bulk of his research as a blend of commutative
algebra and algebraic geometry, he also would
resist being compartmentalized into a particular
area of mathematics. For example, in describing
his work on developing a simple proof of desingu-
larization in characteristic zero, he observed that
“once again this reflects the fundamental unity of
all Mathematics from Control Theory to Complex
Analysis to Algebra to Algebraic Geometry” [13,
p. 285].

Ram extolled the value of “elementary” algebra.
He observed in his book [10] that his method of
desingularization may be termed the method of
Shreedharacharya of completing the square. Ram
was especially adept at what is traditionally called
theory of equations. Ram interpreted this to mean
“simplifying expressions, factoring polynomials,
making substitutions, and solving equations.” Top-
ics such as quadratic transformations, resultants,
Newton polygons, and power series expansions
were recurring interests. Ram especially valued
algorithmic mathematics.

Nevertheless, Ram was also at home in “abstract”
commutative algebra. This is exemplified in his
book [15]. In a review of this book in Math
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Reviews [25], P. Schenzel characterizes the book
as “a unique, original exposition full of valuable
insights,” and recommends the book “to anybody
who is willing to see the fascinating, concrete as
well as abstract development of algebra during the
last centuries.”

Ram’s work in commutative algebra may be
roughly divided into the following three periods:

(1) 1954–1967. The first period is focused on the
problems from algebraic geometry of local
uniformization and resolution of singulari-
ties. To attack these problems in the algebraic
fashion begun by Zariski, Abhyankar needed
to extend results of Zariski and others on
valuations and local domains. In particu-
lar, he needed to consider the case where
the ground field has nonzero characteristic.
Ram’s early paper [3] on valuations centered
in a local domain is one of his papers most
cited by algebraists. In this paper he first
generalizes results of Mac Lane and Schilling
[21] on the classification of zero-dimensional
valuations of a function field to arbitrary
valuations centered on a local domain. He
then generalizes Zariski’s factorization theo-
rem on birational transformations between
algebraic surfaces to abstract regular two-
dimensional local domains. Ram also proves
in [3] the much-used result (see, for example,
[24]), that states that if (R,M) is a regular
local domain of dimension n andw is a prime
divisor centered on M , then the residue field
of w is a purely transcendental extension of
a finitely generated extension of R/M .

In addition to the above-mentioned paper,
key papers from this first period include his
two thesis papers, [1] and [2], and papers on
simultaneous resolution and coverings and
fundamental groups of algebraic varieties.
Ram was very involved in the question of
local uniformization and resolution of singu-
larities over fields of positive characteristic.
A little later he considered the arithmetic
(mixed characteristic) case where a local
ring (R,M) has characteristic zero and the
residue field R/M has positive characteristic.
During this period Ram made extensive use
of a result he proved for the removal of
ramification by means of base field extension.
This result is now known as Abhyankar’s
Lemma.

This first period includes his book on
resolution of embedded algebraic surfaces
[5] and his address at the 1966 International
Congress in Moscow [7]. Ram’s 1966 book [5],
reprinted and expanded in [13], develops an
enormous amount of commutative algebra
to deal with concepts such as blowing up

ideals and local quadratic and monoidal
transformations.

(2) 1967–2005. This second period saw a broad-
ening of Ram’s research interests that
included several topics in commutative
algebra as well as topics in group the-
ory combinatorics and computer science. He
also occasionally returned to resolution, as
in his paper from the 1981 Arcata conference
on the desingularization of plane curves [10].
This second period is also characterized
by much collaboration with students and
colleagues in commutative algebra as well as
in other areas.

We list several commutative algebra re-
search topics and collaborations of this
period:

(a) A much-quoted paper from this pe-
riod is Ram’s proof in [6] of an upper
bound for the embedding dimension
m(R) of a Cohen-Macaulay local ring
(R,M) in terms of the dimensiond(R)
and multiplicity e(R) of R, namely,
m(R) ≤ d(R)+ e(R)− 1.

(b) In a paper with Eakin and Heinzer [8],
Ram considers the general question:
If A and B are integral domains and
the polynomial rings in n variables
over A and B are isomorphic, how
are A and B related? It is shown in [8]
that A and B are then isomorphic if A
is of transcendence degree one over
a field or if A is a Dedekind domain
containing a field of characteristic 0.

(c) The epimorphism theorem of Ab-
hyankar and Moh [9] is a major result
from this period. This asserts: Let
u(t) and v(t) be two polynomials
in one variable t such that t can be
expressed as a polynomial in u(t) and
v(t). Let degree of u(t) = n > n′ =
degree of v(t), and assume that ei-
ther n or n′ is not divisible by the
characteristic. Then n′ divides n. An
alternative formulation states: Any
two epimorphisms of the polynomial
ring in two variables onto the poly-
nomial ring in one variable whose
degrees are nondivisible by the char-
acteristic differ from each other by
an automorphism of the polynomial
ring in two variables.

(d) The epimorphism theorem naturally
led to a consideration of the Jaco-
bian question that asks: If y1, . . . , yn
are polynomials in x1, . . . , xn with
coefficients in a field k of charac-
teristic zero and the determinant
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of the associated Jacobian matrix
is a nonzero constant, does it fol-
low that x1, . . . , xn are polynomials
in y1, . . . , yn? Ram’s work on the Ja-
cobin problem in the early 1970s
is presented in [12]. He obtains an
affirmative answer in the case where
the field extension k(x1, . . . , xn) over
k(y1, . . . , yn) is Galois. For n = 2 he
also obtains an affirmative answer in
cases including one place at infinity
or two characteristic pairs.

(e) In a sequence of five papers with
Heinzer [11], Ram investigates in-
tegral closure and ramification of
prime ideals in infinite algebraic field
extensions.

(f) In the paper with Heinzer and Sathaye
[14], Ram investigates Bertini-type
properties of pencils, such as their
singular set and irreducible set.

(3) 2005–2012. The third period is marked by
a renewed interest by Ram in the Jaco-
bian problem. In [19] Ram notes that only
part of his work of the 1970s on the Ja-
cobian problem had been published. In a
sequence of three papers ([16], [17], and
[18]) he meticulously resharpens the tech-
niques (approximate roots, polynomial and
power series expansions with meromorphic
coefficients, Newton polygons) to push the
Jacobian theorem past the result of two
characteristic pairs.

However, after listening to Artal, Bodin,
and Luengo during 2008–2009, he became
fascinated with developing an algebraic the-
ory of dicritical divisors with the potential
of application to the Jacobian problem. The
result was several papers (some in collabora-
tion with Artal, some with Luengo, and some
with Heinzer) in which a comprehensive
algebraic theory of dicriticals is developed.
Important tools used are Rees rings and
a revamped version of Zariski’s theory of
complete ideals of a two-dimensional regu-
lar local ring and new results on quadratic
transformations and Newton polygons.

Ram’s recent work on dicritical divisors
reflects a “rejuvenation” of research Ram did
earlier in his career. For example, explicit
results on valuations from [3], on resolution
from [10], and on quadratic transformations
are used. He was actively continuing this
research up to his passing in November 2012.
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Thompson and Abhyankar, 1995.

Shashikant Mulay
In the spring of 1982, while I was a graduate student
under Abhyankar’s guidance, Vinay Deodhar of
Indiana University lectured at Abhyankar’s home
in West Lafayette; the topic of his lectures was
Kazdan-Lusztig polynomials and singularities of
Schubert varieties. This marked the beginning
of Abhyankar’s decade-long engagement with
Schubert varieties and other related determinantal
loci.

For the smooth variety FL(n) of full-flags on an
n-dimensional vector space over a field k, consider
Schubert varietiesXσ (indexed by the permutations
of {1,2, . . . , n}) corresponding to a (fixed) Bruhat-
decomposition of FL(n). Studying singularities
of an Xσ is equivalent to studying singularities
of the affine variety Vσ := Xσ ∩W , where W is
the opposite big cell for the Bruhat-decomposition.
Defining equations of Vσ in the affine coordinate
ring ofW were the first thing Abhyankar wanted to
know. To test the waters, he computed the (radical)
ideal Iτ defining Vτ for certain transpositions τ
and discovered Iτ to be the ideal I(2,L) of 2× 2
minors in a ladder-shaped region L of a matrix
having indeterminate entries. Proving primality
of I(2,L) was the key part of his argument. This
discovery led him to pose the question: Is the ideal
generated by the p × p minors of a ladder (with
indeterminate entries) a prime ideal? He felt that,
in general, the (radical) ideal Iσ defining Vσ is likely
to have some sort of “determinantal” description.
Naturally then, he wished to update his knowledge
of determinantal ideals. A rectangle being the
simplest ladder, it was imperative to understand
that case first. So Abhyankar studied the Standard
Monomial Theory, initially from [12] and later from
[13]. Until he had his own restructuring of what
he was trying to learn, Abhyankar seldom felt that
he had come to a satisfactory understanding. Here
he set out to re-prove the linear independence

of Standard Monomials by dimension counting.
By the spring of 1983 he had accomplished this
and en route obtained new results. He found
an explicit expression for the Hilbert function
of the ideal of p × p minors of a matrix with
indeterminate entries. More generally, he computed
explicit expressions for the Hilbert functions of
the usual homogeneous coordinate rings of a class
of Schubert subvarieties in a Grassmannian (see
[1]). The determinantal ideals, whose primality
he established in [1], had the property that their
Hilbert polynomials coincided with their Hilbert
functions for all nonnegative integers. He called
such ideals Hilbertian. Subsequently, he retained
a keen interest in investigating the Hilbertian
property of determinantal ideals.

For the chosen algebra/algebraic geometry topic
of his study, Abhyankar insisted on tracing the
evolution of the core notions to their historic roots.
He had a firm conviction that the inspiration for
the main theorems of the topic and the machinery
developed for their verification both originate
from some concrete high school algebraic idea.
This philosophical standpoint allowed him to
gain an original and unique perspective of the
subject at hand. However, it must be noted that he
regarded his historical quest as a personal journey
to those splendors of the past that attracted
him, not necessarily a comprehensive or scholarly
expedition.

From his student days, Abhyankar was ac-
quainted with Hermann Weyl’s classic text [30],
especially the first two chapters and the last chap-
ter. Abhyankar held the opinion that Weyl had not
well-motivated the invariant theoretic part of [30].
Thus, in pursuit of the sought-after motivation,
Abhyankar embarked on an in-depth study of
nineteenth-century invariant theory. Starting from
1984 in Pune (India) and later in West Lafayette,
Abhyankar and the participants of his seminars
studied Grace and Young [17], Elliot [14], and
Turnbull [27]. Very quickly Abhyankar became
an expert in the symbolic (German) method of
treating invariants. Once motivated, he had an
uncanny ability to master a new area of learning
in a relatively short period of time. The tableaux
appearing in the last chapter of [17] qualified as
Young tableaux in Abhyankar’s eyes, and the proof
of Peano’s theorem presented there, furnished the
kind of motivation he was looking for.

As much as he was impressed by Young’s work
in invariant theory, Abhyankar was even more im-
pressed by the work of Young’s student, Turnbull.
After a careful study of the invariant theoretic
part of [27], Abhyankar proved the Second Fun-
damental Theorem associated to Turnbull’s First
Fundamental Theorem for multilinear covariants.

1210 Notices of the AMS Volume 61, Number 10



When he explained his proof, I found it quite diffi-
cult to cope with Turnbull’s “dot” notation, which
Abhyankar had so fondly adopted. But Abhyankar
claimed that had it not been for the clever and
suggestive notation of Turnbull, he would not have
discovered the theorem that he did. As it turned
out, a less compact but easier proof was found in
Weitzenbök’s book [29].

Concurrently, Abhyankar kept working on enu-
merative techniques in the Standard Monomial
Theory, with the aim of proving primality of the
ladder determinantal ideals. In the latter half of
1984, Abhyankar’s student Himanee Narasimhan
succeeded in proving a more general result by
the method of initial forms (see [26]); she showed
the primality of the ideal of p × p minors of a
two-sided ladder with indeterminate entries. A
few months later, having sharpened his counting
methods, Abhyankar provided (see [2]) a different
proof of the same result. Going beyond, in [2]
he proves the primality of the ideals generated
by certain sets of mixed-sized minors of a ma-
trix with indeterminate entries. The enumerative
nature of Abhyankar’s proofs made it possible,
at a later stage, for Abhyankar and his student
Devadatta Kulkarni to establish the Hilbertianness
of these determinantal ideals (see [9]). Over time,
the project of gaining a better understanding of
the coefficients of the Hilbert polynomials of such
determinantal ideals has yielded many interesting
results (see [16], [19], [20], [22], [28]) as well as
raised many open questions.

In 1986 I was able to show (see [23]) that given
a (one-sided) ladder L with indeterminate entries,
for all sufficiently large n there exists σ ∈ Sn such
that Iσ = I(p,L), the ideal generated by the p × p
minors of L. Furthermore, in [23] it is proved
that, for each σ ∈ Sn , Vσ has a defining ideal of
the form J(π, L) := I(p1,L1)+ · · ·+ I(pr ,Lr )+Λ,
where L : L1 ⊂ · · · ⊂ Lr is a chain of ladder-shaped
regions inside an (n−1)×(n−1)matrix Z := [Zij]
with indeterminate entries, π : p1 < · · · < pr is
a chain of positive integers, and Λ is the ideal
generated by {Zi(j+1) − δij | 1 ≤ i ≤ j ≤ n − 2}
(here δij is the Kronecker-delta ). A result in [23]
proves that a proper ideal of type I(p,L) + Λ
defines a Vσ , where σ is explicitly constructed
from the shape parameters of L and the value
of p. When I explained my proof to Abhyankar,
he suggested that a similar description for the
equations of the tangent cone to Vσ at the point Xι
should be found; he stressed his requirement that
such a description should facilitate computation
of the local Hilbert function of Vσ at Xι. Leaving
aside some special cases, description of such initial
ideals and the associated local Hilbert functions
remains unknown. For arbitrary L and π as above,

J(π, L) need not define any Vσ ; in particular, it
need not be a prime ideal.

So there arises the question of determining the
minimal primes of J(π, L) or at least their number.
In 1993 I could settle the first nontrivial case: given
a matrixMwith indeterminate entries, a submatrix
N ofM, and positive integers q < p, a description
of the minimal primes of I(p,M) + I(q,N ) is
provided in [24]. This at once led to examples ofXσ
whose singular locus is not equidimensional. In fact,
given an integer d, there exists a Schubert variety
Xσ whose singular locus has only two irreducible
components and their dimensions differ by at least
d (see [25]). A guiding research problem in this
area asked whether the singular locus of an Xσ is
necessarily equidimensional. Towards determining
the number of minimal primes of J(π, L), Masato
Kobayashi has conjectured bn2/4c as the upper
bound on the number of irreducible components
of Xα ∩Xβ for α,β ∈ Sn; in [18] he shows that for
each n, this is the least possible upper bound.

Ever since Abhyankar learned the “straightening
law” for monomials in minors, he dreamed of
finding a “straightening formula.” Given a bitableau
T and a standard bitableau S, he posed the
problem of determining the coefficient of S in
the straightened expression of T (see section 19
of [3]). With this goal in mind, he studied the
straightening process in penetrating detail by
employing variants of the Robinson-Schensted-
Knuth algorithm. Although his dream is yet to be
realized, he was able to produce what he calls a
“bijective proof” of straightening (see [10], [11]). In
another direction, standard monomial theory has
been generalized to a higher-dimensional setting
by Abhyankar and his students Sudhir Ghorpade
and Sanjeevani Joshi (see [4], [5], [6], [7], [8]). In
dimensions greater than 2, the standard monomials
in multiminors of a multidimensional matrix are
linearly independent but fail to form a standard
basis.
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David Mumford
I first met Ram when I was a graduate student
several years behind him. We were both studying
under Oscar Zariski. Ram was already famous
for writing quite long and difficult reports. Oscar
warned me when I asked for a copy of a draft
of Ram’s thesis that I might find it hard going,
which turned out to be quite true. Long it might
be, but this thesis led to his proof of resolution of
singularities for 3-folds in characteristic p, a result
that was a wonderful tour de force.

We were good friends, but our paths diverged.
Grothendieck came to visit, and I found his new
setting for algebraic geometry very congenial. Ram
did not. Ram had an independent streak that
always led him to look at problems from his
unique point of view, often different from that of
the crowd. A small example concerns the words
analytic geometry , which stood at that time for
the high school study of conic sections and their
equations. Ram said nonsense, algebraic geometry
is the study of the geometry of algebraic equations,
so analytic geometry must be the study of the
geometry of all real or complex analytic equations.
His opinion won the day, and this has become
common usage. Not so in the case of the value
of Grothendieck’s schemes, on which he fought
the consensus all his life. Our tastes in math were
always different, but I admired (and admire) his
traditional algebraic approach, which he pursued
with such great skill and insight. Few could match
him in polynomial calculations, for example, in the
construction of extensions of curves and number
fields with given Galois group.

I had a wonderful time visiting Ram and his father
in Pune at the time he was running a small institute
there. Ram was a strong Maharashtrian patriot,
proud to feel he was following in the footsteps
of the eminent mathematician Bhaskaracharya,
as well as those of Shivaji, who stopped the
Muslim juggernaut with his famous “tiger claws.”
Bhaskara’s great work in algebra, the Bijaganita,
had been translated into Marathi by Ram’s father.
Not knowing that Colebrooke had done this in the
nineteenth century, I suggested to Ram he translate
it into English, where there is a bigger audience,

David Mumford is professor emeritus of applied mathematics
at Brown University. His email address is David_Mumford@
Brown.edu.

1212 Notices of the AMS Volume 61, Number 10



but he didn’t feel such a project was worthy of the
effort. Bhaskaracharya’s math fit in well with Ram’s
own inclinations: pursuing straight polynomial
algebra with formulas, a tradition which I now
know goes back in India at least to Brahmagupta
around 600 CE. I dined with Father too, although
he confessed it was not at all proper for him to do
this with a Westerner.

Ram and I also had several long conversations
about Indian religion. We were both admirers of
Zimmer’s books on the religion, symbols, and art
of India and found the story of Narada and Vishnu
especially powerful. This is food for the soul, and I
am sure it served Ram well. He was a distinctive
and important figure in the mathematical pantheon
who will be greatly missed.

Avinash Sathaye
Abhyankar’s early mathematical life was occupied
by deep problems concerning resolution of singu-
larities and local and global properties of algebraic
as well as analytic varieties, especially in positive
characteristic or even in mixed characteristic.

In the late 1960s he made a conscious move
towards what is described as “affine geometry”
these days. His objective was to offer problems
which are accessible to graduate students yet are
significant. During his own student days, he was led
to believe that most important issues about curves
were settled, and so he had consciously turned
towards theory of surfaces and higher-dimensional
varieties.

However, when he turned his attention towards
the subject of curves to attract students, he soon
discovered that many interesting problems are
still unresolved. Abhyankar’s foray into affine
geometry is said to have been initiated during a
car trip to the University of Kentucky in the late
1960s. Many interesting problems were discussed
during this trip. These topics stayed as the focus
of Abhyankar’s seminars, as well as his lectures
around the world, during the 1970s.

Unlike his earlier work, he mostly stayed with
the characteristic zero, partly because the positive
characteristic often has only counterexamples to
offer.

Suppose that A ⊃ B are rings. We shall say that
A is a polynomial ring in m variables over B if
A ≡ B[X1, . . . , Xm] for indeterminates X1, . . . , Xm
over B. We express this as A = B[m]. Now suppose
A = B[1].

Then three questions naturally arise: (i) Given
an element u ∈ A, what are the conditions for u to
be a variable, i.e., A = B[u]? (ii) How unique is B?
Is it unique as a subring ? (iii) If it is not unique as
a subring, then is it unique up to isomorphism (a
cancellation problem)?

Abhyankar and Aroca (Hon. Doctorate, France),
1998.

These questions are at the heart of understand-
ing the polynomial rings that form the basis of
affine geometry, i.e., the study of homomorphic
images of polynomial rings over various chosen
base rings.

Here are the results and questions developed
by Abhyankar.

(1) The Epimorphism Theorem: In the paper
[42] Abhyankar, Heinzer, and Eakin analyzed
the above questions in great detail and
also formulated their extensions to many
variables. For more details see [Details, 2b].1

(2) In the 1973 paper [41] Abhyankar and Moh
developed a fundamental structure theorem
for affine curves with one place at infinity. In
it they introduced a fundamental new idea
of “approximate roots” which served both
as inspiration and tool for many results in
affine geometry.

The main thrust of the paper was the
celebrated “Abhyankar-Moh” epimorphism
theorem, which was formally published in
1975 [38]. Abhyankar continued to refine and
elaborate the structure of planar one place
curves, establishing (with B. Singh) the finite-
ness of their embeddings in the plane [35]
and giving simpler explanations of the new
techniques in [36], [34]. The Abhyankar-Moh
epimorphism theorem established that if
A = k[X,Y] is a polynomial ring in two vari-
ables over a characteristic zero field k, then
F(X,Y) ∈ A is a variable (i.e., A = k[F][G]

1[Details] refers to the section of the current article authored
by W. Heinzer and D. Shannon.
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for some G ∈ A) if and only if A/(F) = k[1].
A proof of this result over complex num-
bers using techniques of complex analysis
was also developed by Suzuki in 1974. The
theorem fails in positive characteristic and
even the weaker question, Does A/(F) = k[1]
imply that A/(F + c) = k[1] for all c ∈ k? is
still unresolved!

(3) Hypersurfaces as variables: A more general
version of the epimorphism theorem, known
as the Abhyankar-Sathaye conjecture, asks
if “A = k[m] and A/(F) = k[m−1] imply
A = k[F][m−1].” Except for several cases
for m = 3 and isolated cases for higher m,
the problem stays unresolved. Numerous
alternative proofs using different machinery
have been constructed for the Abhyankar-
Moh theorem.

(4) Lines in Space: Another natural extension
was to study a line in three space, i.e., an
ideal I ⊂ A = k[X,Y ,Z] such that A/I =
k[1]. Abhyankar asked the natural question
whether I represents an axis; i.e., does I have
two generators F,G such that A = k[F,G,H]
for some H? This question raised many
interesting issues. At that time it was not
even clear if I was necessarily two-generated.
Abhyankar made an extensive study of the
number of generators of ideals of curves in
three space ([43], [40], [39]). He produced
an explicit construction for three generators
for the ideal of any nonsingular space curve,
and M. P. Murthy and J. Towber found a
way to use it for the first proof of the three-
dimensional Serre conjecture in 1974 (later
extended to all dimensions independently
by Suslin and Vaserstein using very different
techniques). It settled the question about two
generators for the ideals of lines in space
in the affirmative. The question about lines
in three space representing an axis is still
unsettled over an algebraically closed field,
but there are examples of lines in real three
space with knots, which cannot represent an
axis over reals, since the fundamental group
of their complement would be nontrivial.

(5) The Jacobian Problem: Abhyankar talked
extensively about the two variable Jacobian
Problem, namely “given F,G ∈ k[X,Y] such
that their Jacobian J(X,Y)(F,G) is a nonzero
constant, is it true that k[F,G] = k[X,Y]; i.e.,
do they form a matched pair of variables?”
While this is easily seen to be false in
positive characteristic, the problem is still
very open in characteristic zero. It also has
the notorious distinction of having multiple
incorrect published proofs. Abhyankar was
thrust into thinking about this problem,

partly because two of his own students made
unsuccessful attempts and he faced the task
of finding holes in their proofs. He made
several private calculations, but only the
T.I.F.R. lecture notes contain the details of
his results, mostly using the Abhyankar-
Moh theory developed for the epimorphism
theorem.

After the 1970s he did not actively pursue
the problem until in the 1990s he yielded
to numerous requests to publish his unpub-
lished notes and results. He published a
series of papers: [26], [23], [22], [20], [15],
[14], [13], [12], [11], [10], [9].

For more details see [Details, 2(d), 3].

During the 1980s and 1990s Abhyankar was
occupied with other fields of algebraic geometry,
including computational geometry, combinatorics,
group theory, etc. In the 1990s he was getting all
fired up to devote his full energy and immense
concentration to the Jacobian Problem; however,
he got diverted into the problem of “dicritical
divisors,” which appeared to be potentially useful
for the Jacobian Problem. We describe this next.

Abhyankar was introduced to the theory of
dicritical divisors by I. Luengo and E. Artal Bartolo.
Originally, Abhyankar was a reluctant listener,
complaining about fancy and unclear terminology.
But patience on all sides paid off, and Abhyankar
managed to not only understand the subject but to
make it completely algebraic and transparent. He,
Luengo, Artal, and Heinzer managed to develop an
extensive new theory. Abhyankar would sometimes
joke that the fancy terminology was like sand
introduced into a pearl oyster: it irritates but ends
up producing a pearl!

Given a regular local ring R of dimension 2,
consider a nonconstant z in its quotient field. In
Abhyankar’s formulation, the dicritical divisors of
z relative to R are simply all the divisors V of R for
which z is residually transcendental with respect
to R.

With Abhyankar’s fundamental knowledge of
quadratic transformation and mastery of the tech-
nique of inductive proofs, he started formulating
and answering questions about the nature of di-
critical divisors, the structure of the tree formed
by them, and the fundamental problem of how to
construct a suitable z with a preassigned tree (with
multiplicities) of dicritical divisors. He reworked
and enhanced the theory of complete ideals pio-
neered by Zariski and even generalized it to higher
dimensions. Unlike other treatments, his theory
worked well even in mixed characteristic, which he
considered a test for a good theorem. He produced
a series of papers, some by him and some with
Heinzer, Luengo, and Artal. Towards the end he
was in the process of building concrete formulas
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for construction of the so-called Zariski ideals,
i.e., ideals in the base R with the given dicritical
tree. See the section on dicritical divisors in the
references.

Abhyankar was clearly in his element while
working on the dicritical divisors. He used to
see the truth of the theorems way before writing
down their formulation and used to say that, like
well-formed poetry, these theorems are not only
true but beautiful. He had an ulterior motivate for
working on dicritical divisors; namely, he saw a
potentially new attack on the Jacobian Problem
through this new theory. A hint of his thoughts is
in [9].

Alas, that challenge is now left for those who
learned from him!
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Dinesh Thakur
The first real research mathematician that I came
across was Professor Shreeram Abhyankar back in
1976, and then under quite peculiar circumstances.

As an overreaction to Abhyankar’s verbal
arguments—vigorous and probably even provoca-
tive, as per his patent style—with other professors
in the University of Pune, the vice chancellor
had banned Abhyankar from the premises of
the university. My uncle, P. L. Deshpande, who
was a famous author, wrote a fantastic parody
of these ridiculous circumstances in the literary
supplement of the Sunday newspaper in Marathi
(the mother tongue both Abhyankar and I shared).
They did not know each other back then, and the
column did not mention any names; however, after
reading this, Abhyankar was amused, and together
with his student Shashikant Mulay came to my
uncle’s house to chat with him. Fortunately, I was
there, just a schoolboy at that time, but already
quite interested in mathematics.

Dinesh Thakur is professor of mathematics at the Univer-
sity of Rochester. His email address is dinesh.thakur@
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Provoked by these circumstances and also
recognizing the need for a new, independent re-
search institute in India, Abhyankar then founded
“Bhaskaracharya Pratishthan.” In May 1977 I at-
tended a summer school under the auspices of
this new institute, and I remember being quite
impressed by Abhyankar’s ability to penetrate to
the heart of the matter directly.

Later, during my graduate years, whenever he
came to give a seminar he would take me for dinner
and we would talk for hours. He loved to gather an
audience, tell anecdotes, and whenever possible,
stir up a heated debate. Even for mathematical
questions, he seldom gave straightforward answers.
Instead, he preferred long rambling discourses,
often unfocused and tangential, where he elabo-
rated on related things and mixing mathematics
with other things. He would not necessarily follow
a logical or linear path, but believed in a “repeat,
meditate, and meaning will be revealed to you”
philosophy of old Indian masters speaking in
sutra/mantra. But these “mathematical ramblings”
were full of interesting insights and spontaneous,
original viewpoints. In his book, Lectures on Al-
gebra, one single lecture is four hundred pages!
For him, research developed through discussion;
he always preferred to visit, call up, and discuss
mathematics in person.

He genuinely enjoyed arguments and was proud
that he could argue from any stance. Often he
would quickly size up the viewpoint of the listener
and then take the opposite side. It was a cultivated,
competitive sport for him, and he was ready to
fight the battle from both sides! Though he often
went to extremes, he would often be speaking
“deep truths” (it is the hallmark of any deep truth
that its negation is also a deep truth: Bohr).

Once he started working on something, he
became energized and completely devoted himself
to his work. I remember the day before his
son’s wedding he became so engrossed in our
mathematical discussions at his house that he
totally ignored the wedding party and even got
angry when the relatives tried to involve him.
Finally, to avoid trouble in his household, I had to
escape under some pretense!

Fortunately he was able to lead a very productive
life right to the end. His dedication and energy
in his research and teaching will always be an
inspiration to many of us.
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